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We assume throughout this paper that all rings are commutative with 1 # 0.
The concept of 2-absorbing ideal, which is a generalization of prime ideal, was
introduced by A. Badawi in [4] and studied in [5], [9]. Various generalizations
of prime ideals are also studied in [1, 2, 10]. In recent years, 2-absorbing ideals
have been generalized and studied in several directions (see, for example, [5, 6,
7,8,9]). Asin [3], for a positive integer n, a proper ideal I of a commutative ring
R is called an n-absorbing ideal if whenever x - -- 2,41 € I for x4, ..
R, then there are n of the x;’s whose product is in I. It is evident that 1-
absorbing ideals are just prime ideals. This was our motivation for the following
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ABSTRACT. Let R be a commutative ring with 1 # 0 and n a positive
integer. In this article, we introduce the n-Krull dimension of R, denoted
dim,, R, which is the supremum of the lengths of chains of n-absorbing
ideals of R. We study the n-Krull dimension in several classes of commu-
tative rings. For example, the n-Krull dimension of an Artinian ring is
finite for every positive integer n. In particular, if R is an Artinian ring
with k£ maximal ideals and {(R) is the length of a composition series for
R, then dim, R = I(R) — k for some positive integer n. It is proved that
a Noetherian domain R is a Dedekind domain if and only if dim,, R =n
for every positive integer n if and only if dims R = 2. It is shown that
Krull’s (Generalized) Principal Ideal Theorem does not hold in general
when prime ideals are replaced by n-absorbing ideals for some n > 1.

1. Introduction

generalization of the Krull dimension of a ring.

Definition. Let R be a ring and n a positive integer. Then
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where Iy, I1, ..., I, are distinct n-absorbing ideals of R, is called a chain of n-
absorbing ideals of length m. The n-Krull dimension of R, denoted by dim,, R,
is defined to be the supremum of the lengths of these chains. Thus dim; R is
just the usual Krull dimension, dim R, of R.

As a first example, let R = Z,» for a positive integer n and a prime integer p.
By [3, Lemma 2.8, Theorem 2.1(c)], the set of k-absorbing ideals of R consists
of all ideals of the form pinn, where 1 < ¢ < k. Thus for each 1 < k < n,
dimg(R) = k — 1 and dimg(R) =n — 1 for all & > n.

By [3, Theorem 2.1(c)], every n-absorbing ideal of R is an m-absorbing ideal
for all m > n. It follows immediately that

(%) dim R =dim; R <dimy R<dimg R <---.

We will give several examples for which some of the inequalities in (*) may be
strict. There exists a Noetherian ring R such that dim; R = oo ([11, Exercise
9.6]). Thus by (x), the n-Krull dimension of a Noetherian ring may be infinity
for each positive integer n. However, we shall see that for each positive integer
n, dim, (R) is finite in the case that R is an Artinian ring (Theorem 2.8) or a
Dedekind domain (Theorem 2.19). We also show that if R is a Noetherian local
domain with dim; (R) = 1, then dimy R is finite (Theorem 2.9). Furthermore,
if [3, Conjecture 2] holds, then dim,, R is finite for all n > 3 (Theorem 2.10).

In the rest of paper, we assume that [(R) denotes the length of a composition
series for a ring R which is of finite length. It is shown that if (R, m) is an
Artiniain local ring and n is the smallest positive integer such that m™ = 0,
then dimy R = [(R) — 1 for each k¥ > n (Theorem 2.12). In particular, if m is
principal it is shown that dimg(R) =n — 1 if £ > n and dimg(R) = k — 1 if
1 <k <n (Corollary 2.14). Tt is shown that if R = Ry X --- X Ry, where each
R; is a ring, then Zle dim,,, R; < dim, R, for all positive integers ni,...,ng
with n = Zle n;. Moreover, if some of the R;’s are fields and dim,, R is finite
for some positive integer n, then dim, R < Zf:tﬂ dim,, R; + t, where t is
the number of fields in this product (Theorem 2.11). Using this fact and the
structure theorem for Artinian rings, we prove that if R is an Artinian ring
with k& maximal ideals, then dim, R = I(R) — k for some positive integer n
(Theorem 2.13). As in [3], if I is an n-absorbing ideal of R for some positive
integer n, define w(I) = min{n : I is an n-absorbing ideal of R}, otherwise,
set w(I) = oo. It is shown that if I C J are ideals of a Dedekind domain
R, then I = J (respectively I C J) if and only if w(J) = w(I) (respectively
w(J) <w(l)) (Lemmas 2.17 and 2.18). It is shown that a Noetherian domain
R is a Dedekind domain if and only if dim,, R = n for every positive integer n
if and only if dimy R = 2 (Theorem 2.19).

