A SIMPLE PROOF FOR A RESULT ON n-JORDAN HOMOMORPHISMS

Choonkil Park and Abbas Zivari-Kazempour

Abstract

In this short note, we give a simple proof of the main theorem of [5] which states that every n-Jordan homomorphism $h: A \longrightarrow B$ between two commutative algebras A and B is an n-homomorphism.

1. Introduction and preliminaries

The study of additive mappings from one ring \mathcal{R} into another ring \mathcal{R}^{\prime} which preserve squares was initiated by Ancochea [2] in connection with problems arising in projective geometry. Among others, Kaplansky [11], Jacobson and Rickart [10] and Herstein [9] then proceeded to carry out an extensive study of such functions.

Let $n \geq 2$ be an integer and \mathcal{R} be an associative ring. Following [9], we say that \mathcal{R} is of characteristic not n if $n a=0$ implies $a=0$ for every $a \in \mathcal{R}$, and \mathcal{R} is of characteristic greater than n if $n!a=0$ implies $a=0$ for every $a \in \mathcal{R}$.

The additive mapping $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ between two rings is called an n homomorphism if for all $a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{R}$,

$$
\varphi\left(a_{1} a_{2} \cdots a_{n}\right)=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right)
$$

and it is called an n-Jordan homomorphism if $\varphi\left(a^{n}\right)=\varphi(a)^{n}$ for all $a \in \mathcal{R}$.
The concept of an n-homomorphism was studied for complex algebras in [8], and the notion of n-Jordan homomorphism was dealt with firstly by Herstein [9].

If $n=2$, then this concepts coincides the classical definitions of homomorphism and Jordan homomorphism, respectively.

It is clear that every n-homomorphism is an n-Jordan homomorphism, but in general the converse is false. There are plenty of known examples of n-Jordan homomorphisms which are not n-homomorphisms. For $n=2$, it is proved in [10] that some Jordan homomorphism on the polynomial rings cannot be homomorphism.

[^0]For characterization of n-Jordan homomorphisms on rings and Banach algebras we refer the reader to $[1,9,13-17]$, and a list of references.

It is shown in [6] that each n-Jordan homomorphism between two commutative algebras is an n-ring homomorphism for $n \in\{3,4\}$, and this result extended to $n<8$, in [4]. Note that for $n=2$, the proof is simple and routine.

In [4], the author asked the following:
Is every n-Jordan homomorphism between commutative algebras also a n ring homomorphism when $n \in \mathbb{N}$?

In 2013, Lee [12] and in 2014, Gselmann in [7] independently answered this problem in the affirmative without knowing the above question. The following general result is due to Gselmann.

Theorem 1.1 ([7, Theorem 2.1]). Let $n \in \mathbb{N}, \mathcal{R}$ and \mathcal{R}^{\prime} be two commutative rings such that char $\left(\mathcal{R}^{\prime}\right)>n$ and suppose that $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ is an n-Jordan homomorphism. Then φ is an n-homomorphism.

Moreover, if \mathcal{R} is unital, then $\varphi(e)=\varphi(e)^{n}$ and the map $\psi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ defined by $\psi(x)=\varphi(e)^{n-2} \varphi(x)$ is a homomorphism.

In 2018, Bodaghi and İnceboz solved this problem in [3, Theorem 2.2] based on the property of the Vandermonde matrix, which is different from the methods that are used in [7] and [12].

In 2020 the following result was appeared in [5], by Cheshmavar et al.
Theorem 1.2 ([5, Theorem 2.3]). Let A and B be two commutative algebras, $n \geq 3$ and let $h: A \longrightarrow B$ be an n-Jordan homomorphism. Then h is an n-homomorphism.

We need the following lemma for a simple proof of Theorem 1.2.
Lemma 1.3 ([9, Lemma 1]). Let $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be multilinear from one ring \mathcal{R} into another ring \mathcal{R}^{\prime}, and suppose that $\varphi(x, x, \ldots, x)=0$ for all $x \in \mathcal{R}$. Then

$$
\sum_{\sigma \in S_{n}} \varphi\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)=0
$$

where S_{n} denotes the symmetric group of $\{1,2, \ldots, n\}$.
Next we give a simple proof of Theorem 1.2
Theorem 1.4. Let \mathcal{R} and \mathcal{R}^{\prime} be two rings and $\varphi: \mathcal{R} \longrightarrow \mathcal{R}^{\prime}$ be an n-Jordan homomorphism. Then

$$
\begin{equation*}
\sum_{\sigma \in S_{n}}\left(\varphi\left(x_{\sigma(i)} x_{\sigma(2)} \cdots x_{\sigma(n)}\right)-\varphi\left(x_{\sigma(1)}\right) \varphi\left(x_{\sigma(2)}\right) \cdots \varphi\left(x_{\sigma(n)}\right)\right)=0, \tag{1}
\end{equation*}
$$

where S_{n} denotes the symmetric group of $\{1,2, \ldots, n\}$.
Moreover, if \mathcal{R} and \mathcal{R}^{\prime} are commutative and $\operatorname{char}\left(\mathcal{R}^{\prime}\right)>n$, then φ is an n-ring homomorphism.

