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ON COMMUTATIVITY OF REGULAR PRODUCTS

Tai Keun Kwak, Yang Lee, and Yeonsook Seo

Abstract. We study the one-sided regularity of matrices in upper tri-

angular matrix rings in relation with the structure of diagonal entries.

We next consider a ring theoretic condition that ab being regular implies
ba being also regular for elements a, b in a given ring. Rings with such

a condition are said to be commutative at regular product (simply, CRP
rings). CRP rings are shown to be contained in the class of directly finite

rings, and we prove that if R is a directly finite ring that satisfies the de-

scending chain condition for principal right ideals or principal left ideals,
then R is CRP. We obtain in particular that the upper triangular matrix

rings over commutative rings are CRP.

This article concerns a ring property related to directly finite (or Dedekind
finite) condition, which extends the study of one-sided inverses (e.g., Baer [3]
and Jacobson [9]) to one of one-sided regularity. In Section 1, the structure of
diagonal entries of one-sided regular upper triangular matrices are investigated,
and this gives useful information to observe the commutativity of regular prod-
ucts in upper triangular matrix rings. In Section 2, we study the structure of
rings which satisfy the commutativity of regular products. In the procedure we
observe directly finite rings which do not satisfy the commutativity of regular
products, which provides interesting information to our study.

Throughout this note every ring is an associative ring with identity unless
otherwise stated. Let R be a ring. Use U(R), N∗(R), and N(R) to denote the
group of units, the upper nilradical (i.e., sum of all nil ideals), and the set of all
nilpotent elements in R, respectively. Clearly N∗(R) ⊆ N(R). The polynomial
(resp., power series) ring with an indeterminate x over R is denoted by R[x]
(resp., R[[x]]). Z (Zn) denotes the ring of integers (modulo n). Denote the n by
n full (resp., upper triangular) matrix ring over R by Matn(R) (resp., Tn(R)),
and Dn(R) denotes the subring {(aij) ∈ Tn(R) | a11 = · · · = ann} of Tn(R).
Use Eij for the matrix with (i, j)-entry 1 and elsewhere 0. These notations are
usually used in the literature.
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1. One-sided regularity of upper triangular matrices

In this section we investigate the right (left) regularity of matrices in upper
triangular matrix rings. We follow the literature in using the next definitions.
An element u of a ring R is right regular if ur = 0 implies r = 0 for r ∈ R. The
left regular can be defined similarly. An element is regular if it is both left and
right regular.

Theorem 1.1. Let R be a ring, n ≥ 2, and (aij) ∈ Tn(R).

(1) If aii is right (resp. left) regular in R for all i ∈ {1, . . . , n}, then (aij)
is right (resp. left) regular in Tn(R).

(2) If (aij) is right (resp., left) regular in Tn(R), then a11 is right regular
(resp., ann is left regular) in R.

(3) Let R be a commutative ring. Then (aij) is right or left regular in
Tn(R) if and only if aii is regular in R for all i ∈ {1, . . . , n} if and only
if (aij) is regular in Tn(R).

Proof. (1) Let A = (aij). Suppose that every aii is right regular for 1 ≤ i ≤ n,
and let AB = 0 for B = (bst) ∈ Tn(R). Clearly bss = 0 for all s. Assume
B 6= 0 on the contrary. Take bef 6= 0 so that e and f are largest respectively.
Then e < f and the (e, f)-entry of AB is aeebef 6= 0, hence AB 6= 0, contrary
to AB = 0. Thus B = 0. The proof for the case of left regular is similar.

(2) Suppose that A = (aij) is right regular in Tn(R). Assume on the contrary
that a11b = 0 for some nonzero b ∈ R, and set B = (bst) with b11 = b and
elsewhere zeros. Then AB = 0. But since A is right regular, we get B = 0,
contrary to b 6= 0. Thus a11 is right regular. The proof for the case of left
regular is similar.

(3) By (1) and the commutativity of R, it is enough to show that if A = (aij)
is right or left regular in Tn(R), then aii is regular in R for all i ∈ {1, . . . , n}.

First, let A = (aij) ∈ Tn(R) and suppose that A is right (resp., left) regular
in Tn(R). Then a11 (resp., ann) is regular by (2). We use this fact freely
hereafter. We will proceed the proof by induction on n.

Consider first the case of n = 2. Assume on the contrary that a22 is not
regular. Say that a22b = 0 for some 0 6= b ∈ R. Consider B =

(
0 ba12
0 −ba11

)
in

T2(R). Then

AB =

(
a11 a12
0 a22

)(
0 ba12
0 −ba11

)
=

(
0 b(a11a12 − a12a11)
0 −a22ba11

)
= 0.