Finally, among several examples of the n-Krull dimension of a ring, some
examples are given to show that Krull’s (Generalized) Principal Ideal Theorem
can not be generalized when n-absorbing ideals for n > 1 are considered rather
than prime ideals.
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2. The n-Krull dimension of a ring

An n-absorbing ideal I of R is called a minimal n-absorbing ideal of the
ideal J if J C I and there is no n-absorbing ideal I’ such that J C I’ C I. By
a minimal n-absorbing ideal of R, we mean a minimal n-absorbing ideal of (0).
Although every prime ideal of R is an n-absorbing ideal for each n > 2, there
exists a minimal prime ideal which is not a minimal n-absorbing ideal for each
n > 2. For example, if R = K[X] is the polynomial ring in one variable X over
a field K, the minimal prime ideal P = RX of (0) is not a minimal 2-absorbing
ideal of (0), since by [3, Lemma 2.8], RX? is a 2-absorbing ideal of R.

Theorem 2.1. Let R be a ring. Then for each positive integer n, there is an
n-absorbing ideal of R which is minimal among all n-absorbing ideals of R.

Proof. Let ¥ be the set of all n-absorbing ideals of R. Since every maximal
ideal of R is an m-absorbing ideal for each n > 1, 3 is not empty. It is clear
that (X, <) is a partially ordered set in which I < I’ if and only if 7 D I’ for
all I,I' € . Let C' = {Ix}xea be an arbitrary non-empty chain of elements of
¥ and set J = [y, Ix. We show that J is an n-absorbing ideal of R. Since
C is non-empty, J # R. Let ay---ap41 € J for some ay,...,a,41 € R. Let
a; = H#i a;, the product of all a;’s except a;. Assume that a; ¢ J for each
1 <i < n. Then, for each 1 < i < n, there exists I, € C such that a; ¢ I,.
We may assume that Iy, C--- C I . For u € A, we have the following cases:

(1) f1,CI,, C---ClI,, then a; ¢ I, for each 1 < i < n. Now since
ai-+-an+1 € I, and I, is an n-absorbing ideal of R, we have @, +1 € I,,.
(2) If there exists 1 < j < n such that

I)\l g"' QIA]‘71 gI}LgIA] g et gIAn7
then a; ¢ Iy, for each 1 <4 < n. Now since a; - --ap+1 € Iy, and Iy,
is an n-absorbing ideal of R, we have @, € Iy, C I,,.

Thus @,+1 € I, for each u € A, and therefore a,+1 € J. Hence by Zorn’s
Lemma, (¥,<) has a maximal element, i.e., there is a minimal n-absorbing

ideal of R. 0O

Corollary 2.2. Let R be a ring and I a proper ideal of R. Then for each
positive integer n, there is an n-absorbing ideal of R which is minimal among
all n-absorbing ideals of R containing I.

Proof. Use Theorem 2.1 and [2, Corollary 4.3(b)]. O

Remark 2.3. Every n-absorbing ideal of R is contained in a maximal ideal
of R (and, of course, maximal ideals are n-absorbing ideals). Also, every n-
absorbing ideal of R contains a minimal n-absorbing ideal of (0) by Theorem
2.1. Tt follows that dim,, R is equal to the supremum of lengths of chains

IhchLc---Cl,
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of n-absorbing ideals of R in which I, is a maximal ideal of R and Iy is a
minimal n-absorbing ideal of (0).
Definition. Let R be a ring and I an ideal of R.
(1) If I is an n-absorbing ideal of R, the n-height of I, denoted by ht,, (1),
is defined to be the supremum of lengths of chains
IhchLc---Cl,

of n-absorbing ideals of R for which I,,, = I if this supremum exists,
and oo otherwise.

(2) If I is a proper ideal of R (not necessarily n-absorbing ideal) and n a
positive integer, the n-height of I, denoted by ht,, (I), is defined to be

min{ht, (J) : J is an n-absorbing ideal and J D I}.

