East Asian Mathematical Journal Vol. 29 (2013), No. 1, pp. 39–52 http://dx.doi.org/10.7858/eamj.2013.004

COMMUTATIVITY OF ASSOCIATION SCHEMES OF ORDER pq

Akihide Hanaki and Mitsugu Hirasaka*

ABSTRACT. Let (X, S) be an association scheme where X is a finite set and S is a partition of $X \times X$. The size of X is called the *order* of (X, S). We define C to be the set of positive integers m such that each association scheme of order m is commutative. It is known that each prime is belonged to C and it is conjectured that each prime square is belonged to C. In this article we give a sufficient condition for a scheme of order pq to be commutative where p and q are primes, and obtain a partial answer for the conjecture in case where p = q.

1. Introduction

Let (X, S) be an association scheme (or shortly, scheme) where X is a finite set and S is a partition of $X \times X$ (see Section 2 for definition and [2], [3], [14] for basic concepts). The size of X is called the *order* of (X, S).

Following [14] we shall write the adjacency matrix of $s \in S$ as σ_s , i.e., σ_s is the $\{0, 1\}$ -matrix whose rows and columns are indexed by the elements of Xand its (x, y)-entry is equal to one if and only if $(x, y) \in s$. Then the subspace spanned by $\{\sigma_s \mid s \in S\}$ is a subalgebra of the full matrix algebra over a field F. We call it the *adjacency algebra* of (X, S) over F, and denote it by FS. We say that (X, S) is *commutative* if $\mathbb{C}S$ is commutative where \mathbb{C} is the complex number field.

In group theory it is well-known that any group of prime or prime square order is abelian (see [13, Thm.A] for the relationship between groups and schemes). On the other hand, any scheme of prime order is commutative (see [9]), and any schurian scheme of prime square order is also commutative as follows (see Section 2 for terminologies):

Theorem 1.1. ([6, Thm.5.9]) Let p be a prime and (X, S) a scheme of order p^2 . Then (X, S) is commutative if one of the following conditions holds:

(i) (X, S) is schurian;

©2013 The Youngnam Mathematical Society

Received November 8, 2012; Accepted January 11, 2013.

²⁰⁰⁰ Mathematics Subject Classification. 05E30.

Key words and phrases. Association schemes, commutative.

This work was supported for two years by Pusan National University Research Grant. *Corresponding author.

A. HANAKI AND M. HIRASAKA

- (ii) There exists a thin closed subset T of S with $n_T \ge p$.
- (iii) There exists a strongly-normal closed subset T of S with $n_T \leq p$.

However, it is still open whether or not any scheme of prime square order is commutative.

Let p and q be primes. It is also known that any group of order pq is abelian if p < q and $p \nmid q - 1$. Though it is natural to expect the similar result for schemes, there exists a non-commutative scheme of order 15 (see [8] and [10]). In this article we deal with schemes of order pq where p and q are primes, and show a sufficient condition for them to be commutative.

The following is our main result (see Section 2, 3 for terminologies):

Theorem 1.2. Let (X, S) be a scheme of order pq where p, q are primes. Suppose that S has a nice closed subset T which satisfies the following:

- (i) $n_T = p;$
- (ii) $S/\!\!/T$ has the same intersection numbers as a schurian scheme;
- (iii) $1 < \frac{q-1}{|S|/T|-1} \le p.$

Then (X, S) is commutative.

It is still open whether any scheme of prime order has the same intersection numbers as a schurian scheme ([9] and [12]). In other words (ii) as in Theorem 1.2 might be removed. The following theorem deals with the case of p = qin Theorem 1.2:

Theorem 1.3. Let (X, S) be a scheme of prime square order. If S has a non-trivial nice closed subset, then (X, S) is commutative.

The following gives a sufficient condition for a non-trivial closed subset to be nice:

Corollary 1.4. Let (X, S) be a scheme of prime square order and T a nontrivial closed subset of S. Then T is nice and S is commutative if T is flat and $gcd(n_t, n_{s^T}) = 1$ for some $t \in T^{\sharp}$ and $s \in S \setminus T$.

Under the same notation as Corollary 1.4 it can be easily checked that T is flat if $\frac{n_T-1}{|T|-1} \leq 3$ (see [10] for the detail).

In Section 2 we prepare necessary notation to make the paper as selfcontained as possible. In Section 3 we prepare several lemmas from combinatorics. In Section 4 we prepare some lemmas to generalize arguments given in [7]. In Section 5 we prove our main results and corollary.

2. Preliminaries

We use the same notation on association schemes as in [14].

Let X be a finite set and S a partition of $X \times X$. For $s \in S$ we denote by s^* the set of $(x, y) \in X \times X$ with $(y, x) \in s$. For $x \in X$ and $s \in S$ we denote by xs the set of $y \in X$ with $(x, y) \in s$. We denote by 1_X the set of (x, x) with $x \in X$.

We say that (X, S) is an association scheme (or shortly, scheme) if it satisfies the following conditions:

- (i) $1_X \in S$;
- (ii) For each $s \in S$ we have $s^* \in S$;
- (iii) For all $s, t, u \in S$ the size of $xs \cap yt^*$ is constant whenever $(x, y) \in u$. We denote the constant by a_{stu} .

The numbers $(a_{stu} | s, t, u \in S)$ are called the *intersection numbers* of (X, S). For $s \in S$ the number a_{ss^*1x} is called the *valency* of s, and denoted by n_s .

For the remainder of this section we assume that (X, S) is a scheme.

For $x, y \in X$ we denote by r(x, y) the unique element of S containing (x, y).

