• Title/Summary/Keyword: commutative

Search Result 618, Processing Time 0.027 seconds

TATE-SHAFAREVICH GROUPS OVER THE COMMUTATIVE DIAGRAM OF 8 ABELIAN VARIETIES

  • Hoseog Yu
    • 호남수학학술지
    • /
    • 제45권3호
    • /
    • pp.410-417
    • /
    • 2023
  • Suppose that there are 8 abelian varieties defined over a number field K which satisfy a commutative diagram. We show that if we know that three out of four short exact sequences satisfy the rate formula of Tate-Shafarevich groups, then the unknown short exact sequence satisfies the rate formula of Tate-Shafarevich groups, too.

CONTINUITY OF HOMOMORPHISMS BETWEEN BANACH ALGEBRAS

  • Cho, Tae-Geun
    • 대한수학회보
    • /
    • 제20권2호
    • /
    • pp.71-74
    • /
    • 1983
  • The problems of the continuity of homomorphisms between Banach algebras have been studied widely for the last two decades to obtain various fruitful results, yet it is far from characterizing the calss of Banach algebras for which each homomorphism from a member of the class into a Banach algebra is conitnuous. For commutative Banach algebras A and B a simple proof shows that every homomorphism .theta. from A into B is continuous provided that B is semi-simple, however, with a non semi-simple Banach algebra B examples of discontinuous homomorphisms from C(K) into B have been constructed by Dales [6] and Esterle [7]. For non commutative Banach algebras the problems of automatic continuity of homomorphisms seem to be much more difficult. Many positive results and open questions related to this subject may be found in [1], [3], [5] and [8], in particular most recent development can be found in the Lecture Note which contains [1]. It is well-known that a$^{*}$-isomorphism from a $C^{*}$-algebra into another $C^{*}$-algebra is an isometry, and an isomorphism of a Banach algebra into a $C^{*}$-algebra with self-adjoint range is continuous. But a$^{*}$-isomorphism from a $C^{*}$-algebra into an involutive Banach algebra is norm increasing [9], and one can not expect each of such isomorphisms to be continuous. In this note we discuss an isomorphism from a commutative $C^{*}$-algebra into a commutative Banach algebra with dense range via separating space. It is shown that such an isomorphism .theta. : A.rarw.B is conitnuous and maps A onto B is B is semi-simple, discontinuous if B is not semi-simple.

  • PDF

Unification of lower-bound analyses of the lift-and-project rank of combinatorial optimization polyhedra

  • Hong, Sung-Pil;Tuncel, Levent
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.107-110
    • /
    • 2004
  • We present a unifying framework to establish a lower-bound on the number of semidefinite programming based, lift-and-project iterations (rank) for computing the convex hull of the feasible solutions of various combinatorial optimization problems. This framework is based on the maps which are commutative with the lift-and-project operators. Some special commutative maps were originally observed by $Lov{\acute{a}}sz$ and Schrijver, and have been used usually implicitly in the previous lowerbound analyses. In this paper, we formalize the lift-and-project commutative maps and propose a general framework for lower-bound analysis, in which we can recapture many of the previous lower-bound results on the lift-and-project ranks.

  • PDF

ON COMMUTATIVITY OF REGULAR PRODUCTS

  • Kwak, Tai Keun;Lee, Yang;Seo, Yeonsook
    • 대한수학회보
    • /
    • 제55권6호
    • /
    • pp.1713-1726
    • /
    • 2018
  • We study the one-sided regularity of matrices in upper triangular matrix rings in relation with the structure of diagonal entries. We next consider a ring theoretic condition that ab being regular implies ba being also regular for elements a, b in a given ring. Rings with such a condition are said to be commutative at regular product (simply, CRP rings). CRP rings are shown to be contained in the class of directly finite rings, and we prove that if R is a directly finite ring that satisfies the descending chain condition for principal right ideals or principal left ideals, then R is CRP. We obtain in particular that the upper triangular matrix rings over commutative rings are CRP.

