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ON n-ABSORBING IDEALS AND THE n-KRULL

DIMENSION OF A COMMUTATIVE RING

Hosein Fazaeli Moghimi and Sadegh Rahimi Naghani

Abstract. Let R be a commutative ring with 1 6= 0 and n a positive
integer. In this article, we introduce the n-Krull dimension of R, denoted
dimn R, which is the supremum of the lengths of chains of n-absorbing
ideals of R. We study the n-Krull dimension in several classes of commu-
tative rings. For example, the n-Krull dimension of an Artinian ring is
finite for every positive integer n. In particular, if R is an Artinian ring
with k maximal ideals and l(R) is the length of a composition series for
R, then dimn R = l(R) − k for some positive integer n. It is proved that

a Noetherian domain R is a Dedekind domain if and only if dimn R = n

for every positive integer n if and only if dim2 R = 2. It is shown that
Krull’s (Generalized) Principal Ideal Theorem does not hold in general
when prime ideals are replaced by n-absorbing ideals for some n > 1.

1. Introduction

We assume throughout this paper that all rings are commutative with 1 6= 0.
The concept of 2-absorbing ideal, which is a generalization of prime ideal, was
introduced by A. Badawi in [4] and studied in [5], [9]. Various generalizations
of prime ideals are also studied in [1, 2, 10]. In recent years, 2-absorbing ideals
have been generalized and studied in several directions (see, for example, [5, 6,
7, 8, 9]). As in [3], for a positive integer n, a proper ideal I of a commutative ring
R is called an n-absorbing ideal if whenever x1 · · ·xn+1 ∈ I for x1, . . . , xn+1 ∈
R, then there are n of the xi’s whose product is in I. It is evident that 1-
absorbing ideals are just prime ideals. This was our motivation for the following
generalization of the Krull dimension of a ring.

Definition. Let R be a ring and n a positive integer. Then

I0 ⊂ I1 ⊂ · · · ⊂ Im,
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where I0, I1, . . . , Im are distinct n-absorbing ideals of R, is called a chain of n-
absorbing ideals of length m. The n-Krull dimension of R, denoted by dimn R,
is defined to be the supremum of the lengths of these chains. Thus dim1 R is
just the usual Krull dimension, dimR, of R.

As a first example, let R = Zpn for a positive integer n and a prime integer p.
By [3, Lemma 2.8, Theorem 2.1(c)], the set of k-absorbing ideals of R consists
of all ideals of the form piZpn , where 1 ≤ i ≤ k. Thus for each 1 ≤ k ≤ n,
dimk(R) = k − 1 and dimk(R) = n− 1 for all k ≥ n.

By [3, Theorem 2.1(c)], every n-absorbing ideal of R is an m-absorbing ideal
for all m ≥ n. It follows immediately that

(∗) dimR = dim1 R ≤ dim2 R ≤ dim3 R ≤ · · · .
We will give several examples for which some of the inequalities in (∗) may be
strict. There exists a Noetherian ring R such that dim1 R = ∞ ([11, Exercise
9.6]). Thus by (∗), the n-Krull dimension of a Noetherian ring may be infinity
for each positive integer n. However, we shall see that for each positive integer
n, dimn(R) is finite in the case that R is an Artinian ring (Theorem 2.8) or a
Dedekind domain (Theorem 2.19). We also show that if R is a Noetherian local
domain with dim1(R) = 1, then dim2 R is finite (Theorem 2.9). Furthermore,
if [3, Conjecture 2] holds, then dimn R is finite for all n ≥ 3 (Theorem 2.10).

In the rest of paper, we assume that l(R) denotes the length of a composition
series for a ring R which is of finite length. It is shown that if (R,m) is an
Artiniain local ring and n is the smallest positive integer such that mn = 0,
then dimk R = l(R) − 1 for each k ≥ n (Theorem 2.12). In particular, if m is
principal it is shown that dimk(R) = n − 1 if k ≥ n and dimk(R) = k − 1 if
1 ≤ k ≤ n (Corollary 2.14). It is shown that if R = R1 × · · · ×Rk, where each