Proof. Define the map $\psi: \mathcal{R}^{n} \longrightarrow \mathcal{R}^{\prime}$ by

$$
\psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\varphi\left(x_{1} x_{2} \cdots x_{n}\right)-\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \cdots \varphi\left(x_{n}\right)
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{R}$. Then ψ is multilinear and $\psi(x, x, \ldots, x)=0$ for all $x \in \mathcal{R}$. It follows from Lemma 1.3, that

$$
\sum_{\sigma \in S_{n}} \psi\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)=0
$$

and hence the equation (1) holds true. If \mathcal{R} and \mathcal{R}^{\prime} are commutative, then the equation (1) yields that

$$
\varphi\left(n!x_{1} x_{2} \cdots x_{n}\right)=n!\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \cdots \varphi\left(x_{n}\right)
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{R}$. Since $\operatorname{char}\left(\mathcal{R}^{\prime}\right)>n$, this forces

$$
\varphi\left(x_{1} x_{2} \cdots x_{n}\right)=\varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \cdots \varphi\left(x_{n}\right)
$$

Therefore, φ is an n-ring homomorphism.
It should be point out that if B is an algebra, then $\operatorname{char}(B)>n$ and so Theorem 1.4 is stronger than of Theorem 1.2.

The next example provided that the commutativity of \mathcal{R} and \mathcal{R}^{\prime} in the above theorem is essential.

Example 1.5. Let

$$
\mathcal{R}=\left\{\left[\begin{array}{cc}
M & 0 \\
0 & N
\end{array}\right]: M, N \in M_{2}(\mathbb{C})\right\} .
$$

Then under the usual matrix operations, \mathcal{R} is a unital ring which is not commutative. Define an additive map $\varphi: \mathcal{R} \longrightarrow \mathcal{R}$ by

$$
\varphi\left(\left[\begin{array}{cc}
M & 0 \\
0 & N
\end{array}\right]\right)=\left[\begin{array}{cc}
M & 0 \\
0 & N^{T}
\end{array}\right]
$$

where N^{T} is the transpose of matrix N. Then, for all $X \in \mathcal{R}$, we have $\varphi\left(X^{n}\right)=$ $\varphi(X)^{n}$. Therefore, φ is an n-Jordan homomorphism, but φ is not an n-ring homomorphism.

References

[1] G. An, Characterizations of n-Jordan homomorphisms, Linear Multilinear Algebra 66 (2018), no. 4, 671-680. https://doi.org/10.1080/03081087.2017.1318818
[2] G. Ancochea, Le théorème de von Staudt en géométrie projective quaternionienne, J. Reine Angew. Math. 184 (1942), 193-198. https://doi.org/10.1515/crll.1942.184. 193
[3] A. Bodaghi and H. Inceboz, n-Jordan homomorphisms on commutative algebras, Acta Math. Univ. Comenian. (N.S.) 87 (2018), no. 1, 141-146.
[4] A. Bodaghi and B. Shojaee, n-Jordan homomorphisms on C^{*}-algebras, J. Linear Topol. Algebras. 1 (2012), no. 1, 1-7.
[5] J. Cheshmavar, S. K. Hosseini, and C. Park, Some results on n-Jordan homomorphisms, Bull. Korean Math. Soc. 57 (2020), no. 1, 31-35. https://doi.org/10.4134/ BKMS.b180719
[6] M. Eshaghi Gordji, n-Jordan homomorphisms, Bull. Aust. Math. Soc. 80 (2009), no. 1, 159-164. https://doi.org/10.1017/S000497270900032X
[7] E. Gselmann, On approximate n-Jordan homomorphisms, Ann. Math. Sil. No. 28 (2014), 47-58.
[8] S. Hejazian, M. Mirzavaziri, and M. S. Moslehian, n-homomorphisms, Bull. Iranian Math. Soc. 31 (2005), no. 1, 13-23, 88.
[9] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331-341. https://doi.org/10.2307/1992920
[10] N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502. https://doi.org/10.2307/1990495
[11] I. Kaplansky, Semi-automorphisms of rings, Duke Math. J. 14 (1947), 521-525. http: //projecteuclid.org/euclid.dmj/1077474293
[12] Y.-H. Lee, Stability of n-Jordan homomorphisms from a normed algebra to a Banach algebra, Abstr. Appl. Anal. 2013 (2013), Art. ID 691025, 5 pp. https://doi.org/10. 1155/2013/691025
[13] W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83-85. https://doi.org/10.4064/sm-30-1-83-85
[14] A. Zivari-Kazempour, A characterisation of 3-Jordan homomorphisms on Banach algebras, Bull. Aust. Math. Soc. 93 (2016), no. 2, 301-306. https://doi.org/10.1017/ S0004972715001057
[15] A. Zivari-Kazempour, Automatic continuity of n-Jordan homomorphisms on Banach algebras, Commun. Korean Math. Soc. 33 (2018), no. 1, 165-170. https://doi.org/10. 4134/CKMS.c170071
[16] A. Zivari-Kazempour, A characterization of Jordan and 5-Jordan homomorphisms between Banach algebras, Asian-Eur. J. Math. 11 (2018), no. 2, 1850021, 10 pp. https://doi.org/10.1142/S1793557118500213
[17] A. Zivari-Kazempour and M. Valaei, Characterization of n-Jordan homomorphisms on rings, Tamkang J. Math. 53 (2022), no. 1, 89-97. https://doi.org/10.5556/j.tkjm. 53.2022 .3644

Choonkil Park
Department of Mathematics
Research Institute for Natural Sciences
Hanyang University
Seoul 04763, Korea
Email address: baak@hanyang.ac.kr
Abbas Zivari-Kazempour
Department of Mathematics
Ayatollah Borujerdi University
Borujerd, Iran
Email address: zivari@abru.ac.ir, zivari6526@gmail.com

[^0]: Received May 16, 2022; Accepted July 22, 2022.
 2020 Mathematics Subject Classification. Primary 47B48; Secondary 46L05, 46H25.
 Key words and phrases. n-ring homomorphism, n-Jordan homomorphism, commutative ring.