But since a11 is regular, we have ba11 6= 0, implying B 6= 0. Thus A is not
right regular, contrary to A being right regular. Therefore a22 is also regular.

We next prove the case of Tn(R) for n ≥ 3. Assume that we use the matrix

E0 =


0 0 · · · 0 e0β

′
1

0 0 · · · 0 e0β
′
2

...
... · · ·

...
0 0 · · · 0 e0β

′
n−2

0 0 · · · 0 e0β
′
n−1


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with β′n−1 = −a(n−2)(n−2) · · · a22a11, β′n−2, . . . , β′1 ∈ R, in the procedure to ob-
tain that aii is regular for all i = 1, . . . , n−1 in Tn−1(R), where a(n−1)(n−1)e0 =
0 for some 0 6= e0 ∈ R.

Suppose that aii is regular in R for all i ∈ {1, 2, . . . , n− 1}. Assume on the
contrary that ann is not regular. Say that anne = 0 for some 0 6= e ∈ R. Then,
by help of the preceding matrix E0 in Tn−1(R), we can find

E =



0 0 0 · · · 0 −e[a12β1 + e13β2 + · · ·+ a1(n−1)βn−2 + a1nβn−1]
0 0 0 · · · 0 eβ1a11
0 0 0 · · · 0 eβ2a11
...

...
... · · · 0

...
0 0 0 · · · 0 eβn−2a11
0 0 0 · · · 0 eβn−1a11


∈ Tn(R)

such that AE = 0, where βk is obtained from β′k by replacing ast by a(s+1)(t+1)

for all k = 1, . . . , n − 1. But every aii is regular for i = 1, 2, . . . , n − 1, so
a11 · · · a(n−1)(n−1) is also regular. This implies ea(n−1)(n−1) · · · a11 6= 0 because
e 6= 0, entailing E 6= 0. Thus A is not right regular, contrary to A being right
regular. Therefore ann is also regular.

Next we also claim that if A is left regular, then aii is regular in R for all i.
Consider the case of n = 2. Assume on the contrary that a11 is not regular.

Say that a11b = 0 for some 0 6= b ∈ R. Consider B =
(−a22b a12b

0 0

)
in T2(R).

Then B 6= 0 since a22b 6= 0, and

BA =

(
−a22b a12b

0 0

)(
a11 a12
0 a22

)
=

(
−a22ba11 −a22ba12 + a12ba22

0 0

)
= 0,

contradicting A being left regular. Therefore a11 is also regular. We use this
fact freely hereafter. We will proceed the proof by induction on n.

We next prove the case of Tn(R) for n ≥ 3. Assume that we use the matrix

E0 =


e0β1 e0β2 · · · e0βn−1

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
0 0 · · · 0


with β1 = −a22a33 · · · a(n−1)(n−1), β2, . . . , βn−1 ∈ R, in the procedure to obtain
that aii is regular for all i = 1, . . . , n− 1 in Tn−1(R), where a11e0 = 0 for some
0 6= e0 ∈ R.

Suppose that aii is regular in R for all i ∈ {2, . . . , n}. Assume on the
contrary that a11 is not regular. Say that a11e = 0 for some 0 6= e ∈ R. Then,
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by help of the preceding matrix E0 in Tn−1(R), we can find

E =



eβ1ann eβ2ann eβ3ann · · · eβn−1ann −e[β1a1n + β2a2n + β3a3n + · · ·+ βn−1a(n−1)n]
0 0 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0


in Tn(R) such that EA = 0. Note eβ1ann = −ea22a33 · · · a(n−1)(n−1)ann. But
every aii is regular for i = 2, . . . , n, so a22 · · · ann is also regular. This implies
ea22 · · · ann 6= 0 because e 6= 0, entailing E 6= 0. Thus A is not left regular,
contradicting A being left regular. Therefore a11 is also regular. �

The converse of Theorem 1.1(1) need not be true by the following.

Example 1.2. Let R be a ring which has right regular elements a and b
satisfying aR ∩ bR = 0. Consider(

a b
0 0

)(
c d
0 e

)
=

(
ac ad+ be
0 0

)
= 0

for ( c d0 e ) ∈ T2(R). Since a is right regular, we get c = 0. From ad + be = 0,
we obtain d = 0 = e by the condition that ad = −be ∈ aR ∩ bR = 0, because a
and b are right regular. Thus ( c d0 e ) = 0, and so ( a b0 0 ) is right regular in T2(R).

For example, let K be a field and R = K〈x, y〉 be the free algebra generated
by the non-commuting indeterminates x, y over K. Then ( x y0 0 ) is right regular
in T2(R) by the argument above, because xR ∩ yR = 0.

