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LOCALLY COMPLETE INTERSECTION IDEALS
IN COHEN-MACAULAY LOCAL RINGS

MEeE-KYOUNG KM

Throughout this paper, all rings are assumed to be commutative with
identity. By a local ring (R, m), we mean a Noetherian ring R which
has the unique maximal ideal m. By dim(R) we always mean the Krull
dimension of R. Let I be an ideal in a ring R and ¢ an indeterminate

over R. Then the Rees algebra R[It] is defined to be
RiIt)]=ReoIteI*’?®---

Let (R, m) be a local ring and I an ideal of R. An ideal J contained
in I is called a reduction of I if JI® = I"*! for some integer n > 0.
A reduction J of I is called a minimal reduction of I if J is minimal
with respect to being a reduction of I. The analytic spread of I, denoted
by (I), is defined to be dim (R[It]/mR[It]). In [5)], it is shown that
ht(I) < I(I) < dim(R). An ideal I is called equimultiple if I(I) = ht(I).
If R/m is an iofinite fleld, then I(I) is the least number of elements
generating a reduction of I ([5]). We will use notation Ag(M) ( or simply
A(M)) to denote the length of M as an R-module and pu(I) to denote
the number of elements in a minimal basis of an ideal I of a local ring
(R, m) (ice., p(I) = A(I/mI)). Anideal I is called complete intersection
if At(I) = p(I). An ideal I is called a locally complete intersection if
IR, is a complete intersection for all p € Assr(R/I). Let e(R) denote
the multiplicity of R relative to m. As a general reference, we refer the
reader to [4] for any unexplained notation or terminology.

In this paper, we show that an equimultiple ideal I is generated by a
regular sequence (i.e., a complete intersection) if I is a locally complete
intersection in a Cohen-Macaulay local ring (R, m).
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ProPOSITION 1. Let (R, m) be a Cohen-Macaulay local ring with an
infinite residue field and I an ideal in R. Suppose that I is a locally
complete intersection. Then I has no embedded primes.

Proof. Since I is a locally complete intersection, we have that
ht(IR,) = p(IR,)

for all p € Assgr(R/I). Hence IR, has no embedded primes in R,, since
R, is a Cohen-Macaulay local ring for all p € Assg(R/I).

Claim : I has no embedded primes.
Suppose that I has an embedded prime. That is, there exists a prime
ideal ¢ in R such that I C ¢ g p. Since IR, is unmixed for all p €
Assp(R/I) ([4], Theorem 17.6), we have that

ht(qR,) = hi(pR,).

Hence we have that ¢ = p because ¢ g p.- It’s a contradiction and this
completes the proof of our assertion.

REMARK. Let R, be a Cohen-Macaulay local ring for all p €
Assp(R/I). If IR, is unmixed for all p € Assg(R/I), then I has no
embedded primes.

LEMMA 2. Let I and J be ideals of a Noetherian ring R. If JR, €
IR, for every p € Assg(R/I), then J & I.

Proof. Let I = q; Ng2N---Ngq, be a minimal primary decomposition
of I, where \/g; = p; for i = 1,2,...,7. Then we have that Assr(R/I) =
{p1,p2,---,pr}. Suppose that J & I. Then there exists an element  in
J such that z ¢ I. Hence we have that z ¢ ¢; for some 1 <: < r. So
(¢; : z) is p;-primary and 1/(¢; : ) = p; ([1], Lemma 4.4.). We get by
the hypothesis that

z
TeIR.-.

This allows us to express
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with @ € I and s ¢ p;. In this situation, we see that tsz € I for some
t ¢ p;. Hence we have that

tse(I:2)C (¢ : ).

Therefore we see that ts € p;, which is a contradiction. This completes
the proof of our assertion.

THEOREM 3. Let (R, m) be a Cohen-Macaulay local ring with an
infinite residue field and let I be an equimultiple ideal of ht(I) = r.

Suppose that I is a locally complete intersection. Then I is generated
by a regular sequence on R.

Proof. Since I is an equimultiple ideal of ht(I) = r with |R/m| = oo,
there exists a minimal reduction J = (a1,4as,...,a,) of I. So we have
that ht(J) = u(J) = r, since VI = v/J. Hence J is generated by a
regular sequence on R, since (R, m) is a Cohen-Macaulay local ring.
Claim : J = 1.

: It is obvious.

: Since J is complete intersection in a Cohen-Macaulay local ring
R, m), J is unmixed, i.e.,

Assp(R/J) = Min(J).
I has no embedded primes, by Proposition 1, i.e.,
Assp(R/I) = Min(I).

Notice that Min(J) = Min([I), because J is a reduction of I ([5]). Con-
sequently

uiN

™

Assg(R/J) = Min(J) = Min(I) = Assp(R/I).

Condition of a locally complete intersection tells us ([5], §4, Theorem 2)
that IR, has no proper reduction for all p € Assp(R/I). Hence we get
that

JRy, =IR, forall pe€ Assr(R/I).
Thus we see that J 2 I by Lemma 2. The proof of claim is complete
and this completes the proof of our assertion.

The following example shows that Theorem 3 is false for an equimul-
tiple and prime ideal I = p which does not satisfy the condition of a
locally complete intersection.
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. EXAMPLE 4. Let

R= KX, Y, Z, W)|/(2® - W5, Y? — XZ)
= k[[.’IJ, Y, 2, w]]

and p = (y, z, w).

We have wp® = p*, hence I(p) = ht(p) = 1. Furthermore R/p ~ k{[z]]
is regular. Therefore by [3] we get equimultiplicity : e(R) = e(R,).
Surely e(R) > 1, hence e(R,) > 2, i.e., R, is not regular. But R is
a 2-dimensional Cohen-Macaulay local ring. Now in this case p is not
generated by a regular sequence.
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