Recall that we define σ_s to be the adjacency matrix of $s \in S$ in Section 1. For a subset T of S we shall write the sum of σ_t with $t \in T$ as σ_T , the sum of n_t with $t \in T$ as n_T , and the subspace spanned by $\{\sigma_t \mid t \in T\}$ over a field F as FT.

For $T, U \subseteq S$ and $s \in S$ we denote the coefficient of σ_s in $\sigma_T \sigma_U$ by a_{TUs} , and we define the *complex product* of T and U, denoted by TU, to be

$$\{s \in S \mid a_{TUs} > 0\}.$$

The complex product is an associative binary operation on the power set of S (see [13] or [14]). In this article we shall write a singleton $\{t\}$ with $t \in S$ in the complex product as t like the notation for a coset in group theory.

We have the following equations on intersection numbers (see [1], [2], [13] or [14]):

Lemma 2.1. We have the following:

- (i) For all $s, t \in S$ we have $a_{s1_X t} = \delta_{s,t}$;
- (ii) For all $s, t \in S$ we have $n_s n_t = \sum_{u \in S} a_{stu} n_u$;
- (iii) For all $s, t, u \in S$ we have $a_{stu} = a_{t^*s^*u^*}$;
- (iv) For all $s, t, u \in S$ we have $n_u a_{stu} = n_s a_{ut^*s} = n_t a_{s^*ut}$;
- (v) For all $s, t \in S$ we have $|st| \leq \gcd(n_s, n_t)$.

For a non-empty subset T of S we say that T is closed if $TT^* \subseteq T$ where we denote by T^* the set of t^* with $t \in T$.

Lemma 2.2. ([14, p.17]) Let T be a non-empty subset of S. Then the following are equivalent:

- (i) T is closed;
- (ii) $TT \subseteq T$;
- (iii) $\bigcup_{t \in T} t$ is an equivalence on X.

It is easy to check that $\{1_X\}$ and S are closed. They are called *trivial*.

Lemma 2.3. ([14, Lem.2.3.4]) For each closed subset T of S and $s \in S$ we have the following:

- (i) $n_T n_s = a_{Tss} n_{Ts};$
- (ii) $n_{Ts}n_T = a_{(Ts)Ts}n_{TsT}$.

(iii) If $n_T = a_{Tss}$, then Ts = s and $n_T \mid n_s$;

(iv) If $n_T = a_{(Ts)Ts}$, then Ts = sT.

For the remainder of this section we assume that T is a closed subset of S. We shall write $T \setminus \{1_X\}$ as T^{\sharp} .

For $x \in X$ we denote by xT the equivalence class of $\bigcup_{t \in T} t$ containing x. Then it is known (see [13] or [14]) that $(xT, \{t \cap (xT \times xT)\}_{t \in T})$ is a scheme, which is called the *subscheme* of (X, S) with respect to x and T, and denoted by $(X, S)_{xT}$.

We call $(a_{stu} | s, t, u \in T)$ the *intersection numbers* of T, which coincide with those of $(X, S)_{xT}$ for $x \in X$.

Notice that $\mathbb{C}T$ is not only a subspace but also a subalgebra of the full matrix algebra over \mathbb{C} , which is isomorphic to the adjacency algebra of $(X, S)_{xT}$ via $\sigma_t \mapsto \sigma_{t \cap (xT \times xT)}$.

We denote the set of equivalence classes of $\bigcup_{t \in T} t$ by X/T. For $s \in S$ we define s^T to be

$$\{(xT, yT) \mid r(x, y) \in TsT\}.$$

We denote by $S/\!\!/T$ the set of s^T with $s \in S$. Then it is known (see [13] or [14]) that $(X/T, S/\!\!/T)$ is a scheme, called the *factor* scheme of (X, S) over T.

We say that T is thin if $n_t = 1$ for each $t \in T$.

We say that T is commutative (symmetric) if $\mathbb{C}T$ is commutative ($t = t^*$ for each $t \in T$, respectively). Note that any symmetric closed subset is commutative by Lemma 2.1(ii).

Lemma 2.4. ([13]) We have the following:

- (i) $n_S = n_T n_{S /\!\!/ T};$
- (ii) $n_{s^T} = n_{TsT}/n_T;$
- (iii) For each $s \in S$ we have $\sigma_T \sigma_s = a_{Tss} \sigma_{Ts}$ and $\sigma_s \sigma_T = a_{sTs} \sigma_{sT}$.

We say that T is normal in S if Ts = sT for each $s \in S$, or equivalently σ_T is central in $\mathbb{C}S$ by Lemma 2.4(iii). We say that T is strongly-normal if $sTs^* \subseteq T$ for each $s \in S$, equivalently, $S/\!\!/T$ is thin (see [13, Thm. 2.2.3]). For a positive integer k we say that T is k-equivalenced if $n_t = k$ for each $t \in T^{\sharp}$. We say that T is flat if it is k-equivalenced for some k and $a_{tt^*s} \leq 1$ for all $s, t \in T^{\sharp}$.

We say that (X, S) is *schurian* if S is the set of orbitals of a transitive permutation group of X, or equivalently, (X, S) is a factor scheme of a thin scheme (see [2]).

Let Π be a partition of X. We say that Π is *equitable* if, for each $s \in S$ and $C, D \in \Pi$, $|xs \cap D|$ is constant whenever $x \in C$. It is easy to check that $\{\{x\} \mid x \in X\}$ and $\{X\}$ are equitable, and they are called *discrete* and *trivial*, respectively.