Considering Theorem 1.1(3), it is natural to ask whether if (aij) is regular
in Tn(R), then every aii is regular in R when R is a noncommutative ring. The
answer is negative by the following.

Example 1.3. (I) Then case of T2(R):
Let R0 = K〈x, y〉 be the free algebra generated by the non-commuting

indeterminate x, y over a field K.
We use the matrix ( x y0 0 ) in Example 1.2 that is right regular in T2(R0). But

this matrix is not left regular in T2(R0) by Theorem 1.1(2), since its (2,2)-entry
is not left regular. Write R = T2(R0). Consider a matrix

A =


(
x y
0 0

) (
0 0
0 x

)
(

0 0
0 0

) (
x 0
0 y

)
 ∈ T2(R).

Then
(
x 0
0 y

)
is regular in R by Theorem 1.1(1), and so A is right regular in

T2(R) also by Theorem 1.1(1). Suppose that BA = 0 for B = (bij) ∈ T2(R)

with b11 =
(
a1 b1
0 c1

)
, b12 =

(
a2 b2
0 c2

)
. Since

(
x 0
0 y

)
is regular, we have b22 = 0.
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From
(
a1 b1
0 c1

)
( x y0 0 ) = 0, we get a1 = 0. So, from

0 =

(
0 b1
0 c1

)(
0 0
0 x

)
+

(
a2 b2
0 c2

)(
x 0
0 y

)
=

(
a2x b1x+ b2y
0 c1x+ c2y

)
,

we first get a2 = 0, and next obtain b1 = 0 = b2 and c1 = 0 = c2 because
R0x ∩ R0y = 0. Thus B = 0 and so A is left regular in T2(R). Therefore A is
regular in T2(R), but the (1,1)-entry of A is not left regular in R.

(II) Then case of Tn(R) for n ≥ 3:
We first argue about the case of T3(R). Let R = K〈x, y〉 as in (I). Consider

C =
( x y 0

0 0 x
0 0 y

)
in T3(R), and let CD = 0 for D = (dij) ∈ T3(R). Then d11 =

0 = d33, and we obtain d12 = d13 = d22 = d23 = 0 from xd12 + yd22 = 0 and
xd13 + yd23 = 0 because xR0 ∩ yR0 = 0. Let EC = 0 for (eij) ∈ T3(R). Then
e11 = 0 = e33, and we obtain e12 = e13 = e22 = e23 = 0 from e12x + e13y = 0
and e22x+ e23y = 0 because R0x ∩R0y = 0. These imply that C is regular in
T3(R), but the (2,2)-entry of C is zero.

We extend the preceding result to the general case. Let R be the free
algebra K〈x1, x2, . . . , xn−1〉 generated by the non-commuting indeterminates
x1, x2, . . . , xn−1 over K, where n ≥ 3. Consider a matrix

M =



x1 x2 x3 x4 · · · xn−2 xn−1 0
0 x2 0 0 · · · 0 0 x1
0 0 x3 0 · · · 0 0 x2
...

...
...

... · · ·
...

...
...

0 0 0 0 · · · xn−2 0 xn−3
0 0 0 0 · · · 0 0 xn−2
0 0 0 0 · · · 0 0 xn−1


in Tn(R). Let MF = 0 for F = (fij) ∈ Tn(R). Then f11 = f22 = · · · =
f(n−2)(n−2) = fnn = 0, and we obtain f(n−1)(n−1) = 0 and fij = 0 for all i, j
with i 6= j from the equalities

x1f1k + x2f2k + · · ·+ xk−1f(k−1)k + xkfkk = 0 for k = 2, . . . , n− 1

and

x1f1n + x2f2n + · · ·+ xn−2f(n−2)n + xn−1f(n−1)n = 0,

because xsR∩(
∑
t 6=s xtR) = 0 for all s = 1, . . . , n−1. Thus F = 0. Let GM = 0

for G = (gij) ∈ Tn(R). Then g11 = g22 = · · · = g(n−2)(n−2) = gnn = 0, and we
obtain g(n−1)(n−1) = 0 and gij = 0 for all i, j with i 6= j from the equality

gh2x1 + gh3x2 + · · ·+ gh(n−1)xn−2 + ghnxn−1 = 0 for h = 1, . . . , n− 1,

because Rxs ∩ (
∑
t6=sRxt) = 0 for all s = 1, . . . , n − 1. Thus G = 0, entailing

that M is regular in Tn(R). But the (n− 1, n− 1)-entry of M is zero.
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2. Commutative property at regular products

In this section we study the structure of rings with a kind of commutative
property at regular products. Following the literature, a ring R is said to be
directly finite (or Dedekind finite) if ab = 1 implies ba = 1 for a, b ∈ R. A ring
is usually called Abelian if every idempotent is central. A ring is usually called
reduced if it has no nonzero nilpotent elements. It is easily checked that Abelian
rings are directly finite and reduced rings are Abelian. The class of directly
finite rings is obviously closed under subrings. Left or right Noetherian rings
are directly finite by [9, Theorem 1]. It is well-known that the class of directly
finite rings contains algebraic algebras over fields, PI-algebras, and rings with
finite number of nilpotent elements. Note that Matn(R) over a commutative
domain R is directly finite by the preceding facts. But there exists a domain
R such that Mat2(R) is not directly finite by [12, Theorem 1.0].