Lemma 2.4. Let I C J be n-absorbing ideals of R. Then hty, (I) < ht,,(J). In
particular, if ht, (J) < oo, then I = J if and only if ht,, (I) = ht,,(J).

Proof. If ht,(J) = oo, there is noting to prove. So let ht,(J) < oco. We
may assume that I C J. First note that ht, (I) is finite, since for each chain
IycL C--- C I, =1 of n-absorbing ideals of R, we have the chain Iy C
I C - - C I, C J of n-absorbing ideals of R. Let ht,,(I) = m, and Iy C I} C
-+ C I, be a chain of n-absorbing ideals of R with I,,, = I. Then, the chain
IychL C--- ClIy CJ of n-absorbing ideals of R shows that ht, (J) > m + 1.
The “in particular” statement follows immediately. O

Corollary 2.5. Let R be a ring and I an ideal of R. Then for any positive
integer n,

ht,,(I) = min{ht,,(J) : J is a minimal n-absorbing ideal of I}.
Proof. Clearly,

ht,, (1) < min{ht,(J) : J is a minimal n-absorbing ideal of I}.
Thus, if ht,,(I) = oo, then there is noting to prove. So let ht,(I) = m < co.
Then there exists an n-absorbing ideal J D I of R, such that ht,,(J) = ht,(I) =

m. By Corollary 2.2, there exists a minimal n-absorbing ideal J’ of I such that
ICJ cJ. It follows from Lemma 2.4 that ht,, (1) < ht,,(J') < ht,,(J). Thus

min{ht, (J) : J is a minimal n-absorbing ideal of I} < ht, ().
This completes the proof. ([
Theorem 2.6. Let I C J be ideals of R, and J be an n-absorbing ideal of R

such that hty, (J) is finite. If ht, (I) = hty,(J), then J is a minimal n-absorbing
ideal of I.

Proof. Suppose that J is not a minimal n-absorbing ideal of I. Then by Corol-
lary 2.2, there exists a minimal n-absorbing ideal J’ of I such that I C J' C J.
In view of Lemma 2.4 and Corollary 2.5, we have ht,, (I) < ht,,(J') < ht,(J),
contrary to hypothesis. (I
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Theorem 2.7. Let R be a ring and n a positive integer. If dim,, R is finite,
then

dim,, R = sup{ht,,(I) : I is an n-absorbing ideal of R}

= sup{ht,, (m) : m is @ mazimal ideal of R}.

Proof. To show the first equality, if I is an n-absorbing ideal of R, then it is
clear that ht,,(I) < dim,, R. Thus, we have the “>” for the required equalities.
In order to show the “<”, let dim,, R = t. Then there exists a chain Iy C I} C
-+« C Iy of n-absorbing ideals of R. Set I; = I, then ht, (I) = t, and therefore
we have “<” for the required equalities. The second equality immediately
follows from Remark 2.3 and the first equality. O

Theorem 2.8. If R is an Artinian ring, then dim,, R is finite for each positive
nteger n.

Proof. Since R is Artinian, Max(R) is a finite set. Let Max(R) = {my,...,my}.
Since R has finite length, the lengths of all strict chains of ideals of R have
an upper bound, say ¢t. Thus ht,,(m;) < ¢ for each 1 <14 < k. Now the result
follows from Remark 2.3. O

Theorem 2.9. Let (R,m) be a Noetherian local domain with dim;(R) = 1.
Then dimy(R) is finite.

Proof. Let (0) =1y C I; C--- C I; = m be a chain of 2-absorbing ideals of R.
Since dim;(R) = 1, Rad(I;) = m, and so m? C I; by [4, Theorem 2.4]. Now,
since by [14, Exercise 15.17], [(R/m?) < oo, we conclude that t < [(R/m?) < oo.
Thus dimz(R) < oo by Remark 2.3. O

Let R be a ring. It is clear that Rad(p) = p for every prime ideal p of R.
If I is a 2-absorbing ideal of R, then Rad(I)? C I by [4, Theorem 2.4] and [3,
Theorem 6.1]. In [3, Conjecture 2], it has been conjectured that if n > 3 and
I is an n-absorbing ideal of R, then Rad(I)™ C I. This is true, for example,
when R is a Priifer domain [3, Corollary 6.9]. The following result extends
Theorem 2.9 if the conjecture holds.

