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TATE-SHAFAREVICH GROUPS OVER THE COMMUTATIVE

DIAGRAM OF 8 ABELIAN VARIETIES

Hoseog Yu

Abstract. Suppose that there are 8 abelian varieties defined over a num-

ber field K which satisfy a commutative diagram. We show that if we
know that three out of four short exact sequences satisfy the rate for-

mula of Tate-Shafarevich groups, then the unknown short exact sequence

satisfies the rate formula of Tate-Shafarevich groups, too.

1. Introduction

Let K be a number field. Write K, GK , MK , Kv for the algebraic closure
of K, Gal(K/K), a complete set of places on K, the completion of K at the
place v ∈ MK , respectively.

Let A be an abelian variety defined over K and let X(A/K) denote the
Tate-Shafarevich group of A over K. We assume throughout that the Tate-
Shafarevich groups are finite for any abelian varieties. We write [X] for the
order of a finite abelian group X. For a morphism f : A → B defined over K,
write fK for the restriction morphism fK : A(K) → B(K).

Given a short exact sequence of abelian varieties A, B and C defined over
K

(1) 0 −−−−→ A
f−−−−→ B

g−−−−→ C −−−−→ 0,

we define that (1) satisfies the rate formula of Tate-Shafarevich groups if it
holds that

[X(A/K)][X(C/K)]

[X(B/K)]
=

[Coker(gK)][Coker(f∨
K)]∏

v∈MK
[Coker(gKv

)]
,

where f∨ : B∨ → A∨ is the dual morphism of f : A → B. Denote the quotient
[Coker(gK))][Coker(f∨

K)]∏
v∈MK

[Coker(gKv )]
by TS(f, g).
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Suppose that Aij ’s are abelian varieties defined over K which satisfy the
following commutative diagram:

(2)

0 0y y
A12

f−−−−→ A13

a

y m

y
0 −−−−→ A21

p−−−−→ A22
q−−−−→ A23 −−−−→ 0

g

y b

y n

y
0 −−−−→ A31

s−−−−→ A32
t−−−−→ A33 −−−−→ 0y y

0 0

where f and g are isogenies. Note that in the above commutative diagram we
have four short exact sequences:

0 −−−−→ A21
p−−−−→ A22

q−−−−→ A23 −−−−→ 0,

0 −−−−→ A31
s−−−−→ A32

t−−−−→ A33 −−−−→ 0,

0 −−−−→ A12
a−−−−→ A22

b−−−−→ A32 −−−−→ 0,

and

0 −−−−→ A13
m−−−−→ A23

n−−−−→ A33 −−−−→ 0.

Main Theorem. Suppose that three short sequences in the above four
short exact sequences satisfy the rate formula of Tate-Shafarevich groups.
Then the remaining short exact sequence satisfies the rate formula of Tate-
Shafarevich groups, too.

Proof. It is clear from Theorem 5.

2. Proof

From the commutative diagram (2) we have the following commutative di-
agram
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A12(K) A13(K) Coker(fK)

A21(K) A22(K) A23(K) Coker(qK)

A31(K) A32(K) A33(K) Coker(tK)

Coker(gK) Coker(bK) Coker(nK),

fK

gK

qK

bK nK

tK

m̂

n̂

ŝ t̂

pK

sK

aK mK

where m̂, n̂, ŝ and t̂ are induced morphisms from mK , nK , sK , tK .

Lemma 1. We get

[Coker(fK)][Coker(tK)]

[Coker(qK)]
=

[Coker(gK)][Coker(nK)]

[Coker(bK)]
.

Proof. From diagram chasing we can show the following three isomorphisms
Ker(m̂) ∼= Ker(ŝ), Coker(n̂) ∼= Coker(t̂) and

Ker(n̂)/m̂(Coker(fK)) ∼= Ker(t̂)/ŝ(Coker(gK)).

Because
[Coker(fK)][Coker(tK)]

[Coker(qK)]
=

[Ker(m̂)][Coker(n̂)]

[Ker(n̂)/m̂(Coker(fK))]
,

the lemma follows.

From the dual commutative diagram of (2), we have the dual commutative
diagram

(3)

A∨
33(K) A∨

32(K) A∨
31(K) Coker(s∨K)

A∨
23(K) A∨

22(K) A∨
21(K) Coker(p∨K)

A∨
13(K) A∨

12(K)

Coker(m∨
K) Coker(a∨K).

s∨K

m∨
K

p∨
K

a∨
K

f∨
K

g∨
K ĝ∨

f̂∨

t∨K

n∨
K

q∨K

b∨K

where f̂∨ and ĝ∨ are induced morphism from f∨
K , g∨K .
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From (3) we have following commutative diagram

0 −−−−→ s∨K(A∨
32(K)) −−−−→ A∨

31(K) −−−−→ Coker(s∨K) −−−−→ 0

T

y g∨
K

y ĝ∨

y
0 −−−−→ p∨K(A∨

22(K)) −−−−→ A∨
21(K) −−−−→ Coker(p∨K) −−−−→ 0,

where T is the restriction morphism of g∨K on s∨K(A∨
32(K)).