We first observe several useful equivalent conditions to the direct finiteness
in the following.

Lemma 2.1. Given a ring R, the following conditions are equivalent:

(1) R is directly finite.
(2) If a1a2 · · · an ∈ U(R) for a1, a2, . . . , an ∈ R, then

aσ(1)aσ(2) · · · aσ(n) ∈ U(R)

for any permutation σ of the set {1, 2, . . . , n}, where n ≥ 2.
(3) ab ∈ U(R) implies ba ∈ U(R) for all a, b ∈ R.
(4) If a1a2 · · · an = 1 for a1, a2, . . . , an ∈ R, then

aσ(1)aσ(2) · · · aσ(n) ∈ U(R)

for any permutation σ of the set {1, 2, . . . , n}, where n ≥ 2.
(5) ab = 1 implies ba ∈ U(R) for all a, b ∈ R.
(6) ab = 1 implies that both a and b are regular for all a, b ∈ R.

Proof. (1)⇒ (2): Let R be directly finite, and suppose that a1a2 · · · an ∈ U(R)
for a1, a2, . . . , an ∈ R, where n ≥ 2. Say that a1a2 · · · anb = ba1a2 · · · an = 1 for
b ∈ R. Since R is directly finite and a1(a2 · · · anb) = 1, we have (a2 · · · anb)a1 =
1, entailing a1 ∈ U(R). Next since R is directly finite and a2(a3 · · · anba1) = 1,
we have (a3 · · · anba1)a2 = 1, entailing a2 ∈ U(R). Inductively we have ai ∈
U(R) for all i. This yields that aσ(1)aσ(2) · · · aσ(n) ∈ U(R) for any permutation
σ of the set {1, 2, . . . , n}.

(2) ⇒ (3), (2) ⇒ (4), (3) ⇒ (5), and (4) ⇒ (5) are obvious.
(5)⇒ (6): Let ab = 1 for a, b ∈ R, and suppose that the condition (5) holds.

If ar = 0 for r ∈ R, then (ba)r = 0 and so r = 0 since ba ∈ U(R). If r′a = 0
for r′ ∈ R, then 0 = r′ab = r′. These show that a is regular. Similarly, it can
be obtained that b is also regular.

(6)⇒ (1): Let ab = 1 for a, b ∈ R, and suppose that the condition (6) holds.
Then ab = 1 implies (ba)2 = ba, and ba(ba − 1) = 0. So ba = 1 since ba is
regular by (6). �
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We can see a basic extension preserving the direct finiteness in the following.
Recall the subring

Vn(R) = {m = (mij) ∈ Dn(R) | mst = m(s+1)(t+1)

for s = 1, . . . , n− 2 and t = 2, . . . , n− 1}
of Dn(R), where R is given a ring and n ≥ 2. Note that R[x]/xnR[x] is isomor-
phic to Vn(R), via (a0 + a1x+ · · ·+ an−1x

n−1) + xnR[x] 7→ (a0, a1, . . . , an−1),
where (aij) ∈ Vn(R) is expressed by (a0, a1, . . . , an−1) with a1j = aj−1. Con-
sider a power series f(x) =

∑∞
i=0 aix

i over given a ring R. Note that a0 ∈ U(R)
if and only if f(x) ∈ U(R[[x]]).

Corollary 2.2. Let R be a ring and n ≥ 2.

(1) A ring R is directly finite if and only if Tn(R) is directly finite if and
only if Dn(R) is directly finite if and only if Vn(R) is directly finite.

(2) A ring R is directly finite if and only if so is R[[x]].

Proof. (1) It suffices to show that E = Tn(R) is directly finite when R is a
directly finite ring, because the class of directly finite rings is closed under
subrings. Let (aij)(bij) = 1 for (aij), (bij) ∈ E. Then aiibii = 1 for all i =
1, . . . , n. Since R is directly finite, biiaii = 1 for all i. This implies that
(bij)(aij) ∈ U(E). Then E is directly finite by Lemma 2.1.