Ri is a ring, then
∑k

i=1 dimni
Ri ≤ dimn R, for all positive integers n1, . . . , nk

with n =
∑k

i=1 ni. Moreover, if some of the Ri’s are fields and dimn R is finite

for some positive integer n, then dimn R ≤ ∑k
i=t+1 dimn Ri + t, where t is

the number of fields in this product (Theorem 2.11). Using this fact and the
structure theorem for Artinian rings, we prove that if R is an Artinian ring
with k maximal ideals, then dimn R = l(R) − k for some positive integer n
(Theorem 2.13). As in [3], if I is an n-absorbing ideal of R for some positive
integer n, define ω(I) = min{n : I is an n-absorbing ideal of R}, otherwise,
set ω(I) = ∞. It is shown that if I ⊆ J are ideals of a Dedekind domain
R, then I = J (respectively I ⊂ J) if and only if ω(J) = ω(I) (respectively
ω(J) < ω(I)) (Lemmas 2.17 and 2.18). It is shown that a Noetherian domain
R is a Dedekind domain if and only if dimn R = n for every positive integer n
if and only if dim2 R = 2 (Theorem 2.19).

Finally, among several examples of the n-Krull dimension of a ring, some
examples are given to show that Krull’s (Generalized) Principal Ideal Theorem
can not be generalized when n-absorbing ideals for n > 1 are considered rather
than prime ideals.
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2. The n-Krull dimension of a ring

An n-absorbing ideal I of R is called a minimal n-absorbing ideal of the
ideal J if J ⊆ I and there is no n-absorbing ideal I ′ such that J ⊆ I ′ ⊂ I. By
a minimal n-absorbing ideal of R, we mean a minimal n-absorbing ideal of (0).
Although every prime ideal of R is an n-absorbing ideal for each n ≥ 2, there
exists a minimal prime ideal which is not a minimal n-absorbing ideal for each
n ≥ 2. For example, if R = K[X ] is the polynomial ring in one variable X over
a field K, the minimal prime ideal P = RX of (0) is not a minimal 2-absorbing
ideal of (0), since by [3, Lemma 2.8], RX2 is a 2-absorbing ideal of R.

Theorem 2.1. Let R be a ring. Then for each positive integer n, there is an

n-absorbing ideal of R which is minimal among all n-absorbing ideals of R.

Proof. Let Σ be the set of all n-absorbing ideals of R. Since every maximal
ideal of R is an n-absorbing ideal for each n > 1, Σ is not empty. It is clear
that (Σ,≤) is a partially ordered set in which I ≤ I ′ if and only if I ⊇ I ′ for
all I, I ′ ∈ Σ. Let C = {Iλ}λ∈Λ be an arbitrary non-empty chain of elements of
Σ and set J =

⋂

λ∈Λ Iλ. We show that J is an n-absorbing ideal of R. Since
C is non-empty, J 6= R. Let a1 · · ·an+1 ∈ J for some a1, . . . , an+1 ∈ R. Let
âi =

∏

j 6=i aj, the product of all aj ’s except ai. Assume that âi /∈ J for each

1 ≤ i ≤ n. Then, for each 1 ≤ i ≤ n, there exists Iλi
∈ C such that âi /∈ Iλi

.
We may assume that Iλ1

⊆ · · · ⊆ Iλn
. For µ ∈ Λ, we have the following cases:

(1) If Iµ ⊆ Iλ1
⊆ · · · ⊆ Iλn

, then âi /∈ Iµ for each 1 ≤ i ≤ n. Now since
a1 · · ·an+1 ∈ Iµ and Iµ is an n-absorbing ideal of R, we have ân+1 ∈ Iµ.

(2) If there exists 1 < j ≤ n such that

Iλ1
⊆ · · · ⊆ Iλj−1

⊆ Iµ ⊆ Iλj
⊆ · · · ⊆ Iλn

,

then âi /∈ Iλ1
for each 1 ≤ i ≤ n. Now since a1 · · · an+1 ∈ Iλ1

and Iλ1

is an n-absorbing ideal of R, we have ân+1 ∈ Iλ1
⊆ Iµ.

Thus ân+1 ∈ Iµ for each µ ∈ Λ, and therefore ân+1 ∈ J . Hence by Zorn’s
Lemma, (Σ,≤) has a maximal element, i.e., there is a minimal n-absorbing
ideal of R. �

Corollary 2.2. Let R be a ring and I a proper ideal of R. Then for each

positive integer n, there is an n-absorbing ideal of R which is minimal among

all n-absorbing ideals of R containing I.

