LOCALLY COMPLETE INTERSECTION IDEALS IN COHEN-MACAULAY LOCAL RINGS

MEE-KYOUNG KIM

Throughout this paper, all rings are assumed to be commutative with identity. By a local ring (R, m), we mean a Noetherian ring R which has the unique maximal ideal m. By $\dim(R)$ we always mean the Krull dimension of R. Let I be an ideal in a ring R and t an indeterminate over R. Then the Rees algebra R[It] is defined to be

$$R[It] = R \oplus It \oplus I^2t^2 \oplus \cdots$$

Let (R, m) be a local ring and I an ideal of R. An ideal J contained in I is called a reduction of I if $JI^n = I^{n+1}$ for some integer $n \geq 0$. A reduction J of I is called a minimal reduction of I if J is minimal with respect to being a reduction of I. The analytic spread of I, denoted by l(I), is defined to be dim (R[It]/mR[It]). In [5], it is shown that $ht(I) \leq l(I) \leq \dim(R)$. An ideal I is called equimultiple if l(I) = ht(I). If R/m is an infinite field, then l(I) is the least number of elements generating a reduction of I ([5]). We will use notation $\lambda_R(M)$ (or simply $\lambda(M)$) to denote the length of M as an R-module and $\mu(I)$ to denote the number of elements in a minimal basis of an ideal I of a local ring (R, m) (i.e., $\mu(I) = \lambda(I/mI)$). An ideal I is called complete intersection if IR_p is a complete intersection for all $p \in Ass_R(R/I)$. Let e(R) denote the multiplicity of R relative to m. As a general reference, we refer the reader to [4] for any unexplained notation or terminology.

In this paper, we show that an equimultiple ideal I is generated by a regular sequence (i.e., a complete intersection) if I is a locally complete intersection in a Cohen-Macaulay local ring (R, m).

Received August 23, 1993.

PROPOSITION 1. Let (R, m) be a Cohen-Macaulay local ring with an infinite residue field and I an ideal in R. Suppose that I is a locally complete intersection. Then I has no embedded primes.

Proof. Since I is a locally complete intersection, we have that

$$ht(IR_p) = \mu(IR_p)$$

for all $p \in Ass_R(R/I)$. Hence IR_p has no embedded primes in R_p , since R_p is a Cohen-Macaulay local ring for all $p \in Ass_R(R/I)$.

Claim: I has no embedded primes.

Suppose that I has an embedded prime. That is, there exists a prime ideal q in R such that $I \subseteq q \subseteq p$. Since IR_p is unmixed for all $p \in Ass_R(R/I)$ ([4], Theorem 17.6), we have that

$$ht(qR_p) = ht(pR_p).$$

Hence we have that q = p because $q \subsetneq p$. It's a contradiction and this completes the proof of our assertion.

REMARK. Let R_p be a Cohen-Macaulay local ring for all $p \in Ass_R(R/I)$. If IR_p is unmixed for all $p \in Ass_R(R/I)$, then I has no embedded primes.

LEMMA 2. Let I and J be ideals of a Noetherian ring R. If $JR_p \subseteq IR_p$ for every $p \in Ass_R(R/I)$, then $J \subseteq I$.

Proof. Let $I=q_1\cap q_2\cap\cdots\cap q_r$ be a minimal primary decomposition of I, where $\sqrt{q_i}=p_i$ for $i=1,2,\ldots,r$. Then we have that $Ass_R(R/I)=\{p_1,p_2,\ldots,p_r\}$. Suppose that $J\nsubseteq I$. Then there exists an element x in J such that $x\notin I$. Hence we have that $x\notin q_i$ for some $1\leq i\leq r$. So $(q_i:x)$ is p_i -primary and $\sqrt{(q_i:x)}=p_i$ ([1], Lemma 4.4.). We get by the hypothesis that

$$\frac{x}{1} \in IR_{p_i}.$$

This allows us to express

$$\frac{x}{1} = \frac{a}{s}$$

with $a \in I$ and $s \notin p_i$. In this situation, we see that $tsx \in I$ for some $t \notin p_i$. Hence we have that

$$ts \in (I:x) \subseteq (q_i:x)$$
.

Therefore we see that $ts \in p_i$, which is a contradiction. This completes the proof of our assertion.

THEOREM 3. Let (R, m) be a Cohen-Macaulay local ring with an infinite residue field and let I be an equimultiple ideal of ht(I) = r. Suppose that I is a locally complete intersection. Then I is generated by a regular sequence on R.

Proof. Since I is an equimultiple ideal of ht(I) = r with $|R/m| = \infty$, there exists a minimal reduction $J = (a_1, a_2, \ldots, a_r)$ of I. So we have that $ht(J) = \mu(J) = r$, since $\sqrt{I} = \sqrt{J}$. Hence J is generated by a regular sequence on R, since (R, m) is a Cohen-Macaulay local ring.

Claim: J = I.

 \subseteq : It is obvious.

 \supseteq : Since J is complete intersection in a Cohen-Macaulay local ring (R, m), J is unmixed, i.e.,

$$Ass_R(R/J) = Min(J)$$
.

I has no embedded primes, by Proposition 1, i.e.,

$$Ass_R(R/I) = Min(I)$$
.

Notice that Min(J) = Min(I), because J is a reduction of I ([5]). Consequently

$$Ass_R(R/J) = Min(J) = Min(I) = Ass_R(R/I)$$
.

Condition of a locally complete intersection tells us ([5], §4, Theorem 2) that IR_p has no proper reduction for all $p \in Ass_R(R/I)$. Hence we get that

$$JR_p = IR_p$$
 for all $p \in Ass_R(R/I)$.

Thus we see that $J \supseteq I$ by Lemma 2. The proof of claim is complete and this completes the proof of our assertion.

The following example shows that Theorem 3 is false for an equimultiple and prime ideal I = p which does not satisfy the condition of a locally complete intersection.

. EXAMPLE 4. Let

$$R = k[[X, Y, Z, W]]/(Z^{2} - W^{5}, Y^{2} - XZ)$$
$$= k[[x, y, z, w]]$$

and p = (y, z, w).

We have $wp^3 = p^4$, hence l(p) = ht(p) = 1. Furthermore $R/p \simeq k[[x]]$ is regular. Therefore by [3] we get equimultiplicity: $e(R) = e(R_p)$. Surely e(R) > 1, hence $e(R_p) \geq 2$, i.e., R_p is not regular. But R is a 2-dimensional Cohen-Macaulay local ring. Now in this case p is not generated by a regular sequence.

References

- 1. M. Atiyah and I. MacDonald, Introduction to Commutative Algebra, Addison Wesley, 1969.
- 2. M. Herrmann and S. Ikeda, Remarks on lifting of Cohen-Macaulay property, Nagoya Math. J. 92 (1983), 121-132.
- 3. M. Herrmann and U. Orbanz, Faserdimension von Aufblasungen lokaler Rings und Äquimultiplizität, J. Math. Kyoto Univ. 20 (1980), 651-659.
- 4. H. Matsumura, Commutative ring Theory, Cambridge Studies in Advanced Math. 8, Cambridge Univ. Press, 1986.
- 5. D. G. Northcott and D. Rees, *Reductions of ideals in local rings*, Proc. Cambridge Phil. Soc. **50** (1954), 145-158.

Department of Mathematics Sung Kyun Kwan University Suwon 440-746, Korea