(2) It also suffices to show the necessity. Let f(x)g(x) = 1 for f(x), g(x) ∈
R[[x]], where f(x) =

∑∞
i=0 aix

i and g(x) =
∑∞
j=0 bjx

j . Then a0b0 = 1. Since

R is directly finite, we have b0a0 = 1, entailing a0, b0 ∈ U(R). This implies
that f(x), g(x) ∈ U(R[[x]]). Then g(x)f(x) = 1 by Lemma 2.1. �

From the condition (3) in Lemma 2.1, we next introduce a new concept
through the argument to follow. First for a given ring R consider the following:

(∗) If ab is regular for a, b ∈ R, then ba is also regular.

A ring R satisfying the condition (∗) is directly finite. For, letting ab = 1
for a, b ∈ R, ba is regular because R satisfies (∗). Then (ba)2 = ba and so
ba(ba− 1) = 0, implying ba = 1. So it is natural to ask whether directly finite
rings satisfy the condition (∗). But the answer is negative by the following.

Example 2.3. We use the ring in [2, Example 4.8] and the argument in [11,
Proof of Theorem 1]. Let K be a field and A = K〈a, b〉 be the free algebra
generated by the noncommuting indeterminates a, b over K. Let I be the ideal
of A generated by bn and set R = A/I, where n ≥ 2. Write r̄ = r + I for
r ∈ A. Then R is Abelian (hence directly finite) by [2, Theorem 4.7] and
[7, Corollary 8]. We next claim that R does not satisfy the condition (∗). Let
α, β ∈ R\{0} satisfy αβ = 0. Then α = α′b̄s and β = b̄tβ′ for some α′, β′ ∈ R,
where 1 ≤ s, t ≤ n − 1 and s + t ≥ n, by help of the argument in [11, Proof
of Theorem 1]. Consider the element āb̄ā in R. Then āb̄ā = ā(b̄ā) is regular
by the preceding argument. But (b̄ā)ā is not (left) regular as can be seen by
b̄n−1(b̄ā)ā = 0, noting b̄n−1 6= 0. So R does not satisfy the condition (∗).
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A ring R shall be said to be commutative at regular-product (simply, CRP)
if R satisfies the condition (∗), based on Lemma 2.1 and Example 2.3. Then
CRP rings are directly finite by an argument above. Due to Bell [4], a ring R
is said to satisfy Insertion-of-Factors-Property (or simply, be an IFP ring) if
ab = 0 implies aRb = 0 for a, b ∈ R. It is easily checked that reduced rings are
IFP, and the converse need not hold because any commutative ring is clearly
IFP (e.g., Zmn for m,n ≥ 2). The proof for IFP rings to be Abelian is simple.
Following Huh et al. [7], a ring is called locally finite if every finite subset
generates a finite multiplicative semigroup. It is shown that a ring is locally
finite if and only if every finite subset generates a finite subring by [6, Theorem
2.2(1)]. Finite rings, infinite direct sums of finite rings, and algebraic closures
of finite fields are basic examples of locally finite rings.

Theorem 2.4. (1) Left or right Artinian rings are CRP.
(2) IFP rings are CRP.
(3) Locally finite rings are CRP.
(4) A ring R is CRP if and only if ab being regular for a, b ∈ R implies

that both a and b are regular.

Proof. (1) Let R be a right Artinian ring and suppose that ab is regular for
a, b ∈ R. Then (ba)k = (ba)k+1c for some k ≥ 1 and c ∈ R. This yields

0 = a(ba)k − a(ba)k+1c = (ab)k(a− abac) and so a− abac = 0

because ab is regular. Multiplying a − abac = 0 by b on the right-hand side,
we get ab(1 − acb) = 0 and moreover acb = 1 because ab is regular. Since
right Artinian rings are directly finite, we obtain b(ac) = 1 and (cb)a = 1 from
acb = 1. So both a and b are regular, implying that ba is regular. Therefore R
is CRP. The proof for the case of a left Artinian ring is similar.

(2) Let R be an IFP ring, and assume on the contrary that there exist
a, b ∈ R such that ab is regular but ba not regular. Then (ba)α = 0 for some
α ∈ R\{0}, or β(ba) = 0 for some β ∈ R\{0}. Since R is IFP, a(ba)bα = 0
(resp., βa(ba)b = 0) implies α = 0 (resp., β = 0) because ab is regular. This
result induces a contradiction to α, β ∈ R\{0}. Therefore R is CRP.

(3) Let R be a locally finite ring. Suppose that ab is regular for a, b ∈ R.
Consider the subring S of R generated by a, b, 1. Then S is finite because R
is locally finite; hence S is CRP by (1). But ab is also regular in S, implying
that ba is regular in S. Since R is locally finite, both (ab)m and (ba)n are
idempotents for some m,n ≥ 1 by the proof of [7, Proposition 16]. This forces
(ab)m = 1 and (ba)n = 1 because both ab and ba are regular in S. So a, b ∈
U(R), entailing that ba is regular in R. Therefore R is CRP.

