TATE-SHAFAREVICH GROUPS OVER THE COMMUTATIVE DIAGRAM OF 8 ABELIAN VARIETIES

Hoseog Yu

Abstract

Suppose that there are 8 abelian varieties defined over a number field K which satisfy a commutative diagram. We show that if we know that three out of four short exact sequences satisfy the rate formula of Tate-Shafarevich groups, then the unknown short exact sequence satisfies the rate formula of Tate-Shafarevich groups, too.

1. Introduction

Let K be a number field. Write $\bar{K}, G_{K}, M_{K}, K_{v}$ for the algebraic closure of $K, \operatorname{Gal}(\bar{K} / K)$, a complete set of places on K, the completion of K at the place $v \in M_{K}$, respectively.

Let A be an abelian variety defined over K and let $\amalg(A / K)$ denote the Tate-Shafarevich group of A over K. We assume throughout that the TateShafarevich groups are finite for any abelian varieties. We write $[X]$ for the order of a finite abelian group X. For a morphism $f: A \rightarrow B$ defined over K, write f_{K} for the restriction morphism $f_{K}: A(K) \rightarrow B(K)$.

Given a short exact sequence of abelian varieties A, B and C defined over K

$$
\begin{equation*}
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow \text {, } \tag{1}
\end{equation*}
$$

we define that (1) satisfies the rate formula of Tate-Shafarevich groups if it holds that

$$
\frac{[Ш(A / K)][\amalg(C / K)]}{[\amalg(B / K)]}=\frac{\left[\operatorname{Coker}\left(g_{K}\right)\right]\left[\operatorname{Coker}\left(f_{K}^{\vee}\right)\right]}{\prod_{v \in M_{K}}\left[\operatorname{Coker}\left(g_{K_{v}}\right)\right]},
$$

where $f^{\vee}: B^{\vee} \rightarrow A^{\vee}$ is the dual morphism of $f: A \rightarrow B$. Denote the quotient $\frac{\left.\left[\operatorname{Coker}\left(g_{K}\right)\right)\right]\left[\operatorname{Coker}\left(f_{K}^{\vee}\right)\right]}{\prod_{v \in M_{K}}\left[\operatorname{Coker}\left(g_{K_{v}}\right)\right]}$ by $T S(f, g)$.

Suppose that $A_{i j}$'s are abelian varieties defined over K which satisfy the following commutative diagram:

where f and g are isogenies. Note that in the above commutative diagram we have four short exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow A_{21} \xrightarrow{p} A_{22} \xrightarrow{q} A_{23} \longrightarrow 0, \\
& 0 \longrightarrow A_{31} \longrightarrow \begin{array}{c}
s \\
{ }_{32}
\end{array} A_{32} \xrightarrow{t} A_{33} \longrightarrow A_{12} \longrightarrow a, \\
& 0 \longrightarrow A_{22} \xrightarrow{b} A_{32} \longrightarrow 0,
\end{aligned}
$$

and

$$
0 \longrightarrow A_{13} \xrightarrow{m} A_{23} \xrightarrow{n} A_{33} \longrightarrow 0 .
$$

Main Theorem. Suppose that three short sequences in the above four short exact sequences satisfy the rate formula of Tate-Shafarevich groups. Then the remaining short exact sequence satisfies the rate formula of TateShafarevich groups, too.

Proof. It is clear from Theorem 5.

2. Proof

From the commutative diagram (2) we have the following commutative diagram

where $\widehat{m}, \widehat{n}, \widehat{s}$ and \widehat{t} are induced morphisms from $m_{K}, n_{K}, s_{K}, t_{K}$.
Lemma 1. We get

$$
\frac{\left[\operatorname{Coker}\left(f_{K}\right)\right]\left[\operatorname{Coker}\left(t_{K}\right)\right]}{\left[\operatorname{Coker}\left(q_{K}\right)\right]}=\frac{\left[\operatorname{Coker}\left(g_{K}\right)\right]\left[\operatorname{Coker}\left(n_{K}\right)\right]}{\left[\operatorname{Coker}\left(b_{K}\right)\right]} .
$$

