ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING

Hosein Fazaeli Moghimi and Sadegh Rahimi Naghani

Abstract

Let R be a commutative ring with $1 \neq 0$ and n a positive integer. In this article, we introduce the n-Krull dimension of R, denoted $\operatorname{dim}_{n} R$, which is the supremum of the lengths of chains of n-absorbing ideals of R. We study the n-Krull dimension in several classes of commutative rings. For example, the n-Krull dimension of an Artinian ring is finite for every positive integer n. In particular, if R is an Artinian ring with k maximal ideals and $l(R)$ is the length of a composition series for R, then $\operatorname{dim}_{n} R=l(R)-k$ for some positive integer n. It is proved that a Noetherian domain R is a Dedekind domain if and only if $\operatorname{dim}_{n} R=n$ for every positive integer n if and only if $\operatorname{dim}_{2} R=2$. It is shown that Krull's (Generalized) Principal Ideal Theorem does not hold in general when prime ideals are replaced by n-absorbing ideals for some $n>1$.

1. Introduction

We assume throughout this paper that all rings are commutative with $1 \neq 0$. The concept of 2-absorbing ideal, which is a generalization of prime ideal, was introduced by A. Badawi in [4] and studied in [5], [9]. Various generalizations of prime ideals are also studied in [1, 2, 10]. In recent years, 2 -absorbing ideals have been generalized and studied in several directions (see, for example, [5, 6, $7,8,9]$). As in [3], for a positive integer n, a proper ideal I of a commutative ring R is called an n-absorbing ideal if whenever $x_{1} \cdots x_{n+1} \in I$ for $x_{1}, \ldots, x_{n+1} \in$ R, then there are n of the x_{i} 's whose product is in I. It is evident that 1 absorbing ideals are just prime ideals. This was our motivation for the following generalization of the Krull dimension of a ring.

Definition. Let R be a ring and n a positive integer. Then

$$
I_{0} \subset I_{1} \subset \cdots \subset I_{m}
$$

Received January 28, 2015; Revised July 14, 2015.
2010 Mathematics Subject Classification. Primary 13A15; Secondary 13C15, 13E10, 13F05.

Key words and phrases. n-absorbing ideal, n-Krull dimension, n-height, Artinian ring, Dedekind domain.
where $I_{0}, I_{1}, \ldots, I_{m}$ are distinct n-absorbing ideals of R, is called a chain of n absorbing ideals of length m. The n-Krull dimension of R, denoted by $\operatorname{dim}_{n} R$, is defined to be the supremum of the lengths of these chains. Thus $\operatorname{dim}_{1} R$ is just the usual Krull dimension, $\operatorname{dim} R$, of R.

As a first example, let $R=\mathbb{Z}_{p^{n}}$ for a positive integer n and a prime integer p. By [3, Lemma 2.8, Theorem 2.1(c)], the set of k-absorbing ideals of R consists of all ideals of the form $p^{i} \mathbb{Z}_{p^{n}}$, where $1 \leq i \leq k$. Thus for each $1 \leq k \leq n$, $\operatorname{dim}_{k}(R)=k-1$ and $\operatorname{dim}_{k}(R)=n-1$ for all $k \geq n$.

By [3, Theorem 2.1(c)], every n-absorbing ideal of R is an m-absorbing ideal for all $m \geq n$. It follows immediately that

$$
\begin{equation*}
\operatorname{dim} R=\operatorname{dim}_{1} R \leq \operatorname{dim}_{2} R \leq \operatorname{dim}_{3} R \leq \cdots \tag{*}
\end{equation*}
$$

We will give several examples for which some of the inequalities in (*) may be strict. There exists a Noetherian ring R such that $\operatorname{dim}_{1} R=\infty$ ([11, Exercise $9.6]$). Thus by (*), the n-Krull dimension of a Noetherian ring may be infinity for each positive integer n. However, we shall see that for each positive integer $n, \operatorname{dim}_{n}(R)$ is finite in the case that R is an Artinian ring (Theorem 2.8) or a Dedekind domain (Theorem 2.19). We also show that if R is a Noetherian local domain with $\operatorname{dim}_{1}(R)=1$, then $\operatorname{dim}_{2} R$ is finite (Theorem 2.9). Furthermore, if [3, Conjecture 2] holds, then $\operatorname{dim}_{n} R$ is finite for all $n \geq 3$ (Theorem 2.10).

In the rest of paper, we assume that $l(R)$ denotes the length of a composition series for a ring R which is of finite length. It is shown that if (R, \mathfrak{m}) is an Artiniain local ring and n is the smallest positive integer such that $\mathfrak{m}^{n}=0$, then $\operatorname{dim}_{k} R=l(R)-1$ for each $k \geq n$ (Theorem 2.12). In particular, if \mathfrak{m} is principal it is shown that $\operatorname{dim}_{k}(R)=n-1$ if $k \geq n$ and $\operatorname{dim}_{k}(R)=k-1$ if $1 \leq k \leq n$ (Corollary 2.14). It is shown that if $R=R_{1} \times \cdots \times R_{k}$, where each R_{i} is a ring, then $\sum_{i=1}^{k} \operatorname{dim}_{n_{i}} R_{i} \leq \operatorname{dim}_{n} R$, for all positive integers n_{1}, \ldots, n_{k} with $n=\sum_{i=1}^{k} n_{i}$. Moreover, if some of the R_{i} 's are fields and $\operatorname{dim}_{n} R$ is finite for some positive integer n, then $\operatorname{dim}_{n} R \leq \sum_{i=t+1}^{k} \operatorname{dim}_{n} R_{i}+t$, where t is the number of fields in this product (Theorem 2.11). Using this fact and the structure theorem for Artinian rings, we prove that if R is an Artinian ring with k maximal ideals, then $\operatorname{dim}_{n} R=l(R)-k$ for some positive integer n (Theorem 2.13). As in [3], if I is an n-absorbing ideal of R for some positive integer n, define $\omega(I)=\min \{n: I$ is an n-absorbing ideal of $R\}$, otherwise, set $\omega(I)=\infty$. It is shown that if $I \subseteq J$ are ideals of a Dedekind domain R, then $I=J$ (respectively $I \subset J$) if and only if $\omega(J)=\omega(I)$ (respectively $\omega(J)<\omega(I))$ (Lemmas 2.17 and 2.18). It is shown that a Noetherian domain R is a Dedekind domain if and only if $\operatorname{dim}_{n} R=n$ for every positive integer n if and only if $\operatorname{dim}_{2} R=2$ (Theorem 2.19).