Proof. Use Theorem 2.1 and [2, Corollary 4.3(b)]. �

Remark 2.3. Every n-absorbing ideal of R is contained in a maximal ideal
of R (and, of course, maximal ideals are n-absorbing ideals). Also, every n-
absorbing ideal of R contains a minimal n-absorbing ideal of (0) by Theorem
2.1. It follows that dimn R is equal to the supremum of lengths of chains

I0 ⊂ I1 ⊂ · · · ⊂ Im
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of n-absorbing ideals of R in which Im is a maximal ideal of R and I0 is a
minimal n-absorbing ideal of (0).

Definition. Let R be a ring and I an ideal of R.

(1) If I is an n-absorbing ideal of R, the n-height of I, denoted by htn(I),
is defined to be the supremum of lengths of chains

I0 ⊂ I1 ⊂ · · · ⊂ Im

of n-absorbing ideals of R for which Im = I if this supremum exists,
and ∞ otherwise.

(2) If I is a proper ideal of R (not necessarily n-absorbing ideal) and n a
positive integer, the n-height of I, denoted by htn(I), is defined to be

min{htn(J) : J is an n-absorbing ideal and J ⊇ I}.
Lemma 2.4. Let I ⊆ J be n-absorbing ideals of R. Then htn(I) ≤ htn(J). In

particular, if htn(J) < ∞, then I = J if and only if htn(I) = htn(J).

Proof. If htn(J) = ∞, there is noting to prove. So let htn(J) < ∞. We
may assume that I ⊂ J . First note that htn(I) is finite, since for each chain
I0 ⊂ I1 ⊂ · · · ⊂ Im = I of n-absorbing ideals of R, we have the chain I0 ⊂
I1 ⊂ · · · ⊂ Im ⊂ J of n-absorbing ideals of R. Let htn(I) = m, and I0 ⊂ I1 ⊂
· · · ⊂ Im be a chain of n-absorbing ideals of R with Im = I. Then, the chain
I0 ⊂ I1 ⊂ · · · ⊂ Im ⊂ J of n-absorbing ideals of R shows that htn(J) ≥ m+ 1.
The “in particular” statement follows immediately. �

Corollary 2.5. Let R be a ring and I an ideal of R. Then for any positive

integer n,

htn(I) = min{htn(J) : J is a minimal n-absorbing ideal of I}.
Proof. Clearly,

htn(I) ≤ min{htn(J) : J is a minimal n-absorbing ideal of I}.
Thus, if htn(I) = ∞, then there is noting to prove. So let htn(I) = m < ∞.
Then there exists an n-absorbing ideal J ⊇ I of R, such that htn(J) = htn(I) =
m. By Corollary 2.2, there exists a minimal n-absorbing ideal J ′ of I such that
I ⊆ J ′ ⊂ J . It follows from Lemma 2.4 that htn(I) ≤ htn(J

′) ≤ htn(J). Thus

min{htn(J) : J is a minimal n-absorbing ideal of I} ≤ htn(I).

This completes the proof. �

Theorem 2.6. Let I ⊂ J be ideals of R, and J be an n-absorbing ideal of R
such that htn(J) is finite. If htn(I) = htn(J), then J is a minimal n-absorbing
ideal of I.

Proof. Suppose that J is not a minimal n-absorbing ideal of I. Then by Corol-
lary 2.2, there exists a minimal n-absorbing ideal J ′ of I such that I ⊆ J ′ ⊂ J .
In view of Lemma 2.4 and Corollary 2.5, we have htn(I) ≤ htn(J

′) < htn(J),
contrary to hypothesis. �
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Theorem 2.7. Let R be a ring and n a positive integer. If dimn R is finite,

then

dimn R = sup{htn(I) : I is an n-absorbing ideal of R}
= sup{htn(m) : m is a maximal ideal of R}.

Proof. To show the first equality, if I is an n-absorbing ideal of R, then it is
clear that htn(I) ≤ dimn R. Thus, we have the “≥” for the required equalities.
In order to show the “≤”, let dimn R = t. Then there exists a chain I0 ⊂ I1 ⊂
· · · ⊂ It of n-absorbing ideals of R. Set It = I, then htn(I) = t, and therefore
we have “≤” for the required equalities. The second equality immediately
follows from Remark 2.3 and the first equality. �

Theorem 2.8. If R is an Artinian ring, then dimn R is finite for each positive

integer n.

