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COMMUTATIVITY OF ASSOCIATION SCHEMES

OF ORDER pq

Akihide Hanaki and Mitsugu Hirasaka*

Abstract. Let (X,S) be an association scheme where X is a finite set

and S is a partition of X × X. The size of X is called the order of
(X,S). We define C to be the set of positive integers m such that each

association scheme of order m is commutative. It is known that each

prime is belonged to C and it is conjectured that each prime square is
belonged to C. In this article we give a sufficient condition for a scheme

of order pq to be commutative where p and q are primes, and obtain a

partial answer for the conjecture in case where p = q.

1. Introduction

Let (X,S) be an association scheme (or shortly, scheme) where X is a finite
set and S is a partition of X ×X (see Section 2 for definition and [2], [3], [14]
for basic concepts). The size of X is called the order of (X,S).

Following [14] we shall write the adjacency matrix of s ∈ S as σs, i.e., σs is
the {0, 1}-matrix whose rows and columns are indexed by the elements of X
and its (x, y)-entry is equal to one if and only if (x, y) ∈ s. Then the subspace
spanned by {σs | s ∈ S} is a subalgebra of the full matrix algebra over a field
F . We call it the adjacency algebra of (X,S) over F , and denote it by FS. We
say that (X,S) is commutative if CS is commutative where C is the complex
number field.

In group theory it is well-known that any group of prime or prime square
order is abelian (see [13, Thm.A] for the relationship between groups and
schemes). On the other hand, any scheme of prime order is commutative (see
[9]), and any schurian scheme of prime square order is also commutative as
follows (see Section 2 for terminologies):

Theorem 1.1. ([6, Thm.5.9]) Let p be a prime and (X,S) a scheme of order
p2. Then (X,S) is commutative if one of the following conditions holds:

(i) (X,S) is schurian;
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(ii) There exists a thin closed subset T of S with nT ≥ p.
(iii) There exists a strongly-normal closed subset T of S with nT ≤ p.

However, it is still open whether or not any scheme of prime square order is
commutative.

Let p and q be primes. It is also known that any group of order pq is abelian
if p < q and p - q − 1. Though it is natural to expect the similar result for
schemes, there exists a non-commutative scheme of order 15 (see [8] and [10]).
In this article we deal with schemes of order pq where p and q are primes, and
show a sufficient condition for them to be commutative.

The following is our main result (see Section 2, 3 for terminologies):

Theorem 1.2. Let (X,S) be a scheme of order pq where p, q are primes.
Suppose that S has a nice closed subset T which satisfies the following:

(i) nT = p;
(ii) S//T has the same intersection numbers as a schurian scheme;
(iii) 1 < q−1

|S//T |−1 ≤ p.

Then (X,S) is commutative.

It is still open whether any scheme of prime order has the same intersection
numbers as a schurian scheme ([9] and [12]). In other words (ii) as in Theo-
rem 1.2 might be removed. The following theorem deals with the case of p = q
in Theorem 1.2:

Theorem 1.3. Let (X,S) be a scheme of prime square order. If S has a
non-trivial nice closed subset, then (X,S) is commutative.

The following gives a sufficient condition for a non-trivial closed subset to
be nice:

Corollary 1.4. Let (X,S) be a scheme of prime square order and T a non-
trivial closed subset of S. Then T is nice and S is commutative if T is flat and
gcd(nt, nsT ) = 1 for some t ∈ T ] and s ∈ S \ T .

Under the same notation as Corollary 1.4 it can be easily checked that T is
flat if nT−1

|T |−1 ≤ 3 (see [10] for the detail).

In Section 2 we prepare necessary notation to make the paper as self-
contained as possible. In Section 3 we prepare several lemmas from combi-
natorics. In Section 4 we prepare some lemmas to generalize arguments given
in [7]. In Section 5 we prove our main results and corollary.