Finally, among several examples of the n-Krull dimension of a ring, some examples are given to show that Krull's (Generalized) Principal Ideal Theorem can not be generalized when n-absorbing ideals for $n>1$ are considered rather than prime ideals.

2. The \boldsymbol{n}-Krull dimension of a ring

An n-absorbing ideal I of R is called a minimal n-absorbing ideal of the ideal J if $J \subseteq I$ and there is no n-absorbing ideal I^{\prime} such that $J \subseteq I^{\prime} \subset I$. By a minimal n-absorbing ideal of R, we mean a minimal n-absorbing ideal of (0). Although every prime ideal of R is an n-absorbing ideal for each $n \geq 2$, there exists a minimal prime ideal which is not a minimal n-absorbing ideal for each $n \geq 2$. For example, if $R=K[X]$ is the polynomial ring in one variable X over a field K, the minimal prime ideal $P=R X$ of (0) is not a minimal 2-absorbing ideal of (0), since by [3, Lemma 2.8], $R X^{2}$ is a 2 -absorbing ideal of R.

Theorem 2.1. Let R be a ring. Then for each positive integer n, there is an n-absorbing ideal of R which is minimal among all n-absorbing ideals of R.

Proof. Let Σ be the set of all n-absorbing ideals of R. Since every maximal ideal of R is an n-absorbing ideal for each $n>1, \Sigma$ is not empty. It is clear that (Σ, \leq) is a partially ordered set in which $I \leq I^{\prime}$ if and only if $I \supseteq I^{\prime}$ for all $I, I^{\prime} \in \Sigma$. Let $C=\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ be an arbitrary non-empty chain of elements of Σ and set $J=\bigcap_{\lambda \in \Lambda} I_{\lambda}$. We show that J is an n-absorbing ideal of R. Since C is non-empty, $J \neq R$. Let $a_{1} \cdots a_{n+1} \in J$ for some $a_{1}, \ldots, a_{n+1} \in R$. Let $\widehat{a_{i}}=\prod_{j \neq i} a_{j}$, the product of all a_{j} 's except a_{i}. Assume that $\widehat{a_{i}} \notin J$ for each $1 \leq i \leq n$. Then, for each $1 \leq i \leq n$, there exists $I_{\lambda_{i}} \in C$ such that $\widehat{a_{i}} \notin I_{\lambda_{i}}$. We may assume that $I_{\lambda_{1}} \subseteq \cdots \subseteq I_{\lambda_{n}}$. For $\mu \in \Lambda$, we have the following cases:
(1) If $I_{\mu} \subseteq I_{\lambda_{1}} \subseteq \cdots \subseteq I_{\lambda_{n}}$, then $\widehat{a_{i}} \notin I_{\mu}$ for each $1 \leq i \leq n$. Now since $a_{1} \cdots a_{n+1} \in I_{\mu}$ and I_{μ} is an n-absorbing ideal of R, we have $\widehat{a_{n+1}} \in I_{\mu}$.
(2) If there exists $1<j \leq n$ such that

$$
I_{\lambda_{1}} \subseteq \cdots \subseteq I_{\lambda_{j-1}} \subseteq I_{\mu} \subseteq I_{\lambda_{j}} \subseteq \cdots \subseteq I_{\lambda_{n}}
$$

then $\widehat{a_{i}} \notin I_{\lambda_{1}}$ for each $1 \leq i \leq n$. Now since $a_{1} \cdots a_{n+1} \in I_{\lambda_{1}}$ and $I_{\lambda_{1}}$ is an n-absorbing ideal of R, we have $\widehat{a_{n+1}} \in I_{\lambda_{1}} \subseteq I_{\mu}$.
Thus $\widehat{a_{n+1}} \in I_{\mu}$ for each $\mu \in \Lambda$, and therefore $\widehat{a_{n+1}} \in J$. Hence by Zorn's Lemma, (Σ, \leq) has a maximal element, i.e., there is a minimal n-absorbing ideal of R.

Corollary 2.2. Let R be a ring and I a proper ideal of R. Then for each positive integer n, there is an n-absorbing ideal of R which is minimal among all n-absorbing ideals of R containing I.

Proof. Use Theorem 2.1 and [2, Corollary 4.3(b)].
Remark 2.3. Every n-absorbing ideal of R is contained in a maximal ideal of R (and, of course, maximal ideals are n-absorbing ideals). Also, every n absorbing ideal of R contains a minimal n-absorbing ideal of (0) by Theorem 2.1. It follows that $\operatorname{dim}_{n} R$ is equal to the supremum of lengths of chains

$$
I_{0} \subset I_{1} \subset \cdots \subset I_{m}
$$

of n-absorbing ideals of R in which I_{m} is a maximal ideal of R and I_{0} is a minimal n-absorbing ideal of (0).
Definition. Let R be a ring and I an ideal of R.
(1) If I is an n-absorbing ideal of R, the n-height of I, denoted by ht ${ }_{n}(I)$, is defined to be the supremum of lengths of chains

$$
I_{0} \subset I_{1} \subset \cdots \subset I_{m}
$$

of n-absorbing ideals of R for which $I_{m}=I$ if this supremum exists, and ∞ otherwise.
(2) If I is a proper ideal of R (not necessarily n-absorbing ideal) and n a positive integer, the n-height of I, denoted by $\mathrm{ht}_{n}(I)$, is defined to be

$$
\min \left\{\operatorname{ht}_{n}(J): J \text { is an } n \text {-absorbing ideal and } J \supseteq I\right\} .
$$