Proof. Since R is Artinian, Max(R) is a finite set. Let Max(R) = {m1, . . . ,mk}.
Since R has finite length, the lengths of all strict chains of ideals of R have
an upper bound, say t. Thus htn(mi) ≤ t for each 1 ≤ i ≤ k. Now the result
follows from Remark 2.3. �

Theorem 2.9. Let (R,m) be a Noetherian local domain with dim1(R) = 1.
Then dim2(R) is finite.

Proof. Let (0) = I0 ⊂ I1 ⊂ · · · ⊂ It = m be a chain of 2-absorbing ideals of R.
Since dim1(R) = 1, Rad(I1) = m, and so m2 ⊆ I1 by [4, Theorem 2.4]. Now,
since by [14, Exercise 15.17], l(R/m2) < ∞, we conclude that t ≤ l(R/m2) < ∞.
Thus dim2(R) < ∞ by Remark 2.3. �

Let R be a ring. It is clear that Rad(p) = p for every prime ideal p of R.
If I is a 2-absorbing ideal of R, then Rad(I)2 ⊆ I by [4, Theorem 2.4] and [3,
Theorem 6.1]. In [3, Conjecture 2], it has been conjectured that if n ≥ 3 and
I is an n-absorbing ideal of R, then Rad(I)n ⊆ I. This is true, for example,
when R is a Prüfer domain [3, Corollary 6.9]. The following result extends
Theorem 2.9 if the conjecture holds.

Theorem 2.10. Let (R,m) be a Noetherian local domain with dim1(R) = 1.
Then dimn(R) is finite for every positive integer n.

Proof. The proof is essentially the same as the proof of Corollary 2.9, but by
replacing [4, Theorem 2.4] by [3, Conjecture 2] and using n instead of 2. �

The following theorem will be used to show that for an Artinian ring R with
k maximal ideals, dimn R = l(R)− k for some positive integer n.

Theorem 2.11. Let R = R1 × · · · ×Rk, where each Ri (1 ≤ i ≤ k) is a ring.
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(1) If n1, . . . , nk are positive integers and n =
∑k

i=1 ni, then

k
∑

i=1

dimni
Ri ≤ dimn R.

(2) If Ri is not a field for each 1 ≤ i ≤ k, and dimn R is finite for some

positive integer n, then

dimn R ≤
k
∑

i=1

dimn Ri.

(3) If R1, . . . , Rt are fields and Rt+1, . . . , Rk are not fields for some 1 ≤
t ≤ k, and dimn R is finite for some positive integer n, then

dimn R ≤
k

∑

i=t+1

dimn Ri + t.

Proof. (1) Assume that I1i ⊂ I2i ⊂ · · · ⊂ Iiki
is a chain of ni-absorbing ideals

of Ri. Thus I
′
1i ⊂ I ′2i ⊂ · · · ⊂ I ′iki

is a chain of ni-absorbing ideals of R, where
for each 1 ≤ j ≤ ki

I ′ji = R1 × · · · ×Ri−1 × Iji ×Ri+1 × · · · ×Rk

is an ni-absorbing ideal of R. Thus dimni
R ≥ dimni

Ri, and so dimn R ≥
dimni

Ri. Hence, if dimni
Ri = ∞ for some 1 ≤ i ≤ k, then dimn R = ∞.

Now, we assume that for every 1 ≤ i ≤ k, dimni
Ri = ti < ∞. Thus, for each

i = 1, . . . , k, there exists a chain Ii0 ⊂ Ii1 ⊂ Ii2 ⊂ · · · ⊂ Iiti of ni-absorbing
ideals of Ri. By [3, Theorem 4.7], we have the following chain of n-absorbing
ideals which is of the length t1 + · · ·+ tk.
I10 × I20 × I30 × · · · × Ik0 ⊂ I11 × I20 × I30 × · · · × Ik0 ⊂ · · · ⊂ I1t1 × I20 × I30 × · · · × Ik0 ⊂

I1t1 × I21 × I30 × · · ·

.

.

.

× Ik0 ⊂ I1t1 × I22 × I30 × · · ·

.