(4) It suffices to show the necessity. Let R be a CRP ring and suppose that
ab is regular for a, b ∈ R. Then a is left regular and b is right regular. Since
R is CRP, ba is regular and so this implies that a is right regular and b is left
regular. �
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By Theorem 2.4(1), a CRP ring need not be Abelian. In fact, Matn(R) is
CRP but non-Abelian over a right Artinian ring R for n ≥ 2. So the concepts of
regular-commutativity and Abelian are independent of each other, considering
Example 2.3. Thus direct finiteness is a ring theoretic property which unifies
the concepts of regular-commutativity and Abelian.

Proposition 2.5. For a ring R, the following are equivalent:
(1) R is CRP.
(2) abc being regular for a, b, c ∈ R implies that acb is regular.
(3) abc being regular for a, b, c ∈ R implies that bac is regular.
(4) a1a2 · · · an being regular for a1, a2, . . . an ∈ R implies that

aσ(1)aσ(2) · · · aσ(n) is regular for any permutation σ of the set {1, 2, . . . , n}.

Proof. (1) ⇔ (2) and (1) ⇔ (3): Let R be a CRP ring. Suppose that abc is
regular for a, b, c ∈ R. Then both (bc)a and c(ab) are regular and so a, b and c
are regular by Theorem 2.4(4). This implies that both acb and bac are regular.

Each converse is clear since ab = 1 · ab = ab · 1.
(2)⇒ (4): This follows from the same argument as the proof of [1, Theorem

I.1], using regular in place of 0.
(4) ⇒ (1): It is obvious. �

If a ring is not directly finite, then it has infinitely many matrix units by
[9, page 1]. We see a similar result for non-regular elements as follows.

Theorem 2.6. Let R be a directly finite ring. If R is not CRP, then we have
the following results:

(1) R has an infinite set of nonzero non-regular elements which intersects
with N(R) at emptiness.

(2) R has both an infinite properly descending chain of principal right ideals
and an infinite properly descending chain of principal left ideals.

Proof. (1) Since R is not CRP, there exist a, b ∈ R such that ab is regular but
ba is not regular. Since ab is regular, a is left regular and b is right regular.
Since ba is not regular, (ba)α = 0 (hence aα = 0) for some α ∈ R\{0}, or
β(ba) = 0 (hence βb = 0) for some β ∈ R\{0}.

We first note that (ba)k is nonzero for any k ≥ 1. For, the regularity of
a(ba)kb = (ab)k+1 implies (ba)k 6= 0. We next claim that ab is not a unit. If
(ca)b = a(bc) = 1 for some c ∈ R, then a and b are regular by Lemma 2.1(6).
This is contrary to that ba is not regular. Thus ab is not a unit.

Assume that (ba)m = (ba)n for some 1 ≤ m < n. Then

(ab)m+1 = a[(ba)m]b = a[(ba)n]b = (ab)n+1 and (ab)m+1[1− (ab)n−m] = 0.

This implies (ab)n−m = 1 because (ab)m+1 is regular. So ab is a unit, contrary
to the result above. Thus (ba)m 6= (ba)n for all 1 ≤ m < n. Therefore we now
obtain an infinite set

{(ba)n | n = 1, 2, . . .}
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of nonzero non-regular elements in R. Since every (ba)n is nonzero, the inter-
section of {(ba)n | n = 1, 2, . . .} and N(R) is an empty set.

(2) Recall the elements a and b in R such that ab is regular but ba is not
regular, in the proof of (1). Consider the descending chain

(†) baR ⊇ (ba)2R ⊇ · · · ⊇ (ba)nR ⊇ (ba)n+1R ⊇ · · ·
of principal right ideals in R, where n = 1, 2, . . .. Assume that (ba)kR =
(ba)k+1R for some k ≥ 1. Then (ba)k = (ba)k+1c for some c ∈ R. Multiplying
this equality by a on the left-hand side, we get

(ab)ka = a(ba)k = a(ba)k+1c = (ab)kabac and

0 = a(ba)k − a(ba)k+1c = (ab)k(a− abac).
This yields a− abac = 0 because ab is regular. Multiplying a− abac = 0 by b
on the right-hand side, we get

ab− abacb = 0 and ab(1− acb) = 0.

This yields acb = 1 because ab is regular. Then a(cb) = 1 = (ac)b imply that
both a and b are regular by Lemma 2.1(6), contrary to ba being not regular.
So the descending chain (†) is not stationary.