The following theorems will be used later in this article:

Theorem 2.5. ([9]) Let (X, S) be a scheme of prime order. Then we have the following:

- (i) All non-principal irreducible characters of CT are algebraic conjugate;
- (ii) S is k-equivalenced where $k = \frac{n_S 1}{|S| 1}$;
- (iii) *S* is commutative;
- (iv) If k > 1, then $a_{stu} < k$ for all $s, t, u \in T^{\sharp}$.

Theorem 2.6. ([7]) If |X| is a prime square, then any closed subset of S is normal in S.

Theorem 2.7. ([11]) If S is flat and |X| is a prime, then $\{X\}$ is a unique equitable partition without any singleton.

Lemma 2.8. For $x, y \in X$, $\Pi_{x,y} := \{xT \cap ys \mid s \in S\}$ is an equitable partition of $(X, S)_{xT}$.

Proof. Let $s_1, s_2 \in S$ such that $xT \cap ys_i \neq \emptyset$ for i = 1, 2 and $t \in T$. It suffices to show that $|zt \cap (xT \cap ys_2)|$ does not depend on the choice of $z \in xT \cap ys_1$. Since $zt \subseteq zT = xT$ and $(z, y) \in s_1^*$, it is equal to $|zt \cap ys_2| = a_{ts_2^*s_1^*}$.

Lemma 2.9. Let (X, S) be a scheme of prime order. Then, for all non-negative integers a_s with $s \in S$, $\sum_{s \in S} a_s \sigma_s$ is singular if and only if $a_t = a_u$ for all $t, u \in S$.

Proof. "If" part is obvious.

Since $\mathbb{C}S$ is semisimple and commutative, $\mathbb{C}S$ has a basis $\{e_{\chi} \mid \chi \in \operatorname{Irr}(S)\}$ where $\operatorname{Irr}(S)$ is the set of irreducible characters of (X, S) and e_{χ} is the central primitive idempotent affording χ . Thus,

$$\sum_{s\in S}a_s\sigma_s=\sum_{\chi\in {\rm Irr}(S)}b_\chi e_\chi \ \, {\rm for \ some \ } b_\chi\in \mathbb{C}$$

Note that $\{b_{\chi} \mid \chi \in \operatorname{Irr}(S)\}\$ are the eigenvalues of $\sum_{s \in S} a_s \sigma_s$. Suppose that $\sum_{s \in S} a_s \sigma_s$ is singular. Then

$$\mu(\sum_{s\in S} a_s \sigma_s) = \mu(\sum_{\chi\in \operatorname{Irr}(S)} b_{\chi} e_{\chi}) = b_{\mu} = 0$$

for some $\mu \in \operatorname{Irr}(S)$.

If μ is principal, then

$$0 = \mu(\sum_{s \in S} a_s n_s) = \sum_{s \in S} a_s n_s$$

This implies that $a_s = 0$ for each $s \in S$ as desired, since a_s are non-negative.

If μ is non-principal, then, by Theorem 2.5(i), $b_{\tau} = 0$ for all non-principal $\tau \in \operatorname{Irr}(S)$, and, hence, $\sum_{s \in S} a_s \sigma_s$ is a scalar multiple of the all-one matrix as desired.

3. From combinatorics

Throughout this section we assume that (X, S) is a scheme and T is a closed subset of S.

Lemma 3.1. For $s \in S$ we have the following:

- (i) $a_{Tss} = 1$ if and only if $ss^* \cap T = \{1_X\}$;
- (ii) If $a_{Tss} = 1$, then $|T| \leq |Ts|$, and the equality holds if and only if the complex product ts is a singleton for each $t \in T$.

Proof. (i) Suppose $a_{Tss} = 1$. Let $t \in ss^* \cap T$. Then we can take $x, y, z \in X$ with $(x, y) \in t$, $(x, z) \in s$ and $(z, y) \in s^*$. This implies that $x, y \in xT \cap zs^*$. Since $a_{Tss} = |xT \cap zs^*|$, it follows from $a_{Tss} = 1$ that x = y, and, hence $t = 1_X$. Thus, we have $ss^* \cap T \subseteq \{1_X\}$. Since $1_X \in T$ and $1_X \in ss^*$ by Lemma 2.1(i),(iv), we conclude that $ss^* \cap T = \{1_X\}$.

Suppose $ss^* \cap T = \{1_X\}$ and $(x, y) \in s$. It is clear that $a_{Tss} \ge 1$ since $x \in x1_X \cap ys^*$. Let $z, w \in xT \cap ys^*$. Then $r(z, w) \in T \cap ss^*$. Since $ss^* \cap T = \{1_X\}$, it follows that $r(z, w) = 1_X$, and, hence z = w. This implies that $a_{Tss} \le 1$.

(ii) Suppose $a_{Tss} = 1$ and $t, u \in T$. If $ts \cap us \neq \emptyset$, then $t^*u \cap ss^* \neq \emptyset$, and t = u by (i) and Lemma 2.1(i),(iv). This implies that $\{ts \mid t \in T\}$ are disjoint, and

$$|Ts| = |\bigcup_{t \in T} ts| = \sum_{t \in T} |ts| \ge |T|.$$

From this equation it is clear that the equality holds if and only if |ts| = 1 for each $t \in T$

Lemma 3.2. For each $s \in S$, if Ts = sT, then $n_s = n_{s^T} a_{Tss}$.

Proof. By Lemma 2.4(iii),

$$n_T n_s = a_{Tss} n_{Ts} = a_{Tss} n_{sT}.$$

Since $n_{TsT} = n_T n_{s^T}$ by Lemma 2.4(ii) and TsT = Ts by the assumption, $n_s = n_{s^T} a_{Tss}$.