.

.

× Ik0 ⊂ · · · ⊂ I1t1 × I2t2 × I30 × · · ·

.

.

.

× Ik0 ⊂

I1t1 ×· · ·×Ik−1tk−1
×Ik0 ⊂ I1t1 ×· · ·×Ik−1tk−1

× Ik1⊂ · · · ⊂ I1t1 × · · · × Ik−1tk−1
× Iktk

Thus dimn R ≥ ∑k
i=1 dimni

Ri.
(2) Let dimn R = s. By induction on k, it suffices to show that the assertion

holds for k = 2. In this case, there exists a chain

I0 × I ′0 ⊂ I1 × I ′1 ⊂ · · · ⊂ Is × I ′s

of n-absorbing ideals of R = R1 × R2. We may assume that there is a chain
I0 ⊂ · · · ⊂ It ⊂ It+1 = R1 of n-absorbing ideals of R1 for some 0 ≤ t ≤ s. Then
dimn R1 ≥ t, and we must have the chain I ′t+1 ⊂ · · · ⊂ I ′s of n-absorbing ideals
of R2. Therefore dimn R2 ≥ s− t, and so dimn R1 +dimn R2 ≥ t+ (s− t) = s.

(3) By induction and part (2), we only need to show that dimn(R1 × F1) ≤
dimn(R1) + 1, where F1 is a field. Let dimn(R1 × F1) = s. Then there exists
a chain

I10 × I20 ⊂ I11 × I21 ⊂ · · · ⊂ I1s × I2s
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of n-absorbing ideals of R. Let I2j = F1 for some 0 ≤ j ≤ s. Then we have
the chain I1j ⊂ I1j+1 ⊂ · · · ⊂ I1s of n-absorbing ideals of R1. Now the length
of this chain is s if j = 0 or j > 0 and I1j−1 6= I1j , and is s − 1 if j > 0 and
I1j−1 = I1j . Thus dimn R1 ≥ s−1, i.e., dimn R ≤ dimn R1+1 as required. �

Theorem 2.12. Let (R,m) be an Artiniain local ring and n be the smallest

positive integer such that mn = (0). Then dimk R = l(R)− 1 for each k ≥ n.

Proof. By assumption mn = (0) and mn−1 6= (0). Let k ≥ n and dimk R = t.
Then there exists a chain (0) = I0 ⊂ I1 ⊂ · · · ⊂ It = m of k-absorbing ideals of
R. Since mk = (0), by [3, Theorem 3.1], every ideal of R is a k-absorbing ideal.
It follows that the chain (0) = I0 ⊂ I1 ⊂ · · · ⊂ It = m ⊂ R is a composition
series for R. Hence, dimk R = l(R)− 1. �

Theorem 2.13. Let R be an Artinian ring with k maximal ideals. Then there

exists a positive integer n such that dimn R = l(R)− k.

Proof. Since R is Artinian, by [11, Corolary 2.16], there exist Artinian local
rings Ri (1 ≤ i ≤ k), such that R = R1 × · · · × Rk. For each 1 ≤ i ≤ k,
let mi be the unique maximal ideal of Ri and ni a positive integer such that
m

ni

i = (0) and m
ni−1
i 6= (0). Thus by Theorem 2.12, dimm Ri = l(Ri) − 1 for

all i = 1, . . . , k and m ≥ ni. Let n = n1 + · · ·+ nk. Then by Theorem 2.11(1),
we have

dimn1
R1 + · · ·+ dimnk

Rk ≤ dimn R.

It follows that l(R)− k ≤ dimn R. Now we have the following two cases:

(1) If Ri is not a field for all 1 ≤ i ≤ k, then by Theorem 2.11(2), we have

dimn R ≤
k

∑

i=1

dimn Ri = l(R)− k.

(2) Suppose that some of the Ri’s are fields. We may assume that R is
of the form R = F1 × · · · × Ft × Rt+1 × · · · × Rt for fields F1, . . . , Ft

(1 ≤ t ≤ k). Thus by Theorem 2.11(3) and the proof of Theorem 2.12,
we have

dimn R ≤
k

∑

i=t+1

dimn Ri + t =

k
∑

i=t+1

(l(Ri)− 1) + t

= (

k
∑

i=t+1

l(Ri) + t)− k = l(R)− k.