Theorem 2.10. Let (R,m) be a Noetherian local domain with dim;(R) = 1.
Then dim,, (R) is finite for every positive integer n.

Proof. The proof is essentially the same as the proof of Corollary 2.9, but by
replacing [4, Theorem 2.4] by [3, Conjecture 2] and using n instead of 2. O

The following theorem will be used to show that for an Artinian ring R with
k maximal ideals, dim,, R = [(R) — k for some positive integer n.

Theorem 2.11. Let R = Ry X --- X Ry, where each R; (1 <i < k) is a ring.
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(1) If ny,...,ng are positive integers and n = Zle n;, then
k
> dimy, R; < dim, R.
i=1
(2) If R; is not a field for each 1 < i < k, and dim, R is finite for some
positive integer n, then
k
dim, R <) _ dim,, R;.
i=1
(3) If Ry,..., R are fields and Riyq,..., R are not fields for some 1 <
t <k, and dim,, R is finite for some positive integer n, then
k
dim, R < > dim, R; +1.
i=t+1
Proof. (1) Assume that I1; C Io; C -+ C Ik, is a chain of n;-absorbing ideals
of R;. Thus I}, C I3; C --- C I}, is a chain of n;-absorbing ideals of R, where
foreach 1 < j < k;

I-;»Z-:RlX"'XRi,1XIjiXRi+1X"'XRk

is an m;-absorbing ideal of R. Thus dim,;, R > dim,, R;, and so dim, R >
dim,, R;. Hence, if dim,, R; = oo for some 1 < ¢ < k, then dim, R = oc.
Now, we assume that for every 1 <4 < k, dim,,, R; = t; < co. Thus, for each
i =1,...,k, there exists a chain I,0 C I;; C Ijs C --- C I, of n;-absorbing
ideals of R;. By [3, Theorem 4.7], we have the following chain of n-absorbing
ideals which is of the length t; + - -+ + tg.

Tio X I20 X I30 X -+ X Io C I11 X I20 X I30 X -+ X Iyo C --- C I1ty X I20 X I30 X - -+ X Ipo C
Tiey X I21 X T30 X+ - X Ipo C Iney X Ia2 X I30 X v+ X Ipo C + -+ C I1gy X I2¢y X Ig0 X -+ X I C
Tygy XX Ig—1gy g XIgo C Ireg X o X1y X Ipg1C v Cllugy X oo X dg—1gy g X Iy,

Thus dim, R > Y% dim,,, R;.
(2) Let dim,, R = s. By induction on k, it suffices to show that the assertion
holds for k£ = 2. In this case, there exists a chain

IoxI,clhixI{C-ClIsx1.

of n-absorbing ideals of R = R; x Ra. We may assume that there is a chain
Iy C--- C I C I141 = Ry of n-absorbing ideals of R; for some 0 <t <s. Then
dim,, Ry > t, and we must have the chain I ; C --- C I} of n-absorbing ideals
of Ry. Therefore dim,, R2 > s —t, and so dim,, Ry +dim, Ry > t+ (s —t) = s.

(3) By induction and part (2), we only need to show that dim, (R; x Fy) <
dim,,(R1) 4+ 1, where F} is a field. Let dim,(R; x F1) = s. Then there exists
a chain

Iig X Ipg C Ity X Ioy C -+ C Iig X Iag
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of n-absorbing ideals of R. Let I; = Fi for some 0 < j < s. Then we have
the chain I1; C I1j41 C -+ C I15 of n-absorbing ideals of R;. Now the length
of this chain is s if j =0 or j > 0 and I1;_1 # I1;, and is s =1 if j > 0 and
Iij—1 = I ;. Thus dim,, Ry > s—1, i.e., dim,, R < dim,, ?; +1 as required. [

Theorem 2.12. Let (R,m) be an Artiniain local ring and n be the smallest
positive integer such that m™ = (0). Then dimy R = [(R) — 1 for each k > n.

Proof. By assumption m™ = (0) and m"~! # (0). Let k¥ > n and dim, R = ¢.
Then there exists a chain (0) = Iy C I; C --- C Iy = m of k-absorbing ideals of
R. Since m* = (0), by [3, Theorem 3.1], every ideal of R is a k-absorbing ideal.
It follows that the chain (0) = Iy C I; C --- C I; = m C R is a composition
series for R. Hence, dimy R = [(R) — 1. O

Theorem 2.13. Let R be an Artinian ring with k mazimal ideals. Then there
exists a positive integer n such that dim, R = I(R) — k.