2. Preliminaries

We use the same notation on association schemes as in [14].
Let X be a finite set and S a partition of X ×X. For s ∈ S we denote by

s∗ the set of (x, y) ∈ X ×X with (y, x) ∈ s. For x ∈ X and s ∈ S we denote
by xs the set of y ∈ X with (x, y) ∈ s. We denote by 1X the set of (x, x) with
x ∈ X.
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We say that (X,S) is an association scheme (or shortly, scheme) if it satisfies
the following conditions:

(i) 1X ∈ S;
(ii) For each s ∈ S we have s∗ ∈ S;

(iii) For all s, t, u ∈ S the size of xs ∩ yt∗ is constant whenever (x, y) ∈ u.
We denote the constant by astu.

The numbers (astu | s, t, u ∈ S) are called the intersection numbers of (X,S).
For s ∈ S the number ass∗1X is called the valency of s, and denoted by ns.

For the remainder of this section we assume that (X,S) is a scheme.
For x, y ∈ X we denote by r(x, y) the unique element of S containing (x, y).
Recall that we define σs to be the adjacency matrix of s ∈ S in Section 1.

For a subset T of S we shall write the sum of σt with t ∈ T as σT , the sum of
nt with t ∈ T as nT , and the subspace spanned by {σt | t ∈ T} over a field F
as FT .

For T,U ⊆ S and s ∈ S we denote the coefficient of σs in σTσU by aTUs,
and we define the complex product of T and U , denoted by TU , to be

{s ∈ S | aTUs > 0}.
The complex product is an associative binary operation on the power set of S
(see [13] or [14]). In this article we shall write a singleton {t} with t ∈ S in the
complex product as t like the notation for a coset in group theory.

We have the following equations on intersection numbers (see [1], [2], [13] or
[14]):

Lemma 2.1. We have the following:

(i) For all s, t ∈ S we have as1Xt = δs,t;
(ii) For all s, t ∈ S we have nsnt =

∑
u∈S astunu;

(iii) For all s, t, u ∈ S we have astu = at∗s∗u∗ ;
(iv) For all s, t, u ∈ S we have nuastu = nsaut∗s = ntas∗ut;
(v) For all s, t ∈ S we have |st| ≤ gcd(ns, nt).

For a non-empty subset T of S we say that T is closed if TT ∗ ⊆ T where
we denote by T ∗ the set of t∗ with t ∈ T .

Lemma 2.2. ([14, p.17]) Let T be a non-empty subset of S. Then the following
are equivalent:

(i) T is closed;
(ii) TT ⊆ T ;
(iii)

⋃
t∈T t is an equivalence on X.

It is easy to check that {1X} and S are closed. They are called trivial.

Lemma 2.3. ([14, Lem.2.3.4]) For each closed subset T of S and s ∈ S we
have the following:

(i) nTns = aTssnTs;
(ii) nTsnT = a(Ts)TsnTsT .
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(iii) If nT = aTss, then Ts = s and nT | ns;
(iv) If nT = a(Ts)Ts, then Ts = sT .

For the remainder of this section we assume that T is a closed subset of S.
We shall write T \ {1X} as T ].
For x ∈ X we denote by xT the equivalence class of

⋃
t∈T t containing x.

Then it is known (see [13] or [14]) that (xT, {t ∩ (xT × xT )}t∈T ) is a scheme,
which is called the subscheme of (X,S) with respect to x and T , and denoted
by (X,S)xT .

We call (astu | s, t, u ∈ T ) the intersection numbers of T , which coincide
with those of (X,S)xT for x ∈ X.

Notice that CT is not only a subspace but also a subalgebra of the full matrix
algebra over C, which is isomorphic to the adjacency algebra of (X,S)xT via
σt 7→ σt∩(xT×xT ).

We denote the set of equivalence classes of
⋃
t∈T t by X/T . For s ∈ S we

define sT to be
{(xT, yT ) | r(x, y) ∈ TsT}.

We denote by S//T the set of sT with s ∈ S. Then it is known (see [13] or [14])
that (X/T, S//T ) is a scheme, called the factor scheme of (X,S) over T .

We say that T is thin if nt = 1 for each t ∈ T .
We say that T is commutative (symmetric) if CT is commutative (t = t∗ for

each t ∈ T , respectively). Note that any symmetric closed subset is commuta-
tive by Lemma 2.1(ii).

Lemma 2.4. ([13]) We have the following:

(i) nS = nTnS//T ;
(ii) nsT = nTsT /nT ;

(iii) For each s ∈ S we have σTσs = aTssσTs and σsσT = asTsσsT .