Proof. From diagram chasing we can show the following three isomorphisms $\operatorname{Ker}(\widehat{m}) \cong \operatorname{Ker}(\widehat{s}), \operatorname{Coker}(\widehat{n}) \cong \operatorname{Coker}(\widehat{t})$ and

$$
\operatorname{Ker}(\widehat{n}) / \widehat{m}\left(\operatorname{Coker}\left(f_{K}\right)\right) \cong \operatorname{Ker}(\widehat{t}) / \widehat{s}\left(\operatorname{Coker}\left(g_{K}\right)\right)
$$

Because

$$
\frac{\left[\operatorname{Coker}\left(f_{K}\right)\right]\left[\operatorname{Coker}\left(t_{K}\right)\right]}{\left[\operatorname{Coker}\left(q_{K}\right)\right]}=\frac{[\operatorname{Ker}(\widehat{m})][\operatorname{Coker}(\widehat{n})]}{\left[\operatorname{Ker}(\widehat{n}) / \widehat{m}\left(\operatorname{Coker}\left(f_{K}\right)\right)\right]},
$$

the lemma follows.
From the dual commutative diagram of (2), we have the dual commutative diagram

where $\widehat{f^{\vee}}$ and $\widehat{g^{\vee}}$ are induced morphism from $f_{K}^{\vee}, g_{K}^{\vee}$.

From (3) we have following commutative diagram

where T is the restriction morphism of g_{K}^{\vee} on $s_{K}^{\vee}\left(A_{32}^{\vee}(K)\right)$.
Then the snake lemma becomes
(4) $0 \rightarrow \operatorname{Ker}(T) \rightarrow \operatorname{Ker}\left(g_{K}^{\vee}\right) \rightarrow \operatorname{Ker}\left(\widehat{g^{\vee}}\right) \rightarrow \operatorname{Coker}(T)$

$$
\rightarrow \operatorname{Coker}\left(g_{K}^{\vee}\right) \rightarrow \operatorname{Coker}\left(\widehat{g^{\vee}}\right) \rightarrow 0
$$

Similarly we have
(5) $0 \rightarrow \operatorname{Ker}(S) \rightarrow \operatorname{Ker}\left(f_{K}^{\vee}\right) \rightarrow \operatorname{Ker}\left(\widehat{f^{\vee}}\right) \rightarrow \operatorname{Coker}(S)$

$$
\rightarrow \operatorname{Coker}\left(f_{K}^{\vee}\right) \rightarrow \operatorname{Coker}\left(\widehat{f^{\vee}}\right) \rightarrow 0
$$

from

where S is the restriction morphisam of f_{K}^{\vee} on $m_{K}^{\vee}\left(A_{23}^{\vee}(K)\right)$.
Through diagram chasing in (3) we can show that $\operatorname{Ker}(T) \cong \operatorname{Ker}(S)$ and $\operatorname{Coker}(T) \cong \operatorname{Coker}(S)$. From the exact sequences (4) and (5)

$$
\frac{[\operatorname{Ker}(T)]}{[\operatorname{Coker}(T)]}=\frac{\left[\operatorname{Ker}\left(g_{K}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(g_{K}^{\vee}\right)\right]} \cdot \frac{\left[\operatorname{Coker}\left(\widehat{g^{\vee}}\right)\right]}{\left[\operatorname{Ker}\left(\widehat{g^{\vee}}\right)\right]}=\frac{\left[\operatorname{Ker}\left(g_{k}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(g_{K}^{\vee}\right)\right]} \cdot \frac{\left[\operatorname{Coker}\left(p_{K}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(s_{K}^{\vee}\right)\right]}
$$

and

$$
\frac{[\operatorname{Ker}(S)]}{[\operatorname{Coker}(S)]}=\frac{\left[\operatorname{Ker}\left(f_{K}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(f_{K}^{\vee}\right)\right]} \cdot \frac{\left[\operatorname{Coker}\left(a_{K}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(m_{K}^{\vee}\right)\right]}
$$