Proof. Since R is Artinian, by [11, Corolary 2.16], there exist Artinian local
rings R; (1 <4 < k), such that R = Ry x -+ X Rx. For each 1 < ¢ < k,
let m; be the unique maximal ideal of R; and n; a positive integer such that
m!" = (0) and m}*~* # (0). Thus by Theorem 2.12, dim,, R; = I(R;) — 1 for

alli=1,...,k and m > n;. Let n =ny +--- 4+ ng. Then by Theorem 2.11(1),
we have

dim,, R; + -+ 4+ dim,, R; < dim, R.
It follows that [(R) — k < dim,, R. Now we have the following two cases:
(1) If R; is not a field for all 1 < ¢ < k, then by Theorem 2.11(2), we have
k
dim, R <Y dim, R; = I(R) — k.
i=1
(2) Suppose that some of the R;’s are fields. We may assume that R is

of the form R = F} X --- X Fy X Ry4q1 X -+ X Ry for fields Fi,..., F}
(1 <t < k). Thus by Theorem 2.11(3) and the proof of Theorem 2.12,

we have
k k
dim, R< > dim, R +t= > (I(R;)—1)+t

i=t41 i=t+1

k
= () UR)+1t)—k=I1R) k.
1=t+1
Therefore dim,, R = I[(R) — k. O

Corollary 2.14. Let (R,m) be an Artinian local ring such that m # (0) is
principal. Let n be the smallest positive integer such that m™ = (0). Then for
each k > n, dimg(R) =n — 1, and for each 1 < k <n, dimg(R) =k — 1.
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Proof. Since m™ = (0) and m"~! # (0), by [14, Lemma 15.41], the chain

1

O)=m"cm""C---CmCR

is a composition series for R. Thus by Theorem 2.12, dimy(R) = n — 1 for
each k > n. Now let 1 < k < n. Then by [14, Lemma 15.41] and [3, Theorem
3.1], the only chain of k-absorbing ideals of R is m* ¢ m*~! C ... € m. Thus
dim,(R) = k — 1. O

Example 2.15. Let K be a field.

(1) Let R = K[X]/(X™), where n > 2 is an integer. Then R is an Artinian
local ring with maximal ideal m = (X)/(X™). Clearly m™ = (0) and
m"~1 #£ (0). Thus, by Corollary 2.14, we have dimy(R) = n — 1 for
each k > n, and dimg(R) = k — 1 for each 1 < k < n.

(2) If m is not principal, then Corollary 2.14 is not necessarily true. For
instance, let R = K[X,Y]/(X?2,Y?). Then R is an Artinian local ring
with unique maximal ideal m = (X,Y)/(X2,Y?). Clearly m® = (0)
and m? # (0). One can easily see that the chain

0)cm?c (X3Y)/ (X2 Y))cmCR

is a composition series for R. Thus, by Theorem 2.12, dims(R) = 3.
Furthermore, m? C (X2,Y)/(X?%,Y?) C m is a chain of 2-absorbing
ideals of R, so dimy R > 2. Note that (0) is a 3-absorbing ideal which
is not 2-absorbing since X (X +Y)Y € (X2,Y?), and X(X +Y), (X +
Y)Y, XY ¢ (X2,Y?). Thus dimy R = 2. However, Corollary 2.14 is
true for £k =1, i.e., dimy R = dim R = 0.

In the rest of this section, we determine the n-absorbing dimension of some
special rings.

Theorem 2.16. ([3, Theorem 5.1]) Let R be a Noetherian integral domain.
Then the following statements are equivalent:

(1) R is a Dedekind domain,
(2) If I is an n-absorbing ideal of R, then I = My --- My, for maximal
ideals My, ..., My, of R with 1 <m <n.
Moreover, if I = My---M, for mazximal ideals My,..., M, of a Dedekind
domain R which is not field, then w(I) = n.

Lemma 2.17. Let R be a Dedekind domain. Assume that I C J are ideals of
R. Then I = J if and only if w(I) = w(J).