Lemma 2.4. Let $I \subseteq J$ be n-absorbing ideals of R. Then $\operatorname{ht}_{n}(I) \leq \operatorname{ht}_{n}(J)$. In particular, if $\operatorname{ht}_{n}(J)<\infty$, then $I=J$ if and only if $\operatorname{ht}_{n}(I)=\mathrm{ht}_{n}(J)$.
Proof. If $\mathrm{ht}_{n}(J)=\infty$, there is noting to prove. So let $\mathrm{ht}_{n}(J)<\infty$. We may assume that $I \subset J$. First note that $\mathrm{ht}_{n}(I)$ is finite, since for each chain $I_{0} \subset I_{1} \subset \cdots \subset I_{m}=I$ of n-absorbing ideals of R, we have the chain $I_{0} \subset$ $I_{1} \subset \cdots \subset I_{m} \subset J$ of n-absorbing ideals of R. Let $\operatorname{ht}_{n}(I)=m$, and $I_{0} \subset I_{1} \subset$ $\cdots \subset I_{m}$ be a chain of n-absorbing ideals of R with $I_{m}=I$. Then, the chain $I_{0} \subset I_{1} \subset \cdots \subset I_{m} \subset J$ of n-absorbing ideals of R shows that $\mathrm{ht}_{n}(J) \geq m+1$. The "in particular" statement follows immediately.

Corollary 2.5. Let R be a ring and I an ideal of R. Then for any positive integer n,
$\mathrm{ht}_{n}(I)=\min \left\{\mathrm{ht}_{n}(J): J\right.$ is a minimal n-absorbing ideal of $\left.I\right\}$.
Proof. Clearly,

$$
\operatorname{ht}_{n}(I) \leq \min \left\{\mathrm{ht}_{n}(J): J \text { is a minimal } n \text {-absorbing ideal of } I\right\} .
$$

Thus, if $\mathrm{ht}_{n}(I)=\infty$, then there is noting to prove. So let $\mathrm{ht}_{n}(I)=m<\infty$. Then there exists an n-absorbing ideal $J \supseteq I$ of R, such that $\mathrm{ht}_{n}(J)=\mathrm{ht}_{n}(I)=$ m. By Corollary 2.2 , there exists a minimal n-absorbing ideal J^{\prime} of I such that $I \subseteq J^{\prime} \subset J$. It follows from Lemma 2.4 that $\operatorname{ht}_{n}(I) \leq \operatorname{ht}_{n}\left(J^{\prime}\right) \leq \mathrm{ht}_{n}(J)$. Thus
$\min \left\{\mathrm{ht}_{n}(J): J\right.$ is a minimal n-absorbing ideal of $\left.I\right\} \leq \mathrm{ht}_{n}(I)$.
This completes the proof.
Theorem 2.6. Let $I \subset J$ be ideals of R, and J be an n-absorbing ideal of R such that $\operatorname{ht}_{n}(J)$ is finite. If $\mathrm{ht}_{n}(I)=\mathrm{ht}_{n}(J)$, then J is a minimal n-absorbing ideal of I.

Proof. Suppose that J is not a minimal n-absorbing ideal of I. Then by Corollary 2.2 , there exists a minimal n-absorbing ideal J^{\prime} of I such that $I \subseteq J^{\prime} \subset J$. In view of Lemma 2.4 and Corollary 2.5, we have $\mathrm{ht}_{n}(I) \leq \mathrm{ht}_{n}\left(J^{\prime}\right)<\mathrm{ht}_{n}(J)$, contrary to hypothesis.

Theorem 2.7. Let R be a ring and n a positive integer. If $\operatorname{dim}_{n} R$ is finite, then

$$
\begin{aligned}
\operatorname{dim}_{n} R & =\sup \left\{\operatorname{ht}_{n}(I): I \text { is an } n \text {-absorbing ideal of } R\right\} \\
& =\sup \left\{\operatorname{ht}_{n}(\mathfrak{m}): \mathfrak{m} \text { is a maximal ideal of } R\right\}
\end{aligned}
$$

Proof. To show the first equality, if I is an n-absorbing ideal of R, then it is clear that $\mathrm{ht}_{n}(I) \leq \operatorname{dim}_{n} R$. Thus, we have the " \geq " for the required equalities. In order to show the " \leq ", let $\operatorname{dim}_{n} R=t$. Then there exists a chain $I_{0} \subset I_{1} \subset$ $\cdots \subset I_{t}$ of n-absorbing ideals of R. Set $I_{t}=I$, then $\mathrm{ht}_{n}(I)=t$, and therefore we have " \leq " for the required equalities. The second equality immediately follows from Remark 2.3 and the first equality.

Theorem 2.8. If R is an Artinian ring, then $\operatorname{dim}_{n} R$ is finite for each positive integer n.

Proof. Since R is $\operatorname{Artinian}, \operatorname{Max}(R)$ is a finite set. Let $\operatorname{Max}(R)=\left\{\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{k}\right\}$. Since R has finite length, the lengths of all strict chains of ideals of R have an upper bound, say t. Thus $\mathrm{ht}_{n}\left(\mathfrak{m}_{i}\right) \leq t$ for each $1 \leq i \leq k$. Now the result follows from Remark 2.3.

Theorem 2.9. Let (R, \mathfrak{m}) be a Noetherian local domain with $\operatorname{dim}_{1}(R)=1$. Then $\operatorname{dim}_{2}(R)$ is finite.

Proof. Let $(0)=I_{0} \subset I_{1} \subset \cdots \subset I_{t}=\mathfrak{m}$ be a chain of 2-absorbing ideals of R. Since $\operatorname{dim}_{1}(R)=1, \operatorname{Rad}\left(I_{1}\right)=\mathfrak{m}$, and so $\mathfrak{m}^{2} \subseteq I_{1}$ by [4, Theorem 2.4]. Now, since by $\left[14\right.$, Exercise 15.17], $l\left(R / \mathfrak{m}^{2}\right)<\infty$, we conclude that $t \leq l\left(R / \mathfrak{m}^{2}\right)<\infty$. Thus $\operatorname{dim}_{2}(R)<\infty$ by Remark 2.3.