Lemma 2. We get the equality

$$
\frac{\left[\operatorname{Ker}\left(f_{K}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(f_{K}^{\vee}\right)\right]} \cdot \frac{\left[\operatorname{Coker}\left(s_{K}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(p_{K}^{\vee}\right)\right]}=\frac{\left[\operatorname{Ker}\left(g_{K}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(g_{K}^{\vee}\right)\right]} \cdot \frac{\left[\operatorname{Coker}\left(m_{K}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(a_{K}^{\vee}\right)\right]} .
$$

Lemma 3. For an isogeny $f: A \rightarrow B$ defined over K, we have

$$
\frac{[Ш(B / K)]}{[Ш(A / K)]}=\frac{\left[\operatorname{Ker}\left(f_{K}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(f_{K}^{\vee}\right)\right]} \cdot \frac{\left[\operatorname{Coker}\left(f_{K}\right)\right]}{\left[\operatorname{Ker}\left(f_{K}\right)\right]} \cdot \prod_{v \in M_{K}} \frac{\left[\operatorname{Ker}\left(f_{K_{v}}\right)\right]}{\left[\operatorname{Coker}\left(f_{K_{v}}\right)\right]}
$$

Proof. See [2, p.98].
Lemma 4. We get

$$
\frac{\left[Ш\left(A_{13} / K\right)\right]}{\left[Ш\left(A_{12} / K\right)\right]} \cdot \frac{T S(s, t)}{T S(p, q)}=\frac{\left[Ш\left(A_{31} / K\right)\right]}{\left[\amalg\left(A_{21} / K\right)\right]} \cdot \frac{T S(m, n)}{T S(a, b)} .
$$

Proof. We have the following equality

$$
\begin{aligned}
& \frac{\left[Ш\left(A_{13} / K\right)\right]}{\left[Ш\left(A_{12} / K\right)\right]} \cdot \frac{T S(s, t)}{T S(p, q)} \\
& =\frac{\left[\operatorname{Ker}\left(f_{K}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(f_{K}^{\vee}\right)\right]} \cdot \frac{\left[\operatorname{Coker}\left(f_{K}\right)\right]}{\left[\operatorname{Ker}\left(f_{K}\right)\right]} \cdot \prod_{v \in M_{K}} \frac{\left[\operatorname{Ker}\left(f_{K_{v}}\right)\right]}{\left[\operatorname{Coker}\left(f_{K_{v}}\right)\right]} \\
& \times \frac{\left[\operatorname{Coker}\left(t_{K}\right)\right]\left[\operatorname{Coker}\left(s_{K}^{\vee}\right)\right]}{\prod_{v \in M_{K}}\left[\operatorname{Coker}\left(t_{K_{v}}\right)\right]} \cdot \frac{\prod_{v \in M_{K}}\left[\operatorname{Coker}\left(q_{K_{v}}\right)\right]}{\left[\operatorname{Coker}\left(q_{K}\right)\right]\left[\operatorname{Coker}\left(p_{K}^{\vee}\right)\right]} \\
& =\frac{\left[\operatorname{Coker}\left(f_{K}\right)\right]\left[\operatorname{Coker}\left(t_{K}\right)\right]}{\left[\operatorname{Coker}\left(q_{K}\right)\right]} \cdot \frac{\left[\operatorname{Ker}\left(f_{K}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(f_{K}^{\vee}\right)\right]} \cdot \frac{\left[\operatorname{Coker}\left(s_{K}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(p_{K}^{\vee}\right)\right]} \\
& \times \prod_{v \in M_{K}} \frac{\left[\operatorname{Coker}\left(q_{K_{v}}\right)\right]}{\left[\operatorname{Coker}\left(f_{K_{v}}\right)\right]\left[\operatorname{Coker}\left(t_{K_{v}}\right)\right]} \cdot \frac{\prod_{v \in M_{K}}\left[\operatorname{Ker}\left(f_{K_{v}}\right)\right]}{\left[\operatorname{Ker}\left(f_{K}\right)\right]} \\
& =\frac{\left[\operatorname{Coker}\left(g_{K}\right)\right]\left[\operatorname{Coker}\left(n_{K}\right)\right]}{\left[\operatorname{Coker}\left(b_{K}\right)\right]} \cdot \frac{\left[\operatorname{Ker}\left(g_{K}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(g_{K}^{\vee}\right)\right]} \cdot \frac{\left[\operatorname{Coker}\left(m_{K}^{\vee}\right)\right]}{\left[\operatorname{Coker}\left(a_{K}^{\vee}\right)\right]} \\
& \times \prod_{v \in M_{K}} \frac{\left[\operatorname{Coker}\left(b_{K_{v}}\right)\right]}{\left[\operatorname{Coker}\left(g_{K_{v}}\right)\right]\left[\operatorname{Coker}\left(n_{K_{v}}\right)\right]} \cdot \frac{\prod_{v \in M_{K}}\left[\operatorname{Ker}\left(g_{K_{v}}\right)\right]}{\left[\operatorname{Ker}\left(g_{K}\right)\right]} \\
& =\frac{\left[\amalg\left(A_{31} / K\right)\right]}{\left[\amalg\left(A_{21} / K\right)\right]} \cdot \frac{T S(m, n)}{T S(a, b)} .
\end{aligned}
$$