Lemma 3.3. Suppose that $n_T = p$ is a prime and $\max\{n_{s^T} | s \in S\} < p$. Then, for each $s \in S$ the following are equivalent: (i) $p | n_s$;(ii) $TsT = \{s\}$; (iii) $Ts = \{s\}$;(iv) $sT = \{s\}$.

Proof. By Lemma 2.4(ii), $n_{TsT} = n_{sT}n_T$. By the assumption,

$$p \mid n_{TsT} \text{ and } p^2 \nmid n_{TsT}.$$
 (1)

On the other hand, by Lemma 2.3(i),(ii),

$$n_{TsT} = \frac{n_{Ts}n_T}{a_{(Ts)Ts}} = \frac{n_T n_s n_T}{a_{Tss} a_{(Ts)Ts}}.$$
 (2)

Suppose that $p \mid n_s$. Then, by (1) and (2), $p^2 \mid a_{Tss}a_{(Ts)Ts}$. Since

 $a_{Tss} \leq n_T = p$ and $a_{(Ts)Ts} \leq n_T = p$,

it follows that

$$p = a_{Tss} = a_{(Ts)Ts}.$$

By Lemma 2.3(iii),(iv),

$$n_{TsT} = n_{Ts} = n_s.$$

Since $\{s\} \subseteq TsT$, it follows that $TsT = \{s\}$.

Suppose that $TsT = \{s\}$. Then $n_s = n_{TsT} = n_{s^T}n_T = pn_{s^T}$. Thus, (i) and (ii) are equivalent.

Suppose $Ts = \{s\}$. Then, by Lemma 2.3(i),(iii), $p \mid n_s$. Therefore, (iii) implies (i). Similarly, (iv) implies (i).

Clearly, (ii) implies (iii) and (iv). This completes the proof.

Lemma 3.4. If $n_T = p$ is a prime and $\max\{n_{s^T} \mid s \in S\} < p$, then T is normal in S and $\{s \in S \mid p \nmid n_s\}$ is closed.

Proof. Suppose that T is not normal in S. Then $Ts \neq sT$ for some $s \in S$. By Lemma 3.3, $Ts \neq \{s\}$. By Lemma 2.3(ii),(iv), $a_{Tss} < n_T$ and $a_{(Ts)Ts} < n_T$. Since $n_{s^T} = n_{TsT}/n_T$ by Lemma 2.4(ii), it follows from Lemma 2.3(i),(ii) that

$$n_{s^T} = \frac{n_T n_s n_T}{n_T a_{Tss} a_{(Ts)Ts}} = \frac{n_s n_T}{a_{Tss} a_{(Ts)Ts}},$$

which is a positive integer divisible by $n_T = p$, a contradiction. Thus, T is normal in S.

Let $u, v \in \{s \in S \mid p \nmid n_s\}$ and $w \in uv$. It suffices to show that $p \nmid n_w$. Suppose the contrary, i.e., $p \mid n_w$. By Lemma 3.3, $TwT = \{w\}$. By Lemma 2.1(iv), $p \mid \operatorname{lcm}(n_{u^*}, n_w) \mid a_{u^*wv}n_v$.

We claim that

$$a_{u^*wv} = a_{u^*Tu^*}a_{(u^*)^Tw^Tv^T}.$$

Since $TwT = \{w\}, Tw^*T = \{w^*\}$. Let $(x, y) \in v$. Then

$$a_{u^*wv} = |xu^* \cap yw^*| = |xu^* \cap yTw^*T| = \sum_{i=1}^m |xu^* \cap y_iT|$$

where yTw^*T is a disjoint union of $\{y_iT \mid i = 1, 2, ..., n_{w^T}\}$. Note that $xu^* \cap y_iT \neq \emptyset$ if and only if $xTu^*T \cap y_iT \neq \emptyset$, since T is normal in S. Since $|xu^* \cap y_iT| = a_{u^*Tu^*}$ whenever $xu^* \cap y_iT \neq \emptyset$, it follows that

$$a_{u^*wv} = |\{i \mid xu^* \cap y_i T \neq \emptyset\}|a_{u^*Tu^*} = a_{(u^*)^Tw^Tv^T}a_{u^*Tu^*}.$$

Thus, the claim holds.

Since $p \nmid n_v$ and $a_{(u^*)^T w^T v^T} \leq n_{w^T} < p$, it follows from the claim that $p \mid a_{u^*Tu^*}$. Since $a_{Tuu} = a_{u^*Tu^*} \leq p$, it follows from Lemma 2.3(iii) that $p \mid n_{u^*} = n_u$, a contradiction. This completes the proof.

We define S_T to be the set of $s \in S$ with $a_{Tss} = 1$.

Lemma 3.5. Suppose that T is normal in S. Then

$$\{\sigma_t \sigma_s \mid t \in T, s \in \mathcal{S}_T\} = \{\sigma_u \mid u \in S\}$$

if and only if $S = \bigcup \{Ts \mid s \in S_T\}$ and |Ts| = |T| for each $s \in S_T$.

Proof. Suppose that the former condition holds. Let $u \in S$. Then $\sigma_u = \sigma_t \sigma_s$ for some $t \in T$ and $s \in S_T$. This implies that $\{u\} = ts \subseteq Ts$. Thus, $S = \bigcup\{Ts \mid s \in S_T\}$ holds. Since ts is a singleton for each $t \in T$ and $s \in S_T$ by the assumption, it follows from Lemma 3.1(ii) that |T| = |Ts|.

Suppose that the latter condition holds. Let $u \in S$, $s \in S_T$ and $t \in T$ with $u \in ts$. By Lemma 3.1(ii), ts is a singleton. Thus, $\{u\} = ts$.