Therefore dimn R = l(R)− k. �

Corollary 2.14. Let (R,m) be an Artinian local ring such that m 6= (0) is

principal. Let n be the smallest positive integer such that mn = (0). Then for

each k ≥ n, dimk(R) = n− 1, and for each 1 ≤ k ≤ n, dimk(R) = k − 1.
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Proof. Since mn = (0) and mn−1 6= (0), by [14, Lemma 15.41], the chain

(0) = m
n ⊂ m

n−1 ⊂ · · · ⊂ m ⊂ R

is a composition series for R. Thus by Theorem 2.12, dimk(R) = n − 1 for
each k ≥ n. Now let 1 ≤ k < n. Then by [14, Lemma 15.41] and [3, Theorem
3.1], the only chain of k-absorbing ideals of R is mk ⊂ mk−1 ⊂ · · · ⊂ m. Thus
dimk(R) = k − 1. �

Example 2.15. Let K be a field.

(1) Let R = K[X ]/(Xn), where n ≥ 2 is an integer. Then R is an Artinian
local ring with maximal ideal m = (X)/(Xn). Clearly mn = (0) and
mn−1 6= (0). Thus, by Corollary 2.14, we have dimk(R) = n − 1 for
each k ≥ n, and dimk(R) = k − 1 for each 1 ≤ k ≤ n.

(2) If m is not principal, then Corollary 2.14 is not necessarily true. For
instance, let R = K[X,Y ]/(X2, Y 2). Then R is an Artinian local ring
with unique maximal ideal m = (X,Y )/(X2, Y 2). Clearly m3 = (0)
and m2 6= (0). One can easily see that the chain

(0) ⊂ m
2 ⊂ (X2, Y )/(X2, Y 2) ⊂ m ⊂ R

is a composition series for R. Thus, by Theorem 2.12, dim3(R) = 3.
Furthermore, m2 ⊂ (X2, Y )/(X2, Y 2) ⊂ m is a chain of 2-absorbing
ideals of R, so dim2 R ≥ 2. Note that (0) is a 3-absorbing ideal which
is not 2-absorbing since X(X + Y )Y ∈ (X2, Y 2), and X(X + Y ), (X +
Y )Y,XY /∈ (X2, Y 2). Thus dim2 R = 2. However, Corollary 2.14 is
true for k = 1, i.e., dim1 R = dimR = 0.

In the rest of this section, we determine the n-absorbing dimension of some
special rings.

Theorem 2.16. ([3, Theorem 5.1]) Let R be a Noetherian integral domain.

Then the following statements are equivalent:

(1) R is a Dedekind domain;
(2) If I is an n-absorbing ideal of R, then I = M1 · · ·Mm for maximal

ideals M1, . . . ,Mm of R with 1 ≤ m ≤ n.

Moreover, if I = M1 · · ·Mn for maximal ideals M1, . . . ,Mn of a Dedekind

domain R which is not field, then ω(I) = n.

Lemma 2.17. Let R be a Dedekind domain. Assume that I ⊆ J are ideals of

R. Then I = J if and only if ω(I) = ω(J).

Proof. Necessity is clear. For sufficiency, since R is a Dedekind domain and I ⊆
J , we have I = P k1

1 · · ·P ks
s and J = P l1

1 · · ·P ls
s for maximal ideals P1, . . . , Ps

of R and positive integers k1, . . . , ks and l1, . . . , ls with li ≤ ki for all 1 ≤ i ≤ s.
Thus, by Theorem 2.16, ω(I) = k1 + · · · + ks and ω(J) = l1 + · · · + ls. Since
ω(I) = ω(J) and li ≤ ki for all 1 ≤ i ≤ s, we conclude that ki = li for all i,
and therefore I = J . �
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Lemma 2.18. Let R be a Dedekind domain. Assume that I ⊂ J are ideals of

R. Then ω(J) < ω(I).

Proof. In a similar way as the proof of Lemma 2.17, we have I = P k1

1 · · ·P ks
s

and J = P l1
1 · · ·P ls

s for maximal ideals P1, . . . , Ps of R and positive integers
k1, . . . , ks and l1, . . . , ls such that li ≤ ki for all 1 ≤ i ≤ s. Furthermore,
ω(I) = k1+ · · ·+ks and ω(J) = l1+ · · ·+ ls. Since I ⊂ J , we must have li < ki
for some 1 ≤ i ≤ s. Thus ω(J) < ω(I). �

Theorem 2.19. Let R be a Noetherian integral domain which is not a field.