The argument for the chain principal left ideals is similar to the preceding
one. �

Recall the ring R in Example 2.3 which is Abelian but not CRP. The element
aba of R is regular but ba2 is not left regular (in fact, bn−1ba2 = 0). So, by
the proof of Theorem 2.6(1), we get an infinite set {(ba2)k | k = 1, 2, . . .} of
nonzero non-regular elements. We see an application of Theorem 2.6(1) in the
following.

Example 2.7. We use the construction in [10, Theorem 2.2(2)]. Let F be
a domain. Define a map σ : D2n(F ) → D2n+1(F ) by B 7→ (B 0

0 B ). Then
D2n(F ) can be considered as a subring of D2n+1(F ) via σ (i.e., B = σ(B) for
B ∈ D2n(F )). Set R =

⋃∞
n=1D2n(F ). Then R is Abelian (hence directly finite)

by [5, Lemma 2].
Since F is a domain, we have N(R) = {A ∈ R | the diagonal entries of A

are all zero} = N∗(R). So every matrix in R\N(R) is regular by [8, Lemma
2.1] because the diagonal entries are nonzero and F is a domain. Consequently
the set of non-nilpotent non-regular elements is empty. Thus R is CRP by
Theorem 2.6(1).

In the following we see an application of Theorem 2.6(2).

Proposition 2.8. If R is a directly finite ring that satisfies the descending
chain condition for principal right ideals or principal left ideals, then R is CRP.

Proof. Let R be a directly finite ring that satisfies the descending chain condi-
tion for principal right ideals or principal left ideals. Assume on the contrary
that R is not CRP. Then R has both an infinite properly descending chain
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of principal right ideals and an infinite properly descending chain of principal
left ideals by Theorem 2.6(2), a contradiction to the condition. Therefore R is
CRP. �

We can also obtain Theorem 2.4(1) as a corollary of Proposition 2.8. In what
follows, we elaborate upon the structure of descending chains in the proof of
Theorem 2.6(2).

Note. Let R be a directly finite ring that is not CRP. Then there exist a, b ∈ R
such that ab is regular but ba is not regular. So a is not right regular or b is not
left regular. Suppose that b is not left regular. Consider a descending chain

(δ) bR ⊇ b2R ⊇ · · · ⊇ bnR ⊇ bn+1R ⊇ · · ·
of principal right ideals in R, where n = 1, 2, . . .. Assume that bkR = bk+1R
for some k ≥ 1. Then bk = bk+1d for some d ∈ R. Thus bk(1 − bd) = 0
implies 1 = bd because b is right regular. Then b is regular by Lemma 2.1(6),
a contradiction. Therefore the chain (δ) is non-stationary.

Next suppose that a is not right regular. Consider a descending chain

(γ) Ra ⊇ Ra2 ⊇ · · · ⊇ Ran ⊇ Ran+1 ⊇ · · ·
of principal left ideals in R, where n = 1, 2, . . .. Assume that Rah = Rah+1

for some h ≥ 1. Then ah = eah+1 for some e ∈ R. Thus (1 − ea)ah = 0
implies 1 = ea because a is left regular. Then a is regular by Lemma 2.1(6), a
contradiction. Therefore the chain (γ) is non-stationary.

We see in the following some sorts of matrix rings through which the CRP
property passes.

Theorem 2.9. (1) For a ring R the following conditions are equivalent:

(a) R is CRP.
(b) Dn(R) is CRP for n ≥ 2.
(c) Vn(R) is CRP for n ≥ 2.

(2) If R is a commutative ring, then Tn(R) is a CRP ring for all n ≥ 2.
(3) If R is a domain, then T2(R) is a CRP ring.
(4) Let R be a ring and n ≥ 2. If Tn(R) is CRP, then so is R.

Proof. (1) (a) ⇔ (b): Let R be CRP and suppose that AB is regular for
A = (aij), B = (bst) ∈ Dn(R). Then auubuu is regular in R for all u = 1, . . . , n
by [8, Lemma 2.1]. Since R is CRP, auu and buu are regular for any u by
Theorem 2.4(4). Then both A and B are regular by [8, Lemma 2.1], and thus
Dn(R) is CRP by Theorem 2.4(4).

Conversely, suppose that Dn(R) is CRP and let ab be regular for a, b ∈ R.
Consider two matrices D = (dij) and E = (est) in Dn(R) such that dii = a,
ess = b, and dij = 0 = est = 0 for i 6= j and s 6= t. Then DE is regular in
Dn(R) by [8, Lemma 2.1]. Since Dn(R) is CRP, both D and E are regular by
Theorem 2.4(4). Hence both a and b are regular by [8, Lemma 2.1]. Therefore
R is CRP.
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The proof of (a) ⇔ (c) is almost the same as one of (a) ⇔ (b).
(2) Let R be a commutative ring and suppose that AB is regular for A =

(aij), B = (bst) ∈ Tn(R). Then auubuu is regular in R for all u = 1, . . . , n,
implying that auu and buu are regular in R because R is commutative. Hence
both A and B are regular in Tn(R) by Theorem 1.1(3). Therefore Tn(R) is
CRP.