Then the snake lemma becomes

(4) 0 → Ker(T ) → Ker(g∨K) → Ker(ĝ∨) → Coker(T )

→ Coker(g∨K) → Coker(ĝ∨) → 0.

Similarly we have

(5) 0 → Ker(S) → Ker(f∨
K) → Ker(f̂∨) → Coker(S)

→ Coker(f∨
K) → Coker(f̂∨) → 0

from

0 0y y
m∨

K(A∨
23(K))

S−−−−→ a∨K(A∨
22(K))y y

A∨
13(K)

f∨
K−−−−→ A∨

12(K)y y
Coker(m∨

K)
f̂∨

−−−−→ Coker(a∨K)y y
0 0

where S is the restriction morphisam of f∨
K on m∨

K(A∨
23(K)).

Through diagram chasing in (3) we can show that Ker(T ) ∼= Ker(S) and
Coker(T ) ∼= Coker(S). From the exact sequences (4) and (5)

[Ker(T )]

[Coker(T )]
=

[Ker(g∨K)]

[Coker(g∨K)]
· [Coker(ĝ

∨)]

[Ker(ĝ∨)]
=

[Ker(g∨k )]

[Coker(g∨K)]
· [Coker(p

∨
K)]

[Coker(s∨K)]

and
[Ker(S)]

[Coker(S)]
=

[Ker(f∨
K)]

[Coker(f∨
K)]

· [Coker(a∨K)]

[Coker(m∨
K)]

.
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Lemma 2. We get the equality

[Ker(f∨
K)]

[Coker(f∨
K)]

· [Coker(s
∨
K)]

[Coker(p∨K)]
=

[Ker(g∨K)]

[Coker(g∨K)]
· [Coker(m

∨
K)]

[Coker(a∨K)]
.

Lemma 3. For an isogeny f : A → B defined over K, we have

[X(B/K)]

[X(A/K)]
=

[Ker(f∨
K)]

[Coker(f∨
K)]

· [Coker(fK)]

[Ker(fK)]
·

∏
v∈MK

[Ker(fKv
)]

[Coker(fKv
)]
.

Proof. See [2, p.98].

Lemma 4. We get

[X(A13/K)]

[X(A12/K)]
· TS(s, t)
TS(p, q)

=
[X(A31/K)]

[X(A21/K)]
· TS(m,n)

TS(a, b)
.

Proof. We have the following equality

[X(A13/K)]

[X(A12/K)]
· TS(s, t)
TS(p, q)

=
[Ker(f∨

K)]

[Coker(f∨
K)]

· [Coker(fK)]

[Ker(fK)]
·

∏
v∈MK

[Ker(fKv
)]

[Coker(fKv )]

× [Coker(tK)][Coker(s∨K)]∏
v∈MK

[Coker(tKv
)]

·
∏

v∈MK
[Coker(qKv

)]

[Coker(qK)][Coker(p∨K)]

=
[Coker(fK)][Coker(tK)]

[Coker(qK)]
· [Ker(f∨

K)]

[Coker(f∨
K)]

· [Coker(s
∨
K)]

[Coker(p∨K)]

×
∏

v∈MK

[Coker(qKv )]

[Coker(fKv
)][Coker(tKv

)]
·
∏

v∈MK
[Ker(fKv

)]

[Ker(fK)]

=
[Coker(gK)][Coker(nK)]

[Coker(bK)]
· [Ker(g∨K)]

[Coker(g∨K)]
· [Coker(m

∨
K)]

[Coker(a∨K)]

×
∏

v∈MK

[Coker(bKv )]

[Coker(gKv
)][Coker(nKv

)]
·
∏

v∈MK
[Ker(gKv

)]

[Ker(gK)]

=
[X(A31/K)]

[X(A21/K)]
· TS(m,n)

TS(a, b)
.

from lemmas. Note Ker(fK) ∼= Ker(gK) and Ker(fKv
) ∼= Ker(gKv

)).

Theorem 5. If three equalities out of following four equalities hold, then
the remaining one holds, too.

TS(m,n) =
[X(A13/K)][X(A33/K)]

[X(A23/K)]

TS(a, b) =
[X(A12/K)][X(A32/K)]

[X(A22/K)]

TS(p, q) =
[X(A21/K)][X(A23/K)]

[X(A22/K)]
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TS(s, t) =
[X(A31/K)][X(A33/K)]

[X(A32/K)]

Proof. From the previous lemma we get

TS(m,n)

TS(a, b)
· TS(p, q)
TS(s, t)

=
[X(A13/K)][X(A21/K)]

[X(A12/K)][X(A31/K)]

=
[X(A13/K)][X(A33/K)]

[X(A23/K)]

[X(A22/K)]

[X(A12/K)][X(A32/K)]

× [X(A21/K)][X(A23/K)]

[X(A22/K)]

[X(A32/K)]

[X(A31/K)][X(A33/K)]
.