Let R be a ring. It is clear that $\operatorname{Rad}(\mathfrak{p})=\mathfrak{p}$ for every prime ideal \mathfrak{p} of R. If I is a 2 -absorbing ideal of R, then $\operatorname{Rad}(I)^{2} \subseteq I$ by [4, Theorem 2.4] and [3, Theorem 6.1]. In [3, Conjecture 2], it has been conjectured that if $n \geq 3$ and I is an n-absorbing ideal of R, then $\operatorname{Rad}(I)^{n} \subseteq I$. This is true, for example, when R is a Prüfer domain [3, Corollary 6.9]. The following result extends Theorem 2.9 if the conjecture holds.

Theorem 2.10. Let (R, \mathfrak{m}) be a Noetherian local domain with $\operatorname{dim}_{1}(R)=1$. Then $\operatorname{dim}_{n}(R)$ is finite for every positive integer n.

Proof. The proof is essentially the same as the proof of Corollary 2.9, but by replacing [4, Theorem 2.4] by [3, Conjecture 2] and using n instead of 2 .

The following theorem will be used to show that for an Artinian $\operatorname{ring} R$ with k maximal ideals, $\operatorname{dim}_{n} R=l(R)-k$ for some positive integer n.

Theorem 2.11. Let $R=R_{1} \times \cdots \times R_{k}$, where each $R_{i}(1 \leq i \leq k)$ is a ring.
(1) If n_{1}, \ldots, n_{k} are positive integers and $n=\sum_{i=1}^{k} n_{i}$, then

$$
\sum_{i=1}^{k} \operatorname{dim}_{n_{i}} R_{i} \leq \operatorname{dim}_{n} R
$$

(2) If R_{i} is not a field for each $1 \leq i \leq k$, and $\operatorname{dim}_{n} R$ is finite for some positive integer n, then

$$
\operatorname{dim}_{n} R \leq \sum_{i=1}^{k} \operatorname{dim}_{n} R_{i}
$$

(3) If R_{1}, \ldots, R_{t} are fields and R_{t+1}, \ldots, R_{k} are not fields for some $1 \leq$ $t \leq k$, and $\operatorname{dim}_{n} R$ is finite for some positive integer n, then

$$
\operatorname{dim}_{n} R \leq \sum_{i=t+1}^{k} \operatorname{dim}_{n} R_{i}+t
$$

Proof. (1) Assume that $I_{1 i} \subset I_{2 i} \subset \cdots \subset I_{i k_{i}}$ is a chain of n_{i}-absorbing ideals of R_{i}. Thus $I_{1 i}^{\prime} \subset I_{2 i}^{\prime} \subset \cdots \subset I_{i k_{i}}^{\prime}$ is a chain of n_{i}-absorbing ideals of R, where for each $1 \leq j \leq k_{i}$

$$
I_{j i}^{\prime}=R_{1} \times \cdots \times R_{i-1} \times I_{j i} \times R_{i+1} \times \cdots \times R_{k}
$$

is an n_{i}-absorbing ideal of R. Thus $\operatorname{dim}_{n_{i}} R \geq \operatorname{dim}_{n_{i}} R_{i}$, and so $\operatorname{dim}_{n} R \geq$ $\operatorname{dim}_{n_{i}} R_{i}$. Hence, if $\operatorname{dim}_{n_{i}} R_{i}=\infty$ for some $1 \leq i \leq k$, then $\operatorname{dim}_{n} R=\infty$. Now, we assume that for every $1 \leq i \leq k, \operatorname{dim}_{n_{i}} R_{i}=t_{i}<\infty$. Thus, for each $i=1, \ldots, k$, there exists a chain $I_{i 0} \subset I_{i 1} \subset I_{i 2} \subset \cdots \subset I_{i t_{i}}$ of n_{i}-absorbing ideals of R_{i}. By [3, Theorem 4.7], we have the following chain of n-absorbing ideals which is of the length $t_{1}+\cdots+t_{k}$.
$I_{10} \times I_{20} \times I_{30} \times \cdots \times I_{k 0} \subset I_{11} \times I_{20} \times I_{30} \times \cdots \times I_{k 0} \subset \cdots \subset I_{1 t_{1}} \times I_{20} \times I_{30} \times \cdots \times I_{k 0} \subset$
$I_{1 t_{1}} \times I_{21} \times I_{30} \times \cdots \times I_{k 0} \subset I_{1 t_{1}} \times I_{22} \times I_{30} \times \cdots \times I_{k 0} \subset \cdots \subset I_{1 t_{1}} \times I_{2 t_{2}} \times I_{30} \times \cdots \times I_{k 0} \subset$
$I_{1 t_{1}} \times \cdots \times I_{k-1 t_{k-1}} \times I_{k 0} \subset I_{1 t_{1}} \times \cdots \times I_{k-1 t_{k-1}} \times I_{k 1} \subset \cdots \subset I_{1 t_{1}} \times \cdots \times I_{k-1 t_{k-1}} \times I_{k t_{k}}$
Thus $\operatorname{dim}_{n} R \geq \sum_{i=1}^{k} \operatorname{dim}_{n_{i}} R_{i}$.
(2) Let $\operatorname{dim}_{n} R=s$. By induction on k, it suffices to show that the assertion holds for $k=2$. In this case, there exists a chain

$$
I_{0} \times I_{0}^{\prime} \subset I_{1} \times I_{1}^{\prime} \subset \cdots \subset I_{s} \times I_{s}^{\prime}
$$

of n-absorbing ideals of $R=R_{1} \times R_{2}$. We may assume that there is a chain $I_{0} \subset \cdots \subset I_{t} \subset I_{t+1}=R_{1}$ of n-absorbing ideals of R_{1} for some $0 \leq t \leq s$. Then $\operatorname{dim}_{n} R_{1} \geq t$, and we must have the chain $I_{t+1}^{\prime} \subset \cdots \subset I_{s}^{\prime}$ of n-absorbing ideals of R_{2}. Therefore $\operatorname{dim}_{n} R_{2} \geq s-t$, and so $\operatorname{dim}_{n} R_{1}+\operatorname{dim}_{n} R_{2} \geq t+(s-t)=s$.
(3) By induction and part (2), we only need to show that $\operatorname{dim}_{n}\left(R_{1} \times F_{1}\right) \leq$ $\operatorname{dim}_{n}\left(R_{1}\right)+1$, where F_{1} is a field. Let $\operatorname{dim}_{n}\left(R_{1} \times F_{1}\right)=s$. Then there exists a chain