We say that T is normal in S if Ts = sT for each s ∈ S, or equivalently
σT is central in CS by Lemma 2.4(iii). We say that T is strongly-normal if
sTs∗ ⊆ T for each s ∈ S, equivalently, S//T is thin (see [13, Thm. 2.2.3]). For
a positive integer k we say that T is k-equivalenced if nt = k for each t ∈ T ].
We say that T is flat if it is k-equivalenced for some k and att∗s ≤ 1 for all
s, t ∈ T ].

We say that (X,S) is schurian if S is the set of orbitals of a transitive
permutation group of X, or equivalently, (X,S) is a factor scheme of a thin
scheme (see [2]).

Let Π be a partition of X. We say that Π is equitable if, for each s ∈ S
and C,D ∈ Π, |xs ∩ D| is constant whenever x ∈ C. It is easy to check that
{{x} | x ∈ X} and {X} are equitable, and they are called discrete and trivial,
respectively.

The following theorems will be used later in this article:

Theorem 2.5. ([9]) Let (X,S) be a scheme of prime order. Then we have the
following:
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(i) All non-principal irreducible characters of CT are algebraic conjugate;
(ii) S is k-equivalenced where k = nS−1

|S|−1 ;

(iii) S is commutative;
(iv) If k > 1, then astu < k for all s, t, u ∈ T ].

Theorem 2.6. ([7]) If |X| is a prime square, then any closed subset of S is
normal in S.

Theorem 2.7. ([11]) If S is flat and |X| is a prime, then {X} is a unique
equitable partition without any singleton.

Lemma 2.8. For x, y ∈ X, Πx,y := {xT ∩ ys | s ∈ S} is an equitable partition
of (X,S)xT .

Proof. Let s1, s2 ∈ S such that xT ∩ ysi 6= ∅ for i = 1, 2 and t ∈ T . It suffices
to show that |zt ∩ (xT ∩ ys2)| does not depend on the choice of z ∈ xT ∩ ys1.
Since zt ⊆ zT = xT and (z, y) ∈ s∗1, it is equal to |zt ∩ ys2| = ats∗2s∗1 . �

Lemma 2.9. Let (X,S) be a scheme of prime order. Then, for all non-negative
integers as with s ∈ S,

∑
s∈S asσs is singular if and only if at = au for all

t, u ∈ S.

Proof. “If” part is obvious.
Since CS is semisimple and commutative, CS has a basis {eχ | χ ∈ Irr(S)}

where Irr(S) is the set of irreducible characters of (X,S) and eχ is the central
primitive idempotent affording χ. Thus,∑

s∈S
asσs =

∑
χ∈Irr(S)

bχeχ for some bχ ∈ C

Note that {bχ | χ ∈ Irr(S)} are the eigenvalues of
∑
s∈S asσs.

Suppose that
∑
s∈S asσs is singular. Then

µ(
∑
s∈S

asσs) = µ(
∑

χ∈Irr(S)

bχeχ) = bµ = 0

for some µ ∈ Irr(S).
If µ is principal, then

0 = µ(
∑
s∈S

asns) =
∑
s∈S

asns.

This implies that as = 0 for each s ∈ S as desired, since as are non-negative.
If µ is non-principal, then, by Theorem 2.5(i), bτ = 0 for all non-principal

τ ∈ Irr(S), and, hence,
∑
s∈S asσs is a scalar multiple of the all-one matrix as

desired. �



44 A. HANAKI AND M. HIRASAKA

3. From combinatorics

Throughout this section we assume that (X,S) is a scheme and T is a closed
subset of S.

Lemma 3.1. For s ∈ S we have the following:

(i) aTss = 1 if and only if ss∗ ∩ T = {1X};
(ii) If aTss = 1, then |T | ≤ |Ts|, and the equality holds if and only if the

complex product ts is a singleton for each t ∈ T .