from lemmas. Note $\operatorname{Ker}\left(f_{K}\right) \cong \operatorname{Ker}\left(g_{K}\right)$ and $\left.\operatorname{Ker}\left(f_{K_{v}}\right) \cong \operatorname{Ker}\left(g_{K_{v}}\right)\right)$.
Theorem 5. If three equalities out of following four equalities hold, then the remaining one holds, too.

$$
\begin{aligned}
& T S(m, n)=\frac{\left[\amalg\left(A_{13} / K\right)\right]\left[Ш\left(A_{33} / K\right)\right]}{\left[Ш\left(A_{23} / K\right)\right]} \\
& T S(a, b)=\frac{\left[\amalg\left(A_{12} / K\right)\right]\left[\amalg\left(A_{32} / K\right)\right]}{\left[Ш\left(A_{22} / K\right)\right]} \\
& T S(p, q)=\frac{\left[\amalg\left(A_{21} / K\right)\right]\left[Ш\left(A_{23} / K\right)\right]}{\left[Ш\left(A_{22} / K\right)\right]}
\end{aligned}
$$

$$
T S(s, t)=\frac{\left[Ш\left(A_{31} / K\right)\right]\left[Ш\left(A_{33} / K\right)\right]}{\left[Ш\left(A_{32} / K\right)\right]}
$$

Proof. From the previous lemma we get

$$
\begin{aligned}
\frac{T S(m, n)}{T S(a, b)} & \cdot \frac{T S(p, q)}{T S(s, t)}=\frac{\left[Ш\left(A_{13} / K\right)\right]\left[\amalg\left(A_{21} / K\right)\right]}{\left[Ш\left(A_{12} / K\right)\right]\left[Ш\left(A_{31} / K\right)\right]} \\
= & \frac{\left[Ш\left(A_{13} / K\right)\right]\left[Ш\left(A_{33} / K\right)\right]}{\left[\amalg\left(A_{23} / K\right)\right]} \frac{\left[Ш\left(A_{22} / K\right)\right]}{\left[Ш\left(A_{12} / K\right)\right]\left[\amalg\left(A_{32} / K\right)\right]} \\
& \times \frac{\left[Ш\left(A_{21} / K\right)\right]\left[\amalg\left(A_{23} / K\right)\right]}{\left[Ш\left(A_{22} / K\right)\right]} \frac{\left[Ш\left(A_{32} / K\right)\right]}{\left[Ш\left(A_{31} / K\right)\right]\left[Ш\left(A_{33} / K\right)\right]} .
\end{aligned}
$$

Thus the theorem holds.

3. Application

Let m and n be positive integers. Let L / K be a cyclic extension of number fields with Galois group G of order $m n$. Let H be the subgroup of G of order m and let $F=L^{H}$. Fix a generator $\sigma \in G$.