$$
I_{10} \times I_{20} \subset I_{11} \times I_{21} \subset \cdots \subset I_{1 s} \times I_{2 s}
$$

of n-absorbing ideals of R. Let $I_{2 j}=F_{1}$ for some $0 \leq j \leq s$. Then we have the chain $I_{1 j} \subset I_{1 j+1} \subset \cdots \subset I_{1 s}$ of n-absorbing ideals of R_{1}. Now the length of this chain is s if $j=0$ or $j>0$ and $I_{1 j-1} \neq I_{1 j}$, and is $s-1$ if $j>0$ and $I_{1 j-1}=I_{1 j}$. Thus $\operatorname{dim}_{n} R_{1} \geq s-1$, i.e., $\operatorname{dim}_{n} R \leq \operatorname{dim}_{n} R_{1}+1$ as required.

Theorem 2.12. Let (R, \mathfrak{m}) be an Artiniain local ring and n be the smallest positive integer such that $\mathfrak{m}^{n}=(0)$. Then $\operatorname{dim}_{k} R=l(R)-1$ for each $k \geq n$.

Proof. By assumption $\mathfrak{m}^{n}=(0)$ and $\mathfrak{m}^{n-1} \neq(0)$. Let $k \geq n$ and $\operatorname{dim}_{k} R=t$. Then there exists a chain $(0)=I_{0} \subset I_{1} \subset \cdots \subset I_{t}=\mathfrak{m}$ of k-absorbing ideals of R. Since $\mathfrak{m}^{k}=(0)$, by [3, Theorem 3.1], every ideal of R is a k-absorbing ideal. It follows that the chain $(0)=I_{0} \subset I_{1} \subset \cdots \subset I_{t}=\mathfrak{m} \subset R$ is a composition series for R. Hence, $\operatorname{dim}_{k} R=l(R)-1$.

Theorem 2.13. Let R be an Artinian ring with k maximal ideals. Then there exists a positive integer n such that $\operatorname{dim}_{n} R=l(R)-k$.

Proof. Since R is Artinian, by [11, Corolary 2.16], there exist Artinian local rings $R_{i}(1 \leq i \leq k)$, such that $R=R_{1} \times \cdots \times R_{k}$. For each $1 \leq i \leq k$, let \mathfrak{m}_{i} be the unique maximal ideal of R_{i} and n_{i} a positive integer such that $\mathfrak{m}_{i}^{n_{i}}=(0)$ and $\mathfrak{m}_{i}^{n_{i}-1} \neq(0)$. Thus by Theorem 2.12, $\operatorname{dim}_{m} R_{i}=l\left(R_{i}\right)-1$ for all $i=1, \ldots, k$ and $m \geq n_{i}$. Let $n=n_{1}+\cdots+n_{k}$. Then by Theorem 2.11(1), we have

$$
\operatorname{dim}_{n_{1}} R_{1}+\cdots+\operatorname{dim}_{n_{k}} R_{k} \leq \operatorname{dim}_{n} R
$$

It follows that $l(R)-k \leq \operatorname{dim}_{n} R$. Now we have the following two cases:
(1) If R_{i} is not a field for all $1 \leq i \leq k$, then by Theorem 2.11(2), we have

$$
\operatorname{dim}_{n} R \leq \sum_{i=1}^{k} \operatorname{dim}_{n} R_{i}=l(R)-k
$$

(2) Suppose that some of the R_{i} 's are fields. We may assume that R is of the form $R=F_{1} \times \cdots \times F_{t} \times R_{t+1} \times \cdots \times R_{t}$ for fields F_{1}, \ldots, F_{t} $(1 \leq t \leq k)$. Thus by Theorem 2.11(3) and the proof of Theorem 2.12, we have

$$
\begin{aligned}
\operatorname{dim}_{n} R & \leq \sum_{i=t+1}^{k} \operatorname{dim}_{n} R_{i}+t=\sum_{i=t+1}^{k}\left(l\left(R_{i}\right)-1\right)+t \\
& =\left(\sum_{i=t+1}^{k} l\left(R_{i}\right)+t\right)-k=l(R)-k
\end{aligned}
$$

Therefore $\operatorname{dim}_{n} R=l(R)-k$.
Corollary 2.14. Let (R, \mathfrak{m}) be an Artinian local ring such that $\mathfrak{m} \neq(0)$ is principal. Let n be the smallest positive integer such that $\mathfrak{m}^{n}=(0)$. Then for each $k \geq n, \operatorname{dim}_{k}(R)=n-1$, and for each $1 \leq k \leq n, \operatorname{dim}_{k}(R)=k-1$.

Proof. Since $\mathfrak{m}^{n}=(0)$ and $\mathfrak{m}^{n-1} \neq(0)$, by [14, Lemma 15.41$]$, the chain

$$
(0)=\mathfrak{m}^{n} \subset \mathfrak{m}^{n-1} \subset \cdots \subset \mathfrak{m} \subset R
$$

is a composition series for R. Thus by Theorem $2.12, \operatorname{dim}_{k}(R)=n-1$ for each $k \geq n$. Now let $1 \leq k<n$. Then by [14, Lemma 15.41] and [3, Theorem 3.1], the only chain of k-absorbing ideals of R is $\mathfrak{m}^{k} \subset \mathfrak{m}^{k-1} \subset \cdots \subset \mathfrak{m}$. Thus $\operatorname{dim}_{k}(R)=k-1$.