We claim that $a_{tsu} = 1$. Otherwise, we can take $z, w \in xt \cap ys^*$ with $(x, y) \in u$ and $z \neq w$. This implies that $r(z, w) \in t^*t \cap ss^*$. It follows from Lemma 3.1(i) that $r(z, w) = 1_X$, and, hence, z = w, a contradiction.

By the claim, we have $\sigma_u = \sigma_t \sigma_s$.

Since u is arbitrarily taken and we can take $s \in S_T$ and $t \in T$ with $u \in ts$ by the assumption, $\{\sigma_u \mid u \in S\} \subseteq \{\sigma_t \sigma_s \mid t \in T, s \in S_T\}$ holds. The converse inclusion also holds since ts is a singleton and $a_{tsu} = 1$.

We say that T is *nice* if T is normal in S and one of the properties as in Lemma 3.5 holds.

Remark that both $\{1_X\}$ and S are nice.

Lemma 3.6. If T is nice and $s \in S_T$, then we have the following:

- (i) $s^* \in \mathcal{S}_T$;
- (ii) For each $t \in T$ there exists a unique $t^s \in T$ such that $ts = st^s$;
- (iii) For each $t \in T$ we have $\sigma_t(\sigma_s \sigma_{s^*}) = (\sigma_s \sigma_{s^*})\sigma_t$.

Proof. (i) Since $n_s = n_{s^*}$ and $n_{s^T} = n_{(s^T)^*}$, (i) follows from Lemma 3.2.

(ii) Since T is normal and $a_{Tss} = a_{sTs} = 1$, the properties as in Lemma 3.5 are equivalent to $\{\sigma_s \sigma_t \mid t \in T, s \in \mathcal{S}_T\} = \{\sigma_u \mid u \in S\}$. This implies that there exists $t^s \in T$ such that $ts \in st^s$. Since st^s is also a singleton, $ts = st^s$. Suppose ts = st' for $t' \in T$. Then $s^*s \cap t'(t^s)^* \neq \emptyset$. By (i) and Lemma 3.1(i), $t' = t^s$. Therefore, the uniqueness of t^s is proved.

(iii) By (ii),

$$t(ss^*) = (ts)s^* = (st^s)s^* = s(t^ss^*) = ss^*(t^s)^{s^*}.$$

Note that, by Lemma 3.1(i), t is a unique element in $t(ss^*) \cap T$ and $(t^s)^{s^*}$ is also a unique element in it. Thus, $t = (t^s)^{s^*}$. Since $\sigma_t \sigma_s = \sigma_{ts} = \sigma_{st^s} = \sigma_s \sigma_{t^s}$ by Lemma 3.5, it follows that

$$\sigma_t(\sigma_s\sigma_{s^*}) = \sigma_{ts}\sigma_{s^*} = \sigma_s\sigma t^s\sigma_{s^*} = \sigma_s\sigma t^s\sigma^* = \sigma_s\sigma_{s^*}\sigma_{(t^s)^{s^*}} = \sigma_s\sigma_{s^*}\sigma_t.$$

Proposition 3.7. Suppose that T is nice and n_T is a prime. Then, for all $u, s_1, s_2 \in S_T \setminus T$ with $\emptyset \leq Tu \cap s_1 s_2 \leq Tu$, if $\sigma_{s_1} \sigma_{s_2}$ centralizes $\mathbb{C}T$, then σ_u also does.

Proof. Let $u, s_1, s_2 \in \mathcal{S}_T$ be as in the statement of the proposition. Note that

$$\sigma_{s_1}\sigma_{s_2} = \sum_{t\in T} a_{s_1s_2(tu)}\sigma_{tu} + \sum_{v\in S\setminus Tu} a_{s_1s_2v}\sigma_v.$$

Let $t_1 \in T$. Then, by the assumption,

$$\sigma_{t_1}\sigma_{s_1}\sigma_{s_2}=\sigma_{s_1}\sigma_{s_2}\sigma_{t_1}.$$

Since T is normal in S, the right or left multiplication of σ_{t_1} leaves each of $\mathbb{C}(Tu)$ and $\mathbb{C}(S \setminus Tu)$ invariant. This implies that σ_{t_1} commutes with $\sum_{t \in T} a_{s_1 s_2(tu)} \sigma_{tu}$.

Note that $\sigma_{tu} = \sigma_t \sigma_u$ by Lemma 3.5 since T is assumed to be nice. Since T is commutative by Theorem 2.5(iii) and $t_1 u = u(t_1)^u$ by Lemma 3.6(ii), it follows that

$$\sigma_{t_1} \sum_{t \in T} a_{s_1 s_2(tu)} \sigma_{tu} = \sigma_{t_1} \sum_{t \in T} a_{s_1 s_2(tu)} \sigma_t \sigma_u$$
$$= (\sum_{t \in T} a_{s_1 s_2(tu)} \sigma_t) \sigma_{t_1} \sigma_u = (\sum_{t \in T} a_{s_1 s_2(tu)} \sigma_t) \sigma_u \sigma_{(t_1)} \sigma_u$$

On the other hand,

$$(\sum_{t\in T} a_{s_1s_2(tu)}\sigma_{tu})\sigma_{t_1} = (\sum_{t\in T} a_{s_1s_2(tu)}\sigma_t)\sigma_u\sigma_{t_1}.$$

Note that $\sum_{t\in T} a_{s_1s_2(tu)}\sigma_t$ is a linear combination of the adjacency matrices in T with non-negative integral coefficients. Since $\emptyset \leq Tu \cap ss^* \leq Tu$, it is not a scalar of σ_T . Thus, we can apply Lemma 2.9 to obtain that $\sum_{t\in T} a_{s_1s_2(tu)}\sigma_{tu}$ is invertible.