Proof. (i) Suppose aTss = 1. Let t ∈ ss∗ ∩ T . Then we can take x, y, z ∈ X
with (x, y) ∈ t, (x, z) ∈ s and (z, y) ∈ s∗. This implies that x, y ∈ xT ∩ zs∗.
Since aTss = |xT ∩ zs∗|, it follows from aTss = 1 that x = y, and, hence
t = 1X . Thus, we have ss∗ ∩ T ⊆ {1X}. Since 1X ∈ T and 1X ∈ ss∗ by
Lemma 2.1(i),(iv), we conclude that ss∗ ∩ T = {1X}.

Suppose ss∗ ∩ T = {1X} and (x, y) ∈ s. It is clear that aTss ≥ 1 since x ∈
x1X ∩ ys∗. Let z, w ∈ xT ∩ ys∗. Then r(z, w) ∈ T ∩ ss∗. Since ss∗∩T = {1X},
it follows that r(z, w) = 1X , and, hence z = w. This implies that aTss ≤ 1.

(ii) Suppose aTss = 1 and t, u ∈ T . If ts ∩ us 6= ∅, then t∗u ∩ ss∗ 6= ∅, and
t = u by (i) and Lemma 2.1(i),(iv). This implies that {ts | t ∈ T} are disjoint,
and

|Ts| = |
⋃
t∈T

ts| =
∑
t∈T
|ts| ≥ |T |.

From this equation it is clear that the equality holds if and only if |ts| = 1 for
each t ∈ T �

Lemma 3.2. For each s ∈ S, if Ts = sT , then ns = nsT aTss.

Proof. By Lemma 2.4(iii),

nTns = aTssnTs = aTssnsT .

Since nTsT = nTnsT by Lemma 2.4(ii) and TsT = Ts by the assumption,
ns = nsT aTss. �

Lemma 3.3. Suppose that nT = p is a prime and max{nsT | s ∈ S} < p.
Then, for each s ∈ S the following are equivalent: (i) p | ns;(ii) TsT = {s};
(iii) Ts = {s};(iv) sT = {s}.

Proof. By Lemma 2.4(ii), nTsT = nsT nT . By the assumption,

p | nTsT and p2 - nTsT . (1)

On the other hand, by Lemma 2.3(i),(ii),

nTsT =
nTsnT
a(Ts)Ts

=
nTnsnT

aTssa(Ts)Ts
. (2)

Suppose that p | ns. Then, by (1) and (2), p2 | aTssa(Ts)Ts. Since

aTss ≤ nT = p and a(Ts)Ts ≤ nT = p,
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it follows that

p = aTss = a(Ts)Ts.

By Lemma 2.3(iii),(iv),

nTsT = nTs = ns.

Since {s} ⊆ TsT , it follows that TsT = {s}.
Suppose that TsT = {s}. Then ns = nTsT = nsT nT = pnsT . Thus, (i) and

(ii) are equivalent.
Suppose Ts = {s}. Then, by Lemma 2.3(i),(iii), p | ns. Therefore, (iii)

implies (i). Similarly, (iv) implies (i).
Clearly, (ii) implies (iii) and (iv). This completes the proof. �

Lemma 3.4. If nT = p is a prime and max{nsT | s ∈ S} < p, then T is
normal in S and {s ∈ S | p - ns} is closed.

Proof. Suppose that T is not normal in S. Then Ts 6= sT for some s ∈ S. By
Lemma 3.3, Ts 6= {s}. By Lemma 2.3(ii),(iv), aTss < nT and a(Ts)Ts < nT .
Since nsT = nTsT /nT by Lemma 2.4(ii), it follows from Lemma 2.3(i),(ii) that

nsT =
nTnsnT

nTaTssa(Ts)Ts
=

nsnT
aTssa(Ts)Ts

,

which is a positive integer divisible by nT = p, a contradiction. Thus, T is
normal in S.

Let u, v ∈ {s ∈ S | p - ns} and w ∈ uv. It suffices to show that p -
nw. Suppose the contrary, i.e., p | nw. By Lemma 3.3, TwT = {w}. By
Lemma 2.1(iv), p | lcm(nu∗ , nw) | au∗wvnv.

We claim that

au∗wv = au∗Tu∗a(u∗)TwT vT .