Example 2.15. Let K be a field.
(1) Let $R=K[X] /\left(X^{n}\right)$, where $n \geq 2$ is an integer. Then R is an Artinian local ring with maximal ideal $\mathfrak{m}=(X) /\left(X^{n}\right)$. Clearly $\mathfrak{m}^{n}=(0)$ and $\mathfrak{m}^{n-1} \neq(0)$. Thus, by Corollary 2.14, we have $\operatorname{dim}_{k}(R)=n-1$ for each $k \geq n$, and $\operatorname{dim}_{k}(R)=k-1$ for each $1 \leq k \leq n$.
(2) If \mathfrak{m} is not principal, then Corollary 2.14 is not necessarily true. For instance, let $R=K[X, Y] /\left(X^{2}, Y^{2}\right)$. Then R is an Artinian local ring with unique maximal ideal $\mathfrak{m}=(X, Y) /\left(X^{2}, Y^{2}\right)$. Clearly $\mathfrak{m}^{3}=(0)$ and $\mathfrak{m}^{2} \neq(0)$. One can easily see that the chain

$$
(0) \subset \mathfrak{m}^{2} \subset\left(X^{2}, Y\right) /\left(X^{2}, Y^{2}\right) \subset \mathfrak{m} \subset R
$$

is a composition series for R. Thus, by Theorem $2.12, \operatorname{dim}_{3}(R)=3$.
Furthermore, $\mathfrak{m}^{2} \subset\left(X^{2}, Y\right) /\left(X^{2}, Y^{2}\right) \subset \mathfrak{m}$ is a chain of 2-absorbing ideals of R, so $\operatorname{dim}_{2} R \geq 2$. Note that (0) is a 3 -absorbing ideal which is not 2-absorbing since $X(X+Y) Y \in\left(X^{2}, Y^{2}\right)$, and $X(X+Y),(X+$ $Y) Y, X Y \notin\left(X^{2}, Y^{2}\right)$. Thus $\operatorname{dim}_{2} R=2$. However, Corollary 2.14 is true for $k=1$, i.e., $\operatorname{dim}_{1} R=\operatorname{dim} R=0$.
In the rest of this section, we determine the n-absorbing dimension of some special rings.

Theorem 2.16. ([3, Theorem 5.1]) Let R be a Noetherian integral domain. Then the following statements are equivalent:
(1) R is a Dedekind domain;
(2) If I is an n-absorbing ideal of R, then $I=M_{1} \cdots M_{m}$ for maximal ideals M_{1}, \ldots, M_{m} of R with $1 \leq m \leq n$.
Moreover, if $I=M_{1} \cdots M_{n}$ for maximal ideals M_{1}, \ldots, M_{n} of a Dedekind domain R which is not field, then $\omega(I)=n$.
Lemma 2.17. Let R be a Dedekind domain. Assume that $I \subseteq J$ are ideals of R. Then $I=J$ if and only if $\omega(I)=\omega(J)$.

Proof. Necessity is clear. For sufficiency, since R is a Dedekind domain and $I \subseteq$ J, we have $I=P_{1}^{k_{1}} \cdots P_{s}^{k_{s}}$ and $J=P_{1}^{l_{1}} \cdots P_{s}^{l_{s}}$ for maximal ideals P_{1}, \ldots, P_{s} of R and positive integers k_{1}, \ldots, k_{s} and l_{1}, \ldots, l_{s} with $l_{i} \leq k_{i}$ for all $1 \leq i \leq s$. Thus, by Theorem 2.16, $\omega(I)=k_{1}+\cdots+k_{s}$ and $\omega(J)=l_{1}+\cdots+l_{s}$. Since $\omega(I)=\omega(J)$ and $l_{i} \leq k_{i}$ for all $1 \leq i \leq s$, we conclude that $k_{i}=l_{i}$ for all i, and therefore $I=J$.

Lemma 2.18. Let R be a Dedekind domain. Assume that $I \subset J$ are ideals of R. Then $\omega(J)<\omega(I)$.
Proof. In a similar way as the proof of Lemma 2.17, we have $I=P_{1}^{k_{1}} \cdots P_{s}^{k_{s}}$ and $J=P_{1}^{l_{1}} \cdots P_{s}^{l_{s}}$ for maximal ideals P_{1}, \ldots, P_{s} of R and positive integers k_{1}, \ldots, k_{s} and l_{1}, \ldots, l_{s} such that $l_{i} \leq k_{i}$ for all $1 \leq i \leq s$. Furthermore, $\omega(I)=k_{1}+\cdots+k_{s}$ and $\omega(J)=l_{1}+\cdots+l_{s}$. Since $I \subset J$, we must have $l_{i}<k_{i}$ for some $1 \leq i \leq s$. Thus $\omega(J)<\omega(I)$.

Theorem 2.19. Let R be a Noetherian integral domain which is not a field. Then the following statements are equivalent:
(1) R is a Dedekind domain;
(2) $\operatorname{dim}_{n} R=n$, for every positive integer n;
(3) $\operatorname{dim}_{2}(R)=2$.

Proof. (1) $\Rightarrow(2)$ Let n be a positive integer. By Theorem 2.7 and the fact that $\operatorname{dim}_{n} R$ is equal to the supremum of lengths of chains $I_{0} \subset I_{1} \subset \cdots \subset I_{m}$ of n-absorbing ideals of R in which I_{m} is a maximal ideal of R, it suffices to show that $\mathrm{ht}_{n}(\mathfrak{m})=n$ for each maximal ideal \mathfrak{m} of R. Suppose \mathfrak{m} is a maximal ideal of R. Hence, we have the following chain of n-absorbing ideals of R

$$
(0) \subset \mathfrak{m}^{n} \subset \mathfrak{m}^{n-1} \subset \cdots \subset \mathfrak{m}
$$