ON ω-LOCAL MODULES AND Rad-SUPPLEMENTED MODULES

  • Buyukasik, Engin;Tribak, Rachid
    • 대한수학회지
    • /
    • 제51권5호
    • /
    • pp.971-985
    • /
    • 2014
  • All modules considered in this note are over associative commutative rings with an identity element. We show that a ${\omega}$-local module M is Rad-supplemented if and only if M/P(M) is a local module, where P(M) is the sum of all radical submodules of M. We prove that ${\omega}$-local nonsmall submodules of a cyclic Rad-supplemented module are again Rad-supplemented. It is shown that commutative Noetherian rings over which every w-local Rad-supplemented module is supplemented are Artinian. We also prove that if a finitely generated Rad-supplemented module is cyclic or multiplication, then it is amply Rad-supplemented. We conclude the paper with a characterization of finitely generated amply Rad-supplemented left modules over any ring (not necessarily commutative).

AN ANDERSON'S THEOREM ON NONCOMMUTATIVE RINGS

  • Huh, Chan;Kim, Nam-Kyun;Lee, Yang
    • 대한수학회보
    • /
    • 제45권4호
    • /
    • pp.797-800
    • /
    • 2008
  • Let R be a ring and I be a proper ideal of R. For the case of R being commutative, Anderson proved that (*) there are only finitely many prime ideals minimal over I whenever every prime ideal minimal over I is finitely generated. We in this note extend the class of rings that satisfies the condition (*) to noncommutative rings, so called homomorphically IFP, which is a generalization of commutative rings. As a corollary we obtain that there are only finitely many minimal prime ideals in the polynomial ring over R when every minimal prime ideal of a homomorphically IFP ring R is finitely generated.

A REMARK ON MULTIPLICATION MODULES

  • Choi, Chang-Woo;Kim, Eun-Sup
    • 대한수학회보
    • /
    • 제31권2호
    • /
    • pp.163-165
    • /
    • 1994
  • Modules which satisfy the converse of Schur's lemma have been studied by many authors. In [6], R. Ware proved that a projective module P over a semiprime ring R is irreducible if and only if En $d_{R}$(P) is a division ring. Also, Y. Hirano and J.K. Park proved that a torsionless module M over a semiprime ring R is irreducible if and only if En $d_{R}$(M) is a division ring. In case R is a commutative ring, we obtain the following: An R-module M is irreducible if and only if En $d_{R}$(M) is a division ring and M is a multiplication R-module. Throughout this paper, R is commutative ring with identity and all modules are unital left R-modules. Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for each submodule N of M, there exists and ideal I of R such that N=IM. Cyclic R-modules are multiplication modules. In particular, irreducible R-modules are multiplication modules.dules.

  • PDF

COMMUTATIVITY OF ASSOCIATION SCHEMES OF ORDER pq

  • Hanaki, Akihide;Hirasaka, Mitsugu
    • East Asian mathematical journal
    • /
    • 제29권1호
    • /
    • pp.39-52
    • /
    • 2013
  • Let (X, S) be an association scheme where X is a finite set and S is a partition of $X{\times}X$. The size of X is called the order of (X, S). We define $\mathcal{C}$ to be the set of positive integers m such that each association scheme of order $m$ is commutative. It is known that each prime is belonged to $\mathcal{C}$ and it is conjectured that each prime square is belonged to $\mathcal{C}$. In this article we give a sufficient condition for a scheme of order pq to be commutative where $p$ and $q$ are primes, and obtain a partial answer for the conjecture in case where $p=q$.

Where Some Inert Minimal Ring Extensions of a Commutative Ring Come from

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • 제60권1호
    • /
    • pp.53-69
    • /
    • 2020
  • Let (A, M) ⊂ (B, N) be commutative quasi-local rings. We consider the property that there exists a ring D such that A ⊆ D ⊂ B and the extension D ⊂ B is inert. Examples show that the number of such D may be any non-negative integer or infinite. The existence of such D does not imply M ⊆ N. Suppose henceforth that M ⊆ N. If the field extension A/M ⊆ B/N is algebraic, the existence of such D does not imply that B is integral over A (except when B has Krull dimension 0). If A/M ⊆ B/N is a minimal field extension, there exists a unique such D, necessarily given by D = A + N (but it need not be the case that N = MB). The converse fails, even if M = N and B/M is a finite field.