Since TwT = {w}, Tw∗T = {w∗}. Let (x, y) ∈ v. Then

au∗wv = |xu∗ ∩ yw∗| = |xu∗ ∩ yTw∗T | =
m∑
i=1

|xu∗ ∩ yiT |

where yTw∗T is a disjoint union of {yiT | i = 1, 2, . . . , nwT }. Note that
xu∗ ∩ yiT 6= ∅ if and only if xTu∗T ∩ yiT 6= ∅, since T is normal in S. Since
|xu∗ ∩ yiT | = au∗Tu∗ whenever xu∗ ∩ yiT 6= ∅, it follows that

au∗wv = |{i | xu∗ ∩ yiT 6= ∅}|au∗Tu∗ = a(u∗)TwT vT au∗Tu∗ .

Thus, the claim holds.
Since p - nv and a(u∗)TwT vT ≤ nwT < p, it follows from the claim that

p | au∗Tu∗ . Since aTuu = au∗Tu∗ ≤ p, it follows from Lemma 2.3(iii) that
p | nu∗ = nu, a contradiction. This completes the proof. �

We define ST to be the set of s ∈ S with aTss = 1.
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Lemma 3.5. Suppose that T is normal in S. Then

{σtσs | t ∈ T, s ∈ ST } = {σu | u ∈ S}
if and only if S =

⋃
{Ts | s ∈ ST } and |Ts| = |T | for each s ∈ ST .

Proof. Suppose that the former condition holds. Let u ∈ S. Then σu = σtσs
for some t ∈ T and s ∈ ST . This implies that {u} = ts ⊆ Ts. Thus, S =⋃
{Ts | s ∈ ST } holds. Since ts is a singleton for each t ∈ T and s ∈ ST by the

assumption, it follows from Lemma 3.1(ii) that |T | = |Ts|.
Suppose that the latter condition holds. Let u ∈ S, s ∈ ST and t ∈ T with

u ∈ ts. By Lemma 3.1(ii), ts is a singleton. Thus, {u} = ts.
We claim that atsu = 1. Otherwise, we can take z, w ∈ xt ∩ ys∗ with

(x, y) ∈ u and z 6= w.This implies that r(z, w) ∈ t∗t ∩ ss∗. It follows from
Lemma 3.1(i) that r(z, w) = 1X , and, hence, z = w, a contradiction.

By the claim, we have σu = σtσs.
Since u is arbitrarily taken and we can take s ∈ ST and t ∈ T with u ∈ ts

by the assumption, {σu | u ∈ S} ⊆ {σtσs | t ∈ T, s ∈ ST } holds. The converse
inclusion also holds since ts is a singleton and atsu = 1. �

We say that T is nice if T is normal in S and one of the properties as in
Lemma 3.5 holds.

Remark that both {1X} and S are nice.

Lemma 3.6. If T is nice and s ∈ ST , then we have the following:

(i) s∗ ∈ ST ;
(ii) For each t ∈ T there exists a unique ts ∈ T such that ts = sts;

(iii) For each t ∈ T we have σt(σsσs∗) = (σsσs∗)σt.

Proof. (i) Since ns = ns∗ and nsT = n(sT )∗ , (i) follows from Lemma 3.2.
(ii) Since T is normal and aTss = asTs = 1, the properties as in Lemma 3.5

are equivalent to {σsσt | t ∈ T, s ∈ ST } = {σu | u ∈ S}. This implies that
there exists ts ∈ T such that ts ∈ sts. Since sts is also a singleton, ts = sts.
Suppose ts = st′ for t′ ∈ T . Then s∗s ∩ t′(ts)∗ 6= ∅. By (i) and Lemma 3.1(i),
t′ = ts. Therefore, the uniqueness of ts is proved.

(iii) By (ii),

t(ss∗) = (ts)s∗ = (sts)s∗ = s(tss∗) = ss∗(ts)s
∗
.

Note that, by Lemma 3.1(i), t is a unique element in t(ss∗) ∩ T and (ts)s
∗

is
also a unique element in it. Thus, t = (ts)s

∗
. Since σtσs = σts = σsts = σsσts

by Lemma 3.5, it follows that

σt(σsσs∗) = σtsσs∗ = σsσt
sσs∗ = σsσt

ss∗ = σsσs∗σ(ts)s∗ = σsσs∗σt.