Thus $\mathrm{ht}_{n}(\mathfrak{m}) \geq n$. Assume to the contrary that $\mathrm{ht}_{n}(\mathfrak{m})>n$. Then there exists a chain $0 \subset I_{1} \subset \cdots \subset I_{t-1} \subset I_{t}=\mathfrak{m}$ of n-absorbing ideals of R with $t>n$. Hence by Lemma 2.18, we have

$$
\omega\left(I_{t}\right)<\omega\left(I_{t-1}\right)<\cdots<\omega\left(I_{1}\right)
$$

and therefore $t-1<\omega\left(I_{1}\right) \leq n$, which is a contradiction.
$(2) \Rightarrow$ (3) Trivial.
$(3) \Rightarrow(1)$ Let \mathfrak{m} be a maximal ideal of R. Since R is a domain which is not a field, $\mathfrak{m}^{2} \neq(0)$. Thus by [3, Lemma 2.8], (0) $\subset \mathfrak{m}^{2} \subset \mathfrak{m}$ is a chain of 2-absorbing ideals of R. Every ideal between \mathfrak{m}^{2} and \mathfrak{m} is an \mathfrak{m}-primary ideal of R, and hence a 2 -absorbing ideal of R by [3, Theorem 3.1]. Now the hypothesis $\operatorname{dim}_{2} R=2$ implies that there are no ideals of R properly between \mathfrak{m}^{2} and \mathfrak{m}. Thus R is a Dedekind domain by [12, Theorem 6.20].
Example 2.20. If R is a principal ideal domain, then by Theorem 2.19, $\operatorname{dim}_{n} R=n$ for every positive integer n. In particular, $\operatorname{dim}_{n} \mathbb{Z}=\operatorname{dim}_{n} \mathbb{Z}[i]=$ $\operatorname{dim}_{n} K[X]=\operatorname{dim}_{n} K[[X]]=n$, where $K[X]$ and $K[[X]]$ are the ring of polynomials and the ring of formal power series over a field K, respectively, and $\mathbb{Z}[i]$ is the ring of Gaussian integers. Moreover, let $\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}$. It is well-known that $\mathbb{Z}[\sqrt{-5}]$ is a Dedekind domain that is not a principal ideal domain, and so $\operatorname{dim}_{n} \mathbb{Z}[\sqrt{-5}]=n$ by Theorem 2.19.

If (R, \mathfrak{m}) is a discrete valuation ring, it is well known that every non-zero ideal of R is uniquely of the form \mathfrak{m}^{n}, where n is a positive integer. Furthermore,
by [3, Lemma 2.8], the ideal \mathfrak{m}^{n} is an n-absorbing ideal with $\omega\left(\mathfrak{m}^{n}\right)=n$. Thus every ideal of R is an n-absorbing ideal for some positive integer n. In particular, $0, \mathfrak{m}, \ldots, \mathfrak{m}^{n}$ are the only n-absorbing ideals of R. This leads us to the following result.

For a finite dimensional vector space V over a field F, we shall denote the dimension of V by $\operatorname{vdim}_{F} V$.

Theorem 2.21. Let (R, \mathfrak{m}) be a discrete valuation ring and I an ideal of R. Then
(1) I is an n-absorbing ideal for some positive integer n and $\omega(I)=l_{R}(R / I)$.
(2) For every positive integer $n, \operatorname{dim}_{n}(R)=l_{R}\left(R / \mathfrak{m}^{n}\right)=n$.

Proof. (1) Since (R, \mathfrak{m}) is a discrete valuation ring, $I=\mathfrak{m}^{n}$ for a unique positive integer n. Further, by [3, Lemma 2.8], $\omega(I)=n$. Consider the following saturated chain of ideals of R

$$
I=\mathfrak{m}^{n} \subset \mathfrak{m}^{n-1} \subset \cdots \subset \mathfrak{m} \subset R
$$

Then $l_{R}(R / I)=\sum_{i=0}^{n-1} l_{R}\left(\mathfrak{m}^{i} / \mathfrak{m}^{i+1}\right)$. Now

$$
l_{R}\left(\mathfrak{m}^{i} / \mathfrak{m}^{i+1}\right)=\operatorname{vdim}_{R / \mathfrak{m}}\left(\mathfrak{m}^{i} / \mathfrak{m}^{i+1}\right)=1
$$

is the dimension of the vector space $\mathfrak{m}^{i} / \mathfrak{m}^{i+1}$ over R / \mathfrak{m}. Hence $l_{R}(R / I)=n=$ $\omega(I)$.
(2) This follows immediately from part (1) and Theorem 2.19.

If R is a one-dimensional valuation domain with principal maximal ideal \mathfrak{m}, then by [13, Theorem 11.2], R is a principal ideal domain and so $\operatorname{dim}_{n} R=n$. In the following example, we show that this is not necessarily true for every valuation domain R, even if $\operatorname{dim}_{1} R=1$.

Example 2.22. (See [3, Example 5.6])
(1) Let R be a one-dimensional valuation domain with non-principal maximal ideal \mathfrak{m}. For every positive integer n, the only n-absorbing ideals of R are (0) and \mathfrak{m}. Therefore $\operatorname{dim}_{n} R=1$ for every positive integer n.
(2) Let R be a two-dimensional valuation domain with prime ideals $0 \subset$ $\mathfrak{p} \subset \mathfrak{m}$ and value group G. Let n be a positive integer. If $G=\mathbb{Z} \oplus \mathbb{Z}$ (all direct sums have the lexicographic order), then $\mathfrak{p}^{i+1} \neq \mathfrak{p}^{i}$ and $\mathfrak{m}^{i+1} \neq \mathfrak{m}^{i}$ for all i; so (0), \mathfrak{p}^{k}, and \mathfrak{m}^{k} with $1 \leq k \leq n$ are the only n-absorbing ideals of R. Thus, the longest chain of n-absorbing ideals of R is the chain $(0) \subset \mathfrak{p}^{n} \subset \mathfrak{m}^{n} \subset \mathfrak{m}^{n-1} \cdots \subset \mathfrak{m}$, and therefore $\operatorname{dim}_{n} R=n+1$. If $G=\mathbb{Q} \oplus \mathbb{Q}$, then $\mathfrak{p}^{2}=\mathfrak{p}$ and $\mathfrak{m}^{2}=\mathfrak{m}$; so (0), \mathfrak{p}, and \mathfrak{m} are the only n-absorbing ideals of R. Thus $\operatorname{dim}_{n} R=2$. If $G=\mathbb{Z} \oplus \mathbb{Q}$, then $\mathfrak{m}^{2}=\mathfrak{m}$ and $\mathfrak{p}^{i+1} \neq \mathfrak{p}^{i}$ for all i; so (0), \mathfrak{p}^{k} with $1 \leq k \leq n$, and \mathfrak{m} are the only n-absorbing ideals of R. Thus $(0) \subset \mathfrak{p}^{n} \subset \mathfrak{p}^{n-1} \subset \cdots \subset \mathfrak{p} \subset \mathfrak{m}$ is the longest chain of n-absorbing ideals of R. Hence $\operatorname{dim}_{n} R=n+1$. If $G=\mathbb{Q} \oplus \mathbb{Z}$, then $\mathfrak{p}^{2}=\mathfrak{p}$ and $\mathfrak{m}^{i+1} \neq \mathfrak{m}^{i}$ for all i; so (0), \mathfrak{p}, and \mathfrak{m}^{k}
with $1 \leq k \leq n$ are the only n-absorbing ideals of R. Thus, the longest chain of n-absorbing ideals of R is $(0) \subset \mathfrak{p} \subset \mathfrak{m}^{n} \subset \mathfrak{m}^{n-1} \subset \cdots \subset \mathfrak{m}$. Hence $\operatorname{dim}_{n} R=n+1$.