Therefore,

$$\sigma_u \sigma_{t_1} = \sigma_u \sigma_{(t_1)^u}.$$

Let $(x, y) \in u$. Then the submatrix of σ_u induced by $xT \times yT$ is a permutation matrix since $u \in S_T$ and T is normal in S, especially, it is invertible. This implies that the submatrix of σ_{t_1} induced by $yT \times yT$ coincides with that of $\sigma_{(t_1)^u}$. Since $(x, y) \in u$ is arbitrarily taken, $\sigma_{t_1} = \sigma_{(t_1)^u}$, implying that σ_u commutes with σ_{t_1} . Since t_1 is arbitrarily taken, the proposition holds.

Lemma 3.8. For all $s_1, s_2, u \in S_T$, if $Tu \subseteq s_1s_2$, then $n_T \leq n_{(s_1)^T}$. Moreover, if the equality holds, then $n_T = a_{(s_1)^T(s_2)^T u^T}$.

Proof. By the assumption, $(\sigma_{s_1}\sigma_{s_2})_{xT,yT}$ has no zero entry where $(x, y) \in u$. Since

$$(\sigma_{s_1}\sigma_{s_2})_{xT,yT} = \sum_{zT \in X/T} (\sigma_{s_1})_{xT,zT} (\sigma_{s_2})_{yT,zT}$$

and there are exactly $a_{(s_1)^T(s_2)^T u^T}$ nonzero permutation matrices in the summation, it follows from $s_1, s_2, u \in S_T$ that

$$n_T \le a_{(s_1)^T (s_2)^T u^T} \le n_{(s_1)^T}.$$

This completes the proof.

Proposition 3.9. Suppose that T is nice and both n_T and $n_{S/\!\!/T}$ are primes with $1 < \frac{n_{S/\!\!/T} - 1}{|S/\!/T| - 1} \le n_T$. Then $\mathbb{C}T$ is in the center of $\mathbb{C}S$.

Proof. For short we shall write n_T , $n_{S/\!\!/T}$ and $\frac{n_{S/\!\!/T}-1}{|S/\!\!/T|-1}$ as p, q and k, respectively. By Theorem 2.5(ii), $S/\!\!/T$ is k-equivalenced.

Let $s_1, s_2 \in \mathcal{S}_T$ such that $\{s_1, s_2\}$ is not contained in T.

We claim $(s_1s_2) \setminus T \neq \emptyset$. Assume the contrary, i.e., $s_1s_2 \subseteq T$. Since T is normal in S,

$$(Ts_1T)(Ts_2T) = T(s_1s_2)T \subseteq T.$$

Applying Lemma 2.1(i),(ii) for $(X/T, S/\!\!/T)$ we obtain that

$$(s_2)^T = ((s_1)^T)^*$$
 and $n_{(s_1)^T} = n_{(s_2)^T} = 1$,

which contradicts the assumption k > 1.

We claim that, for each $u \in S_T$, $Tu \cap s_1s_2 \leq Tu$. Suppose the contrary, i.e., $Tu \subseteq s_1s_2$. Then, by Lemma 3.8, $n_{(s_1)^T} \geq p$. By the assumption of $1 < k \leq p$, $k = n_{(s_1)^T} = p$. It follows from Lemma 3.8 that $a_{(s_1)^T(s_2)^Tu^T} = k$, which contradicts Theorem 2.5(iv). Therefore, the assumptions on s_1, s_2, u given in Proposition 3.7 are satisfied.

Lemma 3.6(iii) and the first claim show the existence of $u \in S_T \setminus T$ such that σ_u centralizes $\mathbb{C}T$

Proposition 3.7 shows that, for all $s_1, s_2, u \in S_T$ with $Tu \cap s_1 s_2 \neq \emptyset$, if both of σ_{s_1} and σ_{s_2} centralizes $\mathbb{C}T$, then so u does. Since $S_T \subseteq \bigcup_{i=0}^{\infty} Tu^i$, it follows that each element of $\{\sigma_s \mid s \in S_T\}$ centralizes $\mathbb{C}T$. Since T is commutative by Theorem 2.5(iii), the proposition follows from Lemma 3.5.

4. From modular representation

Throughout this section we assume that (X, S) is a scheme, T is a normal closed subset of S and F is a field.

Lemma 4.1. ([5]) The F-linear map $\varphi: FS \to F(S/\!\!/T)$ defined by

$$\sigma_s \mapsto \frac{n_s}{n_{s^T}} \sigma_{s^T}$$

is an F-algebra homomorphism.

Lemma 4.2. If T is nice, then $\varphi: FS \to F(S/T)$ as in Lemma 4.1 is onto.

Proof. For each $s \in S$ we can take $u \in S_T$ such that TsT = TuT since T is nice. By the definition of φ and Lemma 3.2, we have

$$\varphi(\sigma_u) = \frac{n_s}{n_{s^T}} \sigma_{u^T} = \sigma_{u^T} = \sigma_{s^T}.$$

This implies that φ is onto.

Lemma 4.3. ([7, Thm.3.5]) If S has the same intersection numbers as a schurian scheme of prime order, then $FS = F[\sigma_s]$ for each $s \in S^{\sharp}$.

Proof. Suppose that the characteristic of F is equal to n_S . Then, by [7, Thm. 3.5], $FS = F[\sigma_s]$ for some $s \in S^{\sharp}$. By the assumption, the group of permutations of S which preserve the intersection numbers acts transitively on S^{\sharp} . Thus, $FS = F[\sigma_s]$ for each $s \in S^{\sharp}$.