Thus the theorem holds.

3. Application

Let m and n be positive integers. Let L/K be a cyclic extension of number
fields with Galois group G of order mn. Let H be the subgroup of G of order
m and let F = LH . Fix a generator σ ∈ G.

Let A be an abelian variety defined over K. For positive integers k, denote
xk − 1 by φk. For a monic polynomial g(x) = xk +ak−1x

k−1+ · · ·+a1x+a0 ∈
Z[x], denote by M(g) the companion matrix of g(x)

M(g) =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1

−a0 −a1 −a2 · · · −ak−2 −ak−1

 ∈ EndK(Ak),

where EndK(Ak) is the endomorphism ring of Ak defined over K and 1 is the
identity automorphism of A. Let A(g) be an abelian variety defined over K
satisfying that there is an isomorphism ĝ : Ak → A(g) defined over L such that
σ(ĝ)−1 ◦ ĝ = M(g). For the existence and the uniqueness up to K-isomorphism
of such a variety A(g), see [1, §2]. Let ResL/K(A) be the restriction of scalars
of A from L to K. Note that A(φn) = ResF/K(A) and A(φmn) = ResL/K(A).

We know that two short exact sequences

0 −−−−→ A −−−−→ ResL/K(A) −−−−→ A(φmn/φ1) −−−−→ 0

and

0 −−−−→ A −−−−→ ResF/K(A) −−−−→ A(φn/φ1) −−−−→ 0,

satisfy the rate formula of Tate-Shafarevich groups from [3, Main Theorem].

In the commutative diagram
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A(φmn/φn) ResL/K(A) ResF/K(A)

ResF/K(A(φm/φ1)) ResF/K(ResL/F (A)) ResF/K(A)

∼= ∼= ∼=

note that the upper short exact sequence satisfies the rate formula of Tate-
Shafarevich groups because the lower one does.

Denote the k-dimensional column vector

1
...
1

 and

0
...
0

 by 1k and 0k,

respectively.

Denote by Ek the k × k identity matrix. For a matrix M1 and M2, denote
by MT

1 the transpose of the matrix M1 and denote by M1 ⊗M2 the Kronecker
product of M1 and M2.

For a k1 × k2 matrix M , define (k1 − 1) × k2 matrix M by removing the
bottom row from M and define (k1 − 1)× (k2 − 1) matrix M|| by removing the
right end column from M .

With matrices F12 = E(m−1)n − M(φmn/φn), F22 =
(
Emn−1 0mn−1

)
−(

0mn−1 Emn−1

)
and F32 =

(
En−1 0n−1

)
−

(
0n−1 En−1

)
: Make decent

the long formula

(6)

0 0y y
A(m−1)n F12−−−−→ A(m−1)n

(
E(m−1)n

−1T
m−1 ⊗ En

)y y(
E(m−1)n

−1T
m−1 ⊗ En

)

0 −−−−→ A
1mn−−−−→ Amn F22−−−−→ Amn−1 −−−−→ 0

×m

y 1T
m⊗En

y y 1T
m⊗En||

0 −−−−→ A
1n−−−−→ An F32−−−−→ An−1 −−−−→ 0y y

0 0.

From the commutative diagram (6), it is a commutative diagram of abelian
varieties defined over K that follows:
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0 0y y
A(φmn/φn) −−−−→ A(φmn/φn)y y

0 −−−−→ A −−−−→ ResL/K(A) −−−−→ A(φmn/φ1) −−−−→ 0y y y
0 −−−−→ A −−−−→ ResF/K(A) −−−−→ A(φn/φ1) −−−−→ 0y y

0 0.
Thus from the main theorem the short exact sequence

0 −−−−→ A(φmn/φn) −−−−→ A(φmn/φ1) −−−−→ A(φn/φ1) −−−−→ 0

satisfies the rate formula of Tate-Shafarevich groups, which is the generalization
of the main theorem in [4].

References

[1] J. S. Milne, On the arithmetic of abelian varieties, Inventiones Math. 17 (1972), 177–
190.

[2] J. S. Milne, Arithmetic Duality Theorems, Perspectives in Math. Vol. 1. Academic Press

Inc., 1986.
[3] H. Yu, On Tate-Shafarevich groups over cyclic extensions, Honam Math. J. 32 (2010),

45–51.

[4] H. Yu, On the rate of Tate-Shafarevich groups over cyclic extensions of order p2, Honam
Math. J. 36 (2014), 417–424.

Hoseog Yu
Department of Mathematics and Statistics, Sejong University,
Seoul, 05006, Korea.
E-mail: hsyu@sejong.ac.kr