In the following examples, we show that a number of results concerning the 1 -Krull dimension for a ring R can not be generalized to n-Krull dimension in case $n>1$.

Example 2.23. Let R be a Noetherian ring and I a nilpotent ideal of R. It is easily seen that $\operatorname{dim}_{n} R=\operatorname{dim}_{n} R / I$ if $n=1$. But if $n>1$, this is not necessarily true. For instance, let $R=K[X]$, where K is a field. Let $I=\left(X^{2}\right)$ and $S=R / I$. Then $\operatorname{dim}_{2} S=1$ by Example 2.15. For the ideal $J=(X) /\left(X^{2}\right)$ of S, it is clear that J is a nilpotent ideal of S and $S / J \cong K$. Thus $\operatorname{dim}_{2}(S / J)=0$, and therefore $\operatorname{dim}_{2} S \neq \operatorname{dim}_{2} S / J$.

Example 2.24. Let R be a commutative Noetherian ring and I a prime (1absorbing) ideal of R which is generated by m elements. Then $\mathrm{ht}_{n}(I) \leq m$ for $n=1$ (Krull's Generalized Principal Ideal Theorem [14, Theorem 15.4]). In the following examples, we show that this is not necessarily true if $n>1$, whether I is a prime ideal or not.
(1) Let K be a field, $R=K[X]$, and $I=R X$. Since (0) $\subset R X^{2} \subset R X$ is a chain of 2-absorbing ideals of R, we have $\mathrm{ht}_{2}(R X)=2$.
(2) Let K be a field and $R=K[X] /\left(X^{3}\right)$. Then R is an Artinian local ring with maximal ideal $\mathfrak{m}=(X) /\left(X^{3}\right)$. Clearly $\mathfrak{m}^{3}=0$ and $\mathfrak{m}^{2} \neq 0$. By [3, Theorem 3.1], \mathfrak{m}^{2} is a 2-absorbing ideal, but not a prime ideal of R. Now by [14, Lemma 15.41], (0) $\subset \mathfrak{m}^{3} \subset \mathfrak{m}^{2} \subset \mathfrak{m}$ is the only chain of 3 -absorbing ideals of R. Hence $\mathrm{ht}_{3}\left(\mathfrak{m}^{2}\right)=2$.
(3) Let K be a field and $R=K[X, Y] /\left(X^{3}, Y^{2}\right)$. Then R is an Artinian local ring with maximal ideal $\mathfrak{m}=(X, Y) /\left(X^{3}, Y^{2}\right)$. Clearly $\mathfrak{m}^{4}=0$ and $\mathfrak{m}^{3} \neq 0$. Now if $I=\left(X^{2}, Y\right) /\left(X^{3}, Y^{2}\right)$, then by [3, Theorem 3.1], I is a 4 -absorbing ideal of R. Since

$$
(0) \subset \mathfrak{m}^{3} \subset\left(X^{2}, Y^{2}\right) /\left(X^{3}, Y^{2}\right) \subset \mathfrak{m}^{2} \subset I \subset \mathfrak{m} \subset R
$$

is a composition series for R, we have $\mathrm{ht}_{4}(I)=4$.
(4) Let R be a Dedekind domain and \mathfrak{m} a maximal ideal of R. Then by [13, Exercise 11.5], \mathfrak{m} is generated by at most two elements. However, by the proof of Theorem 2.19, $\mathrm{ht}_{n}(\mathfrak{m})=n$ for every positive integer n.

Acknowledgments. We would like to thank the referee for a careful reading of our article and many insightful comments.

References

[1] D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36 (2008), no. 2, 686-696.
[2] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831-840.
[3] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646-1672.
[4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429.
[5] A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39 (2013), no. 2, 441-452.
[6] A. Badawi, U. Tekir, and E. Yetkin, On 2-absorbing primary ideals of commutative rings, Bull. Korean Math. Soc. 51 (2014), no. 4, 1163-1173.
[7] _ On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52 (2015), no. 1, 97-111.
[8] A. Yousefian Darani and H. Mostafanasab, On 2-absorbing preradicals, J. Algebra Appl. 14 (2015), 22 pages.
[9] A. Yousefian Darani and E. R. Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, Semigroup Forum 86 (2013), no. 1, 83-91.
[10] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40 (2012), no. 4, 1268-1279.
[11] D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, SpringerVerlag, New York, 1995.
[12] M. D. Larson and P. J. McCarthy, Multiplicative Theory of Ideals, Academic Press, New York, 1971.
[13] H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989.
[14] R. Y. Sharp, Steps in Commutative Algebra, London Mathematical Society Student Texts, 51, Cambridge University Press, Cambridge, 1990.

Hosein Fazaeli Moghimi
Department of Mathematics
University of Birjand
Birjand, Iran
E-mail address: hfazaeli@birjand.ac.ir
Sadegh Rahimi Naghani
Department of Mathematics
University of Birjand
Birjand, Iran
E-mail address: sadegh.rahimi@birjand.ac.ir