Suppose that the characteristic of F is zero or prime to n_S . Then FS is semisimple by [6, Thm. 5.4], and σ_s has |S| distinct eigenvalues in a splitting field of F by the assumption and [6, Thm. 5.3]. This implies that $\{\sigma_s^i \mid i = 0, 1, \ldots, |S| - 1\}$ are linearly independent, and, hence, $FS = F[\sigma_s]$.

For the remainder of this section we assume that

- (i) F is of characteristic p where p is a prime;
- (ii) T is a nice closed subset of valency p;
- (iii) $\varphi: FS \to F(S//T)$ is the F-algebra homomorphism as in Lemma 4.1.

Note that FT is a subalgebra of FS, and we shall denote by $\operatorname{Rad}(FT)$ is the Jacobson radical of FT. In [4, Cor. 3.5],

$$\operatorname{Rad}(FT) = \bigoplus_{t \in T^{\sharp}} (\sigma_t - n_t \sigma_{1_X}).$$
(3)

The following is something to generalize arguments given in [7].

Lemma 4.4. We have the following:

- (i) $\ker \varphi = \operatorname{Rad}(FT)(FS);$
- (ii) If $S/\!\!/T$ has the same intersection numbers as a schurian scheme of prime order, then $FS = (FT)F[\sigma_s]$ for $s \in S \setminus T$.

Proof. (i) Since φ is an algebra homomorphism, we have, for each $t \in T$,

$$\varphi(\sigma_t - n_t \sigma_{1_X}) = \frac{n_t}{n_{t^T}} \sigma_{t^T} - n_t (\frac{n_{1_X}}{n_{(1_X)^T}}) \sigma_{(1_X)^T} = 0.$$

It follows from (3) that $\operatorname{Rad}(FT)(FS)$ is contained in ker φ . We claim that

$$|S/\!/T|(|T|-1) \le \dim(\operatorname{Rad}(FT))(FS).$$

We can choose a subset $\mathcal{U} \subseteq \mathcal{S}_T$ such that S is a disjoint union of Tu with $u \in \mathcal{U}$ since T is nice. It suffices to show that $\{(\sigma_t - n_t \sigma_{1_X})\sigma_s \mid s \in \mathcal{U}, t \in T^{\sharp}\}$ is linearly independent. Suppose that

$$\sum_{t \in T^{\sharp}, s \in \mathcal{U}} c_{ts} (\sigma_t - n_t \sigma_{1_X}) \sigma_s = 0.$$

Thus,

$$\sum_{\in T^{\sharp}, s \in \mathcal{U}} c_{ts} \sigma_t \sigma_s - \sum_{s \in \mathcal{S}} (\sum_{t \in T^{\sharp}} c_{ts} n_t) \sigma_s = 0.$$

Notice that $\{\sigma_t \sigma_s \mid t \in T, s \in \mathcal{U}\}$ are distinct and linearly independent by Lemma 3.5. Therefore, the coefficients c_{ts} are zero.

On the other hand, since φ is onto,

$$\dim(\ker\varphi) = |S| - |S|/|T|.$$

Since T is nice, |S| = |T| |S/|T| by Lemma 3.5. It follows from the claim that

$$|S||T|(|T|-1) \le \dim((FS)(\operatorname{Rad}(FT))) \le \dim(\ker\varphi) = |S||T|(|T|-1)$$

This implies that the equality holds and the two spaces are equal.

(ii) Let $s \in S \setminus T$. Since $F(S/\!\!/T) = F[\sigma_{s^T}]$ by Lemma 4.3 and φ is onto by Lemma 4.2, $FS = (FT)F[\sigma_s] + \ker \varphi$. By (i),

$$FS = (FT)F[\sigma_s] + \operatorname{Rad}(FT)(FS)$$

Applying Nakayama's Lemma for FT-modules we conclude that $FS = (FT)F[\sigma_s]$.

Proposition 4.5. Suppose $FS = (FT)F[\sigma_s]$ for some $s \in S$ and $n_{S/\!\!/T}$ is a prime with $\frac{n_{S/\!\!/T}-1}{|S/\!\!/T|-1} \leq p$. Then (X,S) is commutative if and only if $\mathbb{C}T$ is in the center of $\mathbb{C}S$.

Proof. The "only if" part is obvious. Suppose that $\mathbb{C}T$ is in the center of $\mathbb{C}S$. By Lemma 4.4(ii), FS is commutative.

Let $s_i \in S_T$ for i = 1, 2. Since T is assumed to be nice, it follows from Lemma 3.2 that $n_{s_i} = n_{(s_i)^T}$ for i = 1, 2. Since $n_{S/\!\!/T}$ is a prime, it follows from Theorem 2.5(ii) that $S/\!\!/T$ is k-equivalenced where $k = \frac{n_{S/\!\!/T} - 1}{|S/\!\!/T| - 1}$. Thus, $n_{s_i} \in \{1, k\}$ for i = 1, 2. Therefore, we conclude from the assumption and Theorem 2.5(iv) that each coefficient of any non-diagonal adjacency matrix in $\sigma_{s_i}\sigma_{s_j}$ is less than p, and hence,

$$\sigma_{s_i}\sigma_{s_j} \equiv \sigma_{s_j}\sigma_{s_i} \mod p \text{ if and only if } \sigma_{s_i}\sigma_{s_j} = \sigma_{s_j}\sigma_{s_i}.$$

Let $u_1, u_2 \in S$. By Lemma 3.5, $\sigma_{u_i} = \sigma_{t_i} \sigma_{s_i}$ for some $t_1, t_2 \in T$ and $s_1, s_2 \in S_T$.