Then the following statements are equivalent:

(1) R is a Dedekind domain;
(2) dimn R = n, for every positive integer n;
(3) dim2(R) = 2.

Proof. (1) ⇒ (2) Let n be a positive integer. By Theorem 2.7 and the fact that
dimn R is equal to the supremum of lengths of chains I0 ⊂ I1 ⊂ · · · ⊂ Im of
n-absorbing ideals of R in which Im is a maximal ideal of R, it suffices to show
that htn(m) = n for each maximal ideal m of R. Suppose m is a maximal ideal
of R. Hence, we have the following chain of n-absorbing ideals of R

(0) ⊂ m
n ⊂ m

n−1 ⊂ · · · ⊂ m.

Thus htn(m) ≥ n. Assume to the contrary that htn(m) > n. Then there exists
a chain 0 ⊂ I1 ⊂ · · · ⊂ It−1 ⊂ It = m of n-absorbing ideals of R with t > n.
Hence by Lemma 2.18, we have

ω(It) < ω(It−1) < · · · < ω(I1),

and therefore t− 1 < ω(I1) ≤ n, which is a contradiction.
(2) ⇒ (3) Trivial.
(3) ⇒ (1) Let m be a maximal ideal of R. Since R is a domain which is

not a field, m2 6= (0). Thus by [3, Lemma 2.8], (0) ⊂ m2 ⊂ m is a chain of
2-absorbing ideals of R. Every ideal between m2 and m is an m-primary ideal of
R, and hence a 2-absorbing ideal of R by [3, Theorem 3.1]. Now the hypothesis
dim2 R = 2 implies that there are no ideals of R properly between m2 and m.
Thus R is a Dedekind domain by [12, Theorem 6.20]. �

Example 2.20. If R is a principal ideal domain, then by Theorem 2.19,
dimn R = n for every positive integer n. In particular, dimn Z = dimn Z[i] =
dimn K[X ] = dimn K[[X ]] = n, where K[X ] and K[[X ]] are the ring of polyno-
mials and the ring of formal power series over a field K, respectively, and Z[i]
is the ring of Gaussian integers. Moreover, let Z[

√
−5] = {a+b

√
−5 : a, b ∈ Z}.

It is well-known that Z[
√
−5] is a Dedekind domain that is not a principal ideal

domain, and so dimn Z[
√
−5] = n by Theorem 2.19.

If (R,m) is a discrete valuation ring, it is well known that every non-zero ideal
of R is uniquely of the form mn, where n is a positive integer. Furthermore,
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by [3, Lemma 2.8], the ideal mn is an n-absorbing ideal with ω(mn) = n.
Thus every ideal of R is an n-absorbing ideal for some positive integer n. In
particular, 0,m, . . . ,mn are the only n-absorbing ideals of R. This leads us to
the following result.

For a finite dimensional vector space V over a field F , we shall denote the
dimension of V by vdimF V .

Theorem 2.21. Let (R,m) be a discrete valuation ring and I an ideal of R.

Then

(1) I is an n-absorbing ideal for some positive integer n and ω(I)= lR(R/I).
(2) For every positive integer n, dimn(R) = lR(R/mn) = n.

Proof. (1) Since (R,m) is a discrete valuation ring, I = mn for a unique positive
integer n. Further, by [3, Lemma 2.8], ω(I) = n. Consider the following
saturated chain of ideals of R

I = m
n ⊂ m

n−1 ⊂ · · · ⊂ m ⊂ R.

Then lR(R/I) =
n−1
∑

i=0

lR(m
i/mi+1). Now

lR(m
i/mi+1) = vdimR/m(m

i/mi+1) = 1

is the dimension of the vector space mi/mi+1 over R/m. Hence lR(R/I) = n =
ω(I).

(2) This follows immediately from part (1) and Theorem 2.19. �

If R is a one-dimensional valuation domain with principal maximal ideal m,
then by [13, Theorem 11.2], R is a principal ideal domain and so dimn R = n.
In the following example, we show that this is not necessarily true for every
valuation domain R, even if dim1 R = 1.