�

Proposition 3.7. Suppose that T is nice and nT is a prime. Then, for all
u, s1, s2 ∈ ST \ T with ∅ � Tu ∩ s1s2 � Tu, if σs1σs2 centralizes CT , then σu
also does.
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Proof. Let u, s1, s2 ∈ ST be as in the statement of the proposition. Note that

σs1σs2 =
∑
t∈T

as1s2(tu)σtu +
∑

v∈S\Tu

as1s2vσv.

Let t1 ∈ T . Then, by the assumption,

σt1σs1σs2 = σs1σs2σt1 .

Since T is normal in S, the right or left multiplication of σt1 leaves each
of C(Tu) and C(S \ Tu) invariant. This implies that σt1 commutes with∑
t∈T as1s2(tu)σtu.
Note that σtu = σtσu by Lemma 3.5 since T is assumed to be nice. Since

T is commutative by Theorem 2.5(iii) and t1u = u(t1)u by Lemma 3.6(ii), it
follows that

σt1
∑
t∈T

as1s2(tu)σtu = σt1
∑
t∈T

as1s2(tu)σtσu

= (
∑
t∈T

as1s2(tu)σt)σt1σu = (
∑
t∈T

as1s2(tu)σt)σuσ(t1)u

On the other hand,

(
∑
t∈T

as1s2(tu)σtu)σt1 = (
∑
t∈T

as1s2(tu)σt)σuσt1 .

Note that
∑
t∈T as1s2(tu)σt is a linear combination of the adjacency matrices

in T with non-negative integral coefficients. Since ∅ � Tu∩ ss∗ � Tu, it is not
a scalar of σT . Thus, we can apply Lemma 2.9 to obtain that

∑
t∈T as1s2(tu)σtu

is invertible.
Therefore,

σuσt1 = σuσ(t1)u .

Let (x, y) ∈ u. Then the submatrix of σu induced by xT ×yT is a permutation
matrix since u ∈ ST and T is normal in S, especially, it is invertible. This
implies that the submatrix of σt1 induced by yT × yT coincides with that of
σ(t1)u . Since (x, y) ∈ u is arbitrarily taken, σt1 = σ(t1)u , implying that σu
commutes with σt1 . Since t1 is arbitrarily taken, the proposition holds. �

Lemma 3.8. For all s1, s2, u ∈ ST , if Tu ⊆ s1s2, then nT ≤ n(s1)T . Moreover,
if the equality holds, then nT = a(s1)T (s2)TuT .

Proof. By the assumption, (σs1σs2)xT,yT has no zero entry where (x, y) ∈ u.
Since

(σs1σs2)xT,yT =
∑

zT∈X/T

(σs1)xT,zT (σs2)yT,zT

and there are exactly a(s1)T (s2)TuT nonzero permutation matrices in the sum-
mation, it follows from s1, s2, u ∈ ST that

nT ≤ a(s1)T (s2)TuT ≤ n(s1)T .
This completes the proof. �
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Proposition 3.9. Suppose that T is nice and both nT and nS//T are primes

with 1 <
nS//T−1
|S//T |−1 ≤ nT . Then CT is in the center of CS.

Proof. For short we shall write nT , nS//T and
nS//T−1
|S//T |−1 as p, q and k, respectively.

By Theorem 2.5(ii), S//T is k-equivalenced.
Let s1, s2 ∈ ST such that {s1, s2} is not contained in T .
We claim (s1s2) \ T 6= ∅. Assume the contrary, i.e., s1s2 ⊆ T . Since T is

normal in S,
(Ts1T )(Ts2T ) = T (s1s2)T ⊆ T.

Applying Lemma 2.1(i),(ii) for (X/T, S//T ) we obtain that

(s2)T = ((s1)T )∗ and n(s1)T = n(s2)T = 1,

which contradicts the assumption k > 1.
We claim that, for each u ∈ ST , Tu∩ s1s2 � Tu. Suppose the contrary, i.e.,

Tu ⊆ s1s2. Then, by Lemma 3.8, n(s1)T ≥ p. By the assumption of 1 < k ≤ p,
k = n(s1)T = p. It follows from Lemma 3.8 that a(s1)T (s2)TuT = k, which
contradicts Theorem 2.5(iv). Therefore, the assumptions on s1, s2, u given in
Proposition 3.7 are satisfied.