Proof. Necessity is clear. For sufficiency, since R is a Dedekind domain and I C
J, we have I = Pf* ... P¥s and J = P}* ... P! for maximal ideals Pi, ..., P,
of R and positive integers k1, ..., ks and l1,...,ls with [; < k; forall 1 <17 <'s.
Thus, by Theorem 2.16, w(I) = k1 + -+ + ks and w(J) = I3 + -+ - + I5. Since
w(I) =w(J) and I; < k; for all 1 < i < s, we conclude that k; = [; for all i,
and therefore I = J. O
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Lemma 2.18. Let R be a Dedekind domain. Assume that I C J are ideals of
R. Then w(J) < w(I).

Proof. In a similar way as the proof of Lemma 2.17, we have I = Plk1 .. Pke
and J = Pll1 -+ Pls for maximal ideals Pp,..., Ps of R and positive integers
ki,...,ks and [ly,...,ls such that [; < k; for all 1 < ¢ < s. Furthermore,
w(I)=ki+--+ksand w(J) =11 +---+1s. Since I C J, we must have l; < k;
for some 1 <7 < s. Thus w(J) < w(I). O

Theorem 2.19. Let R be a Noetherian integral domain which is not a field.
Then the following statements are equivalent:

(1) R is a Dedekind domain,
(2) dim,, R = n, for every positive integer n;
(3) dima(R) = 2.

Proof. (1) = (2) Let n be a positive integer. By Theorem 2.7 and the fact that
dim,, R is equal to the supremum of lengths of chains Iy C I; C --- C I, of
n-absorbing ideals of R in which I,,, is a maximal ideal of R, it suffices to show
that ht, (m) = n for each maximal ideal m of R. Suppose m is a maximal ideal
of R. Hence, we have the following chain of n-absorbing ideals of R

Ocm"cm"'c---cm

Thus ht,,(m) > n. Assume to the contrary that ht,(m) > n. Then there exists
achain 0 C I; C --- C I;—1 C I; = m of n-absorbing ideals of R with ¢t > n.
Hence by Lemma 2.18, we have

wly) <w(li—p) <+ <w(ly),

and therefore ¢t — 1 < w(I;) < n, which is a contradiction.

(2) = (3) Trivial.

(3) = (1) Let m be a maximal ideal of R. Since R is a domain which is
not a field, m? # (0). Thus by [3, Lemma 2.8], (0) C m? C m is a chain of
2-absorbing ideals of R. Every ideal between m? and m is an m-primary ideal of
R, and hence a 2-absorbing ideal of R by [3, Theorem 3.1]. Now the hypothesis
dimy R = 2 implies that there are no ideals of R properly between m? and m.
Thus R is a Dedekind domain by [12, Theorem 6.20]. O

Example 2.20. If R is a principal ideal domain, then by Theorem 2.19,
dim,, R = n for every positive integer n. In particular, dim,, Z = dim,, Z[i] =
dim,, K[X] = dim,, K[[X]] = n, where K[X] and K|[[X]] are the ring of polyno-
mials and the ring of formal power series over a field K, respectively, and Z[i]
is the ring of Gaussian integers. Moreover, let Z[/—5] = {a+by/—=5 : a,b € Z}.
It is well-known that Z[\/—5] is a Dedekind domain that is not a principal ideal
domain, and so dim,, Z[v/—5] = n by Theorem 2.19.

If (R, m) is a discrete valuation ring, it is well known that every non-zero ideal
of R is uniquely of the form m”, where n is a positive integer. Furthermore,
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by [3, Lemma 2.8], the ideal m™ is an n-absorbing ideal with w(m™) = n.
Thus every ideal of R is an n-absorbing ideal for some positive integer n. In
particular, 0, m,..., m" are the only n-absorbing ideals of R. This leads us to
the following result.

For a finite dimensional vector space V over a field F', we shall denote the
dimension of V by vdimp V.

Theorem 2.21. Let (R,m) be a discrete valuation ring and I an ideal of R.
Then
(1) T is an n-absorbing ideal for some positive integer n and w(I)=Ig(R/I).
(2) For every positive integer n, dim,(R) = [r(R/m") = n.