Since $\mathbb{C}T$ is in the center of $\mathbb{C}S$, t_i commutes with s_j for i, j = 1, 2. The above equation with the fact that FS is commutative shows that σ_{u_1} commutes with σ_{u_2} . This completes the proof.

5. Proof of our main results

5.1. Proof of Theorem 1.2

It is a direct consequence of Proposition 3.9, Lemma 4.4 and Proposition 4.5.

5.2. Proof of Theorem 1.3

By Theorem 1.1, (X, S) is commutative if $S/\!\!/T$ is thin. Thus, we may assume that $S/\!\!/T$ is k-equivalenced for some $1 < k \leq p - 1$. By Proposition 3.9, $\mathbb{C}T$ is in the center of $\mathbb{C}S$.

Let F be a field of characteristic p. Then, by [7, Thm. 3.5], $F(S/\!\!/T) = F[\sigma_{s^T}]$ for some $s \in S \setminus T$. Applying Proposition 4.5 with the fact that $\mathbb{C}T$ is in the center of $\mathbb{C}S$ we obtain that S is commutative.

5.3. Proof of Corollary 1.4

Suppose that T is a flat non-trivial closed subset. Since T is non-trivial, it follows from Lemma 2.4 that $n_T = p$, and T is normal by Theorem 2.6. Applying Theorem 2.7 for $(X, S)_{xT}$ for $x \in X$ we obtain from Lemma 2.8 that $\prod_{x,y} := \{ys \cap xT \mid s \in S\}$ is trivial or has at least one singleton where $y \in X$. We shall write r(x, y) as r for short.

If $\Pi_{x,y}$ is trivial and $r \in S \setminus T$, then $a_{Trr} = n_T$. By Lemma 2.3(iii), $n_T \mid n_r$. By Lemma 3.4, $\{s \in S \mid p \nmid n_s\}$ is closed and $r \notin \{s \in S \mid p \nmid n_s\}$. This implies that each element of $S \setminus T$ has valency divisible by p. By Lemma 3.3, $TsT = \{s\}$ for each $s \in S \setminus T$. In this case it can be easily checked that (X, S)is commutative by a direct computation. Thus, we may assume that $\Pi_{x,y}$ has at least one singleton for all $x, y \in X$. This implies that $S = \bigcup_{s \in S_T} Ts$.

Let $t \in T^{\sharp}$ and $s \in S_T \setminus T$. Then, by Theorem 2.5(ii),

$$n_t = \frac{p-1}{|T|-1}, \ n_s = n_{s^T} = \frac{p-1}{|S|/|T|-1}$$

Since $gcd(n_t, n_s) = 1$, it follows from Lemma 2.1(v) that ts is a singleton for each $t \in T$. By Lemma 3.1(ii), |Ts| = |T| for each $s \in S_T$. Thus, T is nice.

Therefore, we conclude from Theorem 1.3 that (X, S) is commutative.

Acknowledgement

The authors would like to thank Professor Mikhail Muzychuk for his careful reading the first draft of the paper and giving his valuable comments.

References

- Z. Arad, E. Fisman and M. Muzychuk, *Generalized table algebras*, Israel J. Math. 114 (1999), 29–60.
- [2] E. Bannai and T. Ito, Algebraic combinatorics. I. Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984.
- [3] S. Evdokimov and I. Ponomarenko, Permutation group approach to association schemes, European J. Combin. 30 (2009), no. 6, 1456–1476.
- [4] A. Hanaki, Locality of a modular adjacency algebra of an association scheme of prime power order, Arch. Math. (Basel) 79 (2002), no. 3, 167–170.
- [5] A. Hanaki, Representations of association schemes and their factor schemes, Graphs Combin. 19 (2003), no. 2, 195–201.
- [6] A. Hanaki, Representations of finite association schemes, European J. Combin. 30 (2009), no. 6, 1477–1496.
- [7] A. Hanaki, M. Hirasaka and K. Uno, Commutativity of association schemes of prime square order having non-trivial thin closed subsets, J. Algebraic Combin. 27 (2008), no.3, 307-316.
- [8] A. Hanaki and I. Miyamoto, Classification of association schemes with small orders, http://kissme.shinshu-u.ac.jp/as/.

A. HANAKI AND M. HIRASAKA

- [9] A. Hanaki and K. Uno, Algebraic structure of association schemes of prime order, J. Algebraic Combin. 23 (2006), no. 2, 189–195.
- [10] M. Hirasaka, On imprimitive multiplicity-free permutation groups the degree of which is the product of two distinct primes, European J. Combin. 30 (2009), no. 1, 30–38.
- [11] M. Hirasaka, H. Kang and K. Kim, Equitable partitions of flat association schemes, Graphs Combin. 24 (2008), no. 2, 81–89.
- [12] T. Komatsu, Tamely ramified Eisenstein fields with prime power discriminants(English summary), Kyushu J. Math. 62 (2008), no.1, 1–13.
- [13] P. -H. Zieschang, An algebraic approach to association schemes, Lecture Notes in Mathematics vol.1628, Springer-Verlag, Berlin, 1996.
- [14] P. -H. Zieschang, Theory of association schemes, Springer Monograph in Mathematics, Springer-Verlag, Berlin, 2005.

AKIHIDE HANAKI

Department of Mathematical Sciences, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan

E-mail address: hanaki@shinshu-u.ac.jp

Mitsugu Hirasaka

DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, JANG-JEON DONG, BUSAN, KOREA.

E-mail address: hirasaka@pusan.ac.kr