Lemma 3.6(iii) and the first claim show the existence of u ∈ ST \ T such
that σu centralizes CT

Proposition 3.7 shows that, for all s1, s2, u ∈ ST with Tu∩ s1s2 6= ∅, if both
of σs1 and σs2 centralizes CT , then so u does. Since ST ⊆

⋃∞
i=0 Tu

i, it follows
that each element of {σs | s ∈ ST } centralizes CT . Since T is commutative by
Theorem 2.5(iii), the proposition follows from Lemma 3.5. �

4. From modular representation

Throughout this section we assume that (X,S) is a scheme, T is a normal
closed subset of S and F is a field.

Lemma 4.1. ([5]) The F -linear map ϕ : FS → F (S//T ) defined by

σs 7→
ns
nsT

σsT

is an F -algebra homomorphism.

Lemma 4.2. If T is nice, then ϕ : FS → F (S//T ) as in Lemma 4.1 is onto.

Proof. For each s ∈ S we can take u ∈ ST such that TsT = TuT since T is
nice. By the definition of ϕ and Lemma 3.2, we have

ϕ(σu) =
ns
nsT

σuT = σuT = σsT .

This implies that ϕ is onto. �

Lemma 4.3. ([7, Thm.3.5]) If S has the same intersection numbers as a
schurian scheme of prime order, then FS = F [σs] for each s ∈ S].
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Proof. Suppose that the characteristic of F is equal to nS . Then, by [7,
Thm. 3.5], FS = F [σs] for some s ∈ S]. By the assumption, the group of
permutations of S which preserve the intersection numbers acts transitively on
S]. Thus, FS = F [σs] for each s ∈ S].

Suppose that the characteristic of F is zero or prime to nS . Then FS is
semisimple by [6, Thm. 5.4], and σs has |S| distinct eigenvalues in a splitting
field of F by the assumption and [6, Thm. 5.3]. This implies that {σis | i =
0, 1, . . . , |S| − 1} are linearly independent, and, hence, FS = F [σs]. �

For the remainder of this section we assume that

(i) F is of characteristic p where p is a prime;
(ii) T is a nice closed subset of valency p;

(iii) ϕ : FS → F (S//T ) is the F -algebra homomorphism as in Lemma 4.1.

Note that FT is a subalgebra of FS, and we shall denote by Rad(FT ) is the
Jacobson radical of FT . In [4, Cor. 3.5],

Rad(FT ) =
⊕
t∈T ]

(σt − ntσ1X ). (3)

The following is something to generalize arguments given in [7].

Lemma 4.4. We have the following:

(i) kerϕ = Rad(FT )(FS);
(ii) If S//T has the same intersection numbers as a schurian scheme of

prime order, then FS = (FT )F [σs] for s ∈ S \ T .

Proof. (i) Since ϕ is an algebra homomorphism, we have, for each t ∈ T ,

ϕ(σt − ntσ1X ) =
nt
ntT

σtT − nt(
n1X
n(1X)T

)σ(1X)T = 0.

It follows from (3) that Rad(FT )(FS) is contained in kerϕ.
We claim that

|S//T |(|T | − 1) ≤ dim(Rad(FT ))(FS).

We can choose a subset U ⊆ ST such that S is a disjoint union of Tu with
u ∈ U since T is nice. It suffices to show that {(σt − ntσ1X )σs | s ∈ U , t ∈ T ]}
is linearly independent. Suppose that∑

t∈T ],s∈U

cts(σt − ntσ1X )σs = 0.

Thus, ∑
t∈T ],s∈U

ctsσtσs −
∑
s∈S

(
∑
t∈T ]

ctsnt)σs = 0.

Notice that {σtσs | t ∈ T, s ∈ U} are distinct and linearly independent by
Lemma 3.5. Therefore, the coefficients cts are zero.
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On the other hand, since ϕ is onto,

dim(kerϕ) = |S| − |S//T |.