Proof. (1) Since (R, m) is a discrete valuation ring, I = m” for a unique positive
integer n. Further, by [3, Lemma 2.8], w(I) = n. Consider the following
saturated chain of ideals of R

1

I=m"Ccm" " C---CmCR.

n—1 . .
Then Ig(R/I) = Y Ir(m?/m*1). Now
i=0

lp(m'/m"™!) = vdimp /(M /mT1) =1

is the dimension of the vector space m’/m‘*! over R/m. Hence Ig(R/I) =n =
w(I).
(2) This follows immediately from part (1) and Theorem 2.19. d

If R is a one-dimensional valuation domain with principal maximal ideal m,
then by [13, Theorem 11.2], R is a principal ideal domain and so dim,, R = n.
In the following example, we show that this is not necessarily true for every
valuation domain R, even if dim; R = 1.

Example 2.22. (See [3, Example 5.6])

(1) Let R be a one-dimensional valuation domain with non-principal max-
imal ideal m. For every positive integer n, the only n-absorbing ideals
of R are (0) and m. Therefore dim,, R = 1 for every positive integer n.
(2) Let R be a two-dimensional valuation domain with prime ideals 0 C
p C m and value group G. Let n be a positive integer. If G = Z ® Z
(all direct sums have the lexicographic order), then pi™' # p® and
mitt £ m? for all 4; so (0),p*, and m¥ with 1 < k < n are the only
n-absorbing ideals of R. Thus, the longest chain of n-absorbing ideals
of R is the chain (0) C p” € m"® C m"~!-.. C m, and therefore
dim, R=n+1. If G = Q® Q, then p? = p and m? = m; so (0), p, and
m are the only n-absorbing ideals of R. Thus dim,, R = 2. If G = Z&Q,
then m? = mand p?*! # p? for all 4; so (0), p* with 1 < k < n, and m are
the only n-absorbing ideals of R. Thus (0) Cp" Cp" ' C---CpCm
is the longest chain of n-absorbing ideals of R. Hence dim, R =n+ 1.
If G = Q@ Z, then p?> = p and m**! # m? for all i; so (0),p, and m*
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with 1 < k < n are the only n-absorbing ideals of R. Thus, the longest
chain of n-absorbing ideals of Ris (0) Cpcm® Ccm" ! C .- Cm.
Hence dim,, R =n + 1.

In the following examples, we show that a number of results concerning the
1-Krull dimension for a ring R can not be generalized to n-Krull dimension in
case n > 1.

Example 2.23. Let R be a Noetherian ring and I a nilpotent ideal of R.
It is easily seen that dim, R = dim, R/I if n = 1. But if n > 1, this is
not necessarily true. For instance, let R = K[X], where K is a field. Let
I = (X?) and S = R/I. Then dimy S = 1 by Example 2.15. For the ideal
J = (X)/(X?) of S, it is clear that J is a nilpotent ideal of S and S/J = K.
Thus dimz(S/J) = 0, and therefore dims S # dims S/J.

Example 2.24. Let R be a commutative Noetherian ring and I a prime (1-
absorbing) ideal of R which is generated by m elements. Then ht,(I) < m
for n = 1 (Krull’s Generalized Principal Ideal Theorem [14, Theorem 15.4]).
In the following examples, we show that this is not necessarily true if n > 1,
whether I is a prime ideal or not.

(1) Let K be a field, R = K[X], and [ = RX. Since (0) C RX? C RX is
a chain of 2-absorbing ideals of R, we have hto(RX) = 2.

(2) Let K be a field and R = K[X]/(X?). Then R is an Artinian local
ring with maximal ideal m = (X)/(X3). Clearly m® = 0 and m? # 0.
By [3, Theorem 3.1], m? is a 2-absorbing ideal, but not a prime ideal
of R. Now by [14, Lemma 15.41], (0) C m® C m? C m is the only chain
of 3-absorbing ideals of R. Hence htz(m?) = 2.

(3) Let K be a field and R = K[X,Y]/(X3,Y?). Then R is an Artinian
local ring with maximal ideal m = (X,Y)/(X3,Y?). Clearly m* = 0
and m® # 0. Now if I = (X2,Y)/(X3,Y?), then by [3, Theorem 3.1],
I is a 4-absorbing ideal of R. Since

0)cm?c (X3LYY)/(X3Y)cm?’cIcmCR
is a composition series for R, we have ht4(I) = 4.
(4) Let R be a Dedekind domain and m a maximal ideal of R. Then by

[13, Exercise 11.5], m is generated by at most two elements . However,
by the proof of Theorem 2.19, ht,,(m) = n for every positive integer n.
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