Let A be an abelian variety defined over K. For positive integers k, denote $x^{k}-1$ by φ_{k}. For a monic polynomial $g(x)=x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0} \in$ $\mathbb{Z}[x]$, denote by $M(g)$ the companion matrix of $g(x)$

$$
M(g)=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{k-2} & -a_{k-1}
\end{array}\right) \in \operatorname{End}_{K}\left(A^{k}\right)
$$

where $\operatorname{End}_{K}\left(A^{k}\right)$ is the endomorphism ring of A^{k} defined over K and 1 is the identity automorphism of A. Let $A(g)$ be an abelian variety defined over K satisfying that there is an isomorphism $\widehat{g}: A^{k} \rightarrow A(g)$ defined over L such that $\sigma(\widehat{g})^{-1} \circ \widehat{g}=M(g)$. For the existence and the uniqueness up to K-isomorphism of such a variety $A(g)$, see $[1, \S 2]$. Let $\operatorname{Res}_{L / K}(A)$ be the restriction of scalars of A from L to K. Note that $A\left(\varphi_{n}\right)=\operatorname{Res}_{F / K}(A)$ and $A\left(\varphi_{m n}\right)=\operatorname{Res}_{L / K}(A)$.

We know that two short exact sequences

$$
0 \longrightarrow A \longrightarrow \operatorname{Res}_{L / K}(A) \longrightarrow A\left(\varphi_{m n} / \varphi_{1}\right) \longrightarrow 0
$$

and

$$
0 \longrightarrow A \longrightarrow \operatorname{Res}_{F / K}(A) \longrightarrow A\left(\varphi_{n} / \varphi_{1}\right) \longrightarrow 0,
$$

satisfy the rate formula of Tate-Shafarevich groups from [3, Main Theorem].
In the commutative diagram

note that the upper short exact sequence satisfies the rate formula of TateShafarevich groups because the lower one does.

Denote the k-dimensional column vector $\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right)$ and $\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right)$ by $\mathbf{1}_{k}$ and $\mathbf{0}_{k}$, respectively.

Denote by E_{k} the $k \times k$ identity matrix. For a matrix M_{1} and M_{2}, denote by M_{1}^{T} the transpose of the matrix M_{1} and denote by $M_{1} \otimes M_{2}$ the Kronecker product of M_{1} and M_{2}.

For a $k_{1} \times k_{2}$ matrix M, define $\left(k_{1}-1\right) \times k_{2}$ matrix \underline{M} by removing the bottom row from M and define $\left(k_{1}-1\right) \times\left(k_{2}-1\right)$ matrix M by removing the right end column from \underline{M}.

With matrices $F_{12}=E_{(m-1) n}-M\left(\varphi_{m n} / \varphi_{n}\right), F_{22}=\left(\begin{array}{ll}E_{m n-1} & \mathbf{0}_{m n-1}\end{array}\right)-$ $\left(\begin{array}{ll}\mathbf{0}_{m n-1} & E_{m n-1}\end{array}\right)$ and $F_{32}=\left(\begin{array}{ll}E_{n-1} & \mathbf{0}_{n-1}\end{array}\right)-\left(\begin{array}{ll}\mathbf{0}_{n-1} & E_{n-1}\end{array}\right)$: Make decent the long formula

From the commutative diagram (6), it is a commutative diagram of abelian varieties defined over K that follows:

Thus from the main theorem the short exact sequence

$$
0 \longrightarrow A\left(\varphi_{m n} / \varphi_{n}\right) \longrightarrow A\left(\varphi_{m n} / \varphi_{1}\right) \longrightarrow A\left(\varphi_{n} / \varphi_{1}\right) \longrightarrow 0
$$

satisfies the rate formula of Tate-Shafarevich groups, which is the generalization of the main theorem in [4].

References

[1] J. S. Milne, On the arithmetic of abelian varieties, Inventiones Math. 17 (1972), 177190.
[2] J. S. Milne, Arithmetic Duality Theorems, Perspectives in Math. Vol. 1. Academic Press Inc., 1986.
[3] H. Yu, On Tate-Shafarevich groups over cyclic extensions, Honam Math. J. 32 (2010), 45-51.
[4] H. Yu, On the rate of Tate-Shafarevich groups over cyclic extensions of order p^{2}, Honam Math. J. 36 (2014), 417-424.

Hoseog Yu
Department of Mathematics and Statistics, Sejong University, Seoul, 05006, Korea.
E-mail: hsyu@sejong.ac.kr