(3) Let R be a domain and suppose that (aij)(bst) is regular in T2(R) for
(aij), (bst) ∈ T2(R). Then a11b11 is right regular and a22b22 is left regular in R
by Theorem 1.1(2). This implies that a11, a22, b11 and b22 are regular because R
is a domain. Thus both (aij) and (bst) are regular by Theorem 1.1(1), entailing
that T2(R) is CRP.

(4) Suppose that ab is regular for a, b ∈ R. Consider two matrices D = (dij)
and E = (est) in Tn(R) such that dii = a, ess = b, and dij = 0 = est for i 6= j
and s 6= t. Then DE is regular by Theorem 1.1(1). If Tn(R) is CRP, then
both D and E are regular in Tn(R). Hence both a and b are regular in R by
Theorem 1.1(2). Thus R is CRP. �

Considering Theorem 2.9, one may naturally ask whether Matn(R) is CRP
when R is a CRP ring. But the answer is negative by the following.

Example 2.10. There exists a domain (hence CRP by Theorem 2.4(2)) R
such that Mat2(R) is not directly finite (hence not CRP) by [12, Theorem 1.0].
We extend this argument to the general case of n ≥ 2. Mat2(R) is isomorphic
to a subring of Matn(R) via the corresponding (aij) 7→ (a′ij) where a′ij = aij
for all 1 ≤ i, j ≤ 2, a′ii = 1 for all 3 ≤ i ≤ n, and a′ij = 0 for all 3 ≤ i, j ≤ n
with i 6= j. Thus Matn(R) is not directly finite (hence not CRP) because the
class of directly finite rings is closed under subrings.

Considering Theorem 2.9(3), one may ask whether Tn(R) is also CRP over
a domain R for n ≥ 3. But we see a negative answer in what follows.

Example 2.11. Let R = K〈x, y〉 be the free algebra generated by the non-

commuting indeterminate x, y over a field K. Note that
( x y 0

0 0 x
0 0 y

)
is regular in

T3(R) by (II) in Example 1.3.x y 0
0 0 x
0 0 y

 =

x 1 0
0 0 x
0 0 y

1 0 0
0 y 0
0 0 1

 and

1 0 0
0 y 0
0 0 1

x 1 0
0 0 x
0 0 y

 =

x 1 0
0 0 yx
0 0 y

 .

The former is regular but the latter is not regular in T3(R) as can be seen byx 1 0
0 0 yx
0 0 y

0 0 1
0 0 −x
0 0 0

 = 0.



ON COMMUTATIVITY OF REGULAR PRODUCTS 1725

So T3(R) is not CRP, in spite of R being a domain (hence CRP). This result is

also shown by Theorem 2.4(4) because
(
x 1 0
0 0 x
0 0 y

)(
0 0 1
0 0 −x
0 0 0

)
= 0. This result can

be extended to the case of n ≥ 4.

A ring R is usually called right Ore if given a, b ∈ R with b regular there
exist a1, b1 ∈ R with b1 regular such that ab1 = ba1. It is well-known that right
Noetherian domains are right Ore. The ring R in Example 2.11 is not right
Ore.

Proposition 2.12. Let R be a domain. If R is right Ore, then T3(R) is CRP.

Proof. Let R be right Ore and suppose that AB is regular in T3(R) for A =
(aij), B = (bst) ∈ T3(R). Write C = AB = (cpq). Then both c11 and c33 are
nonzero by Theorem 1.1(2), entailing that a11, a33, b11, b33 ∈ R\{0}, since R is
a domain.

Assume c22 = 0 (i.e., a22 = 0 or b22 = 0). Since R is right Ore and c11 6= 0,
there exist α 6= 0 and β in R such that c11β + c12α = 0. This impliesc11 c12 c13

0 0 c23
0 0 c33

0 0 β
0 0 α
0 0 0

 =

0 0 c11β + c12α
0 0 0
0 0 0

 = 0.

Thus C is not right regular because
(

0 0 β
0 0 α
0 0 0

)
is nonzero, contrary to C being

regular. Hence we have c22 6= 0, and this implies that both a22 and b22 are
nonzero. Therefore both A and B are regular by Theorem 1.1(1), and hence
T3(R) is CRP by Theorem 2.4(4). �
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