Example 2.22. (See [3, Example 5.6])

(1) Let R be a one-dimensional valuation domain with non-principal max-
imal ideal m. For every positive integer n, the only n-absorbing ideals
of R are (0) and m. Therefore dimn R = 1 for every positive integer n.

(2) Let R be a two-dimensional valuation domain with prime ideals 0 ⊂
p ⊂ m and value group G. Let n be a positive integer. If G = Z ⊕ Z
(all direct sums have the lexicographic order), then pi+1 6= pi and
mi+1 6= mi for all i; so (0), pk, and mk with 1 ≤ k ≤ n are the only
n-absorbing ideals of R. Thus, the longest chain of n-absorbing ideals
of R is the chain (0) ⊂ pn ⊂ mn ⊂ mn−1 · · · ⊂ m, and therefore
dimn R = n+1. If G = Q⊕Q, then p2 = p and m2 = m; so (0), p, and
m are the only n-absorbing ideals of R. Thus dimn R = 2. If G = Z⊕Q,
thenm2 = m and pi+1 6= pi for all i; so (0), pk with 1 ≤ k ≤ n, andm are
the only n-absorbing ideals of R. Thus (0) ⊂ pn ⊂ pn−1 ⊂ · · · ⊂ p ⊂ m

is the longest chain of n-absorbing ideals of R. Hence dimn R = n+ 1.
If G = Q ⊕ Z, then p2 = p and mi+1 6= mi for all i; so (0), p, and mk
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with 1 ≤ k ≤ n are the only n-absorbing ideals of R. Thus, the longest
chain of n-absorbing ideals of R is (0) ⊂ p ⊂ mn ⊂ mn−1 ⊂ · · · ⊂ m.
Hence dimn R = n+ 1.

In the following examples, we show that a number of results concerning the
1-Krull dimension for a ring R can not be generalized to n-Krull dimension in
case n > 1.

Example 2.23. Let R be a Noetherian ring and I a nilpotent ideal of R.
It is easily seen that dimn R = dimn R/I if n = 1. But if n > 1, this is
not necessarily true. For instance, let R = K[X ], where K is a field. Let
I = (X2) and S = R/I. Then dim2 S = 1 by Example 2.15. For the ideal
J = (X)/(X2) of S, it is clear that J is a nilpotent ideal of S and S/J ∼= K.
Thus dim2(S/J) = 0, and therefore dim2 S 6= dim2 S/J .

Example 2.24. Let R be a commutative Noetherian ring and I a prime (1-
absorbing) ideal of R which is generated by m elements. Then htn(I) ≤ m
for n = 1 (Krull’s Generalized Principal Ideal Theorem [14, Theorem 15.4]).
In the following examples, we show that this is not necessarily true if n > 1,
whether I is a prime ideal or not.

(1) Let K be a field, R = K[X ], and I = RX . Since (0) ⊂ RX2 ⊂ RX is
a chain of 2-absorbing ideals of R, we have ht2(RX) = 2.

(2) Let K be a field and R = K[X ]/(X3). Then R is an Artinian local
ring with maximal ideal m = (X)/(X3). Clearly m3 = 0 and m2 6= 0.
By [3, Theorem 3.1], m2 is a 2-absorbing ideal, but not a prime ideal
of R. Now by [14, Lemma 15.41], (0) ⊂ m3 ⊂ m2 ⊂ m is the only chain
of 3-absorbing ideals of R. Hence ht3(m

2) = 2.
(3) Let K be a field and R = K[X,Y ]/(X3, Y 2). Then R is an Artinian

local ring with maximal ideal m = (X,Y )/(X3, Y 2). Clearly m4 = 0
and m3 6= 0. Now if I = (X2, Y )/(X3, Y 2), then by [3, Theorem 3.1],
I is a 4-absorbing ideal of R. Since

(0) ⊂ m
3 ⊂ (X2, Y 2)/(X3, Y 2) ⊂ m

2 ⊂ I ⊂ m ⊂ R

is a composition series for R, we have ht4(I) = 4.
(4) Let R be a Dedekind domain and m a maximal ideal of R. Then by

[13, Exercise 11.5], m is generated by at most two elements . However,
by the proof of Theorem 2.19, htn(m) = n for every positive integer n.
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