Since T is nice, |S| = |T ||S//T | by Lemma 3.5. It follows from the claim that

|S//T |(|T | − 1) ≤ dim((FS)(Rad(FT )) ≤ dim(kerϕ) = |S//T |(|T | − 1).

This implies that the equality holds and the two spaces are equal.
(ii) Let s ∈ S \ T . Since F (S//T ) = F [σsT ] by Lemma 4.3 and ϕ is onto by

Lemma 4.2, FS = (FT )F [σs] + kerϕ. By (i),

FS = (FT )F [σs] + Rad(FT )(FS)

Applying Nakayama’s Lemma for FT -modules we conclude that FS = (FT )F [σs].
�

Proposition 4.5. Suppose FS = (FT )F [σs] for some s ∈ S and nS//T is a

prime with
nS//T−1
|S//T |−1 ≤ p. Then (X,S) is commutative if and only if CT is in

the center of CS.

Proof. The “only if” part is obvious. Suppose that CT is in the center of CS.
By Lemma 4.4(ii), FS is commutative.

Let si ∈ ST for i = 1, 2. Since T is assumed to be nice, it follows from
Lemma 3.2 that nsi = n(si)T for i = 1, 2. Since nS//T is a prime, it follows

from Theorem 2.5(ii) that S//T is k-equivalenced where k =
nS//T−1
|S//T |−1 . Thus,

nsi ∈ {1, k} for i = 1, 2. Therefore, we conclude from the assumption and
Theorem 2.5(iv) that each coefficient of any non-diagonal adjacency matrix in
σsiσsj is less than p, and hence,

σsiσsj ≡ σsjσsi mod p if and only if σsiσsj = σsjσsi .

Let u1, u2 ∈ S. By Lemma 3.5, σui = σtiσsi for some t1, t2 ∈ T and
s1, s2 ∈ ST .

Since CT is in the center of CS, ti commutes with sj for i, j = 1, 2. The
above equation with the fact that FS is commutative shows that σu1

commutes
with σu2

. This completes the proof. �

5. Proof of our main results

5.1. Proof of Theorem 1.2

It is a direct consequence of Proposition 3.9, Lemma 4.4 and Proposition 4.5.

5.2. Proof of Theorem 1.3

By Theorem 1.1, (X,S) is commutative if S//T is thin. Thus, we may assume
that S//T is k-equivalenced for some 1 < k ≤ p− 1. By Proposition 3.9, CT is
in the center of CS.
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Let F be a field of characteristic p. Then, by [7, Thm. 3.5], F (S//T ) = F [σsT ]
for some s ∈ S \ T . Applying Proposition 4.5 with the fact that CT is in the
center of CS we obtain that S is commutative.

5.3. Proof of Corollary 1.4

Suppose that T is a flat non-trivial closed subset. Since T is non-trivial,
it follows from Lemma 2.4 that nT = p, and T is normal by Theorem 2.6.
Applying Theorem 2.7 for (X,S)xT for x ∈ X we obtain from Lemma 2.8 that
Πx,y := {ys ∩ xT | s ∈ S} is trivial or has at least one singleton where y ∈ X.
We shall write r(x, y) as r for short.

If Πx,y is trivial and r ∈ S \T , then aTrr = nT . By Lemma 2.3(iii), nT | nr.
By Lemma 3.4, {s ∈ S | p - ns} is closed and r /∈ {s ∈ S | p - ns}. This
implies that each element of S \ T has valency divisible by p. By Lemma 3.3,
TsT = {s} for each s ∈ S \ T . In this case it can be easily checked that (X,S)
is commutative by a direct computation. Thus, we may assume that Πx,y has
at least one singleton for all x, y ∈ X. This implies that S =

⋃
s∈ST Ts.

Let t ∈ T ] and s ∈ ST \ T . Then, by Theorem 2.5(ii),

nt =
p− 1

|T | − 1
, ns = nsT =

p− 1

|S//T | − 1
.

Since gcd(nt, ns) = 1, it follows from Lemma 2.1(v) that ts is a singleton for
each t ∈ T . By Lemma 3.1(ii), |Ts| = |T | for each s ∈ ST . Thus, T is nice.

Therefore, we conclude from Theorem 1.3 that (X,S) is commutative.
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