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ON w-LOCAL MODULES AND Rad-SUPPLEMENTED

MODULES

Engin Büyükaşik and Rachid Tribak

Abstract. All modules considered in this note are over associative com-
mutative rings with an identity element. We show that a w-local mod-
ule M is Rad-supplemented if and only if M/P (M) is a local module,
where P (M) is the sum of all radical submodules of M . We prove that
w-local nonsmall submodules of a cyclic Rad-supplemented module are
again Rad-supplemented. It is shown that commutative Noetherian rings
over which every w-local Rad-supplemented module is supplemented are
Artinian. We also prove that if a finitely generated Rad-supplemented

module is cyclic or multiplication, then it is amply Rad-supplemented.
We conclude the paper with a characterization of finitely generated am-
ply Rad-supplemented left modules over any ring (not necessarily com-
mutative).

1. Introduction

All rings considered in this paper will be commutative with an identity
element (except for Section 5) and all modules will be left unitary modules.
Unless otherwise stated R denotes an arbitrary commutative ring. Let M be
an arbitrary R-module. We will denote by Rad(M) the Jacobson radical of M .
A submodule L of M is called small in M (notation L ≪ M) if M 6= L+N for
every proper submodule N of M . The annihilator of M in R will be denoted
by AnnR(M) = {α ∈ R : αx = 0 for all x ∈ M} and for every element x of M ,
the annihilator of x is denoted by AnnR(x) = {α ∈ R : αx = 0}. A module
M is said to be radical if Rad(M) = M . The sum of all radical submodules of
a module M will be denoted by P (M). A module M is said to be reduced if
P (M) = 0. We say that the ring R is reduced if the R-module RR is reduced.
For submodules U and V of a module M , the submodule V is said to be a Rad-
supplement of U inM if U+V = M and U∩V ⊆ Rad(V ). A moduleM is called
Rad-supplemented if every submodule of M has a Rad-supplement in M . On
the other hand, a submodule N of M is said to have ample Rad-supplements in
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M if every submodule K of M with M = N+K contains a Rad-supplement of
N in M . The module M is called amply Rad-supplemented if every submodule
of M has ample Rad-supplements in M . A nonzero module L is called local

if the sum of all its proper submodules is also a proper submodule. We say
that a nonzero module W is w-local if it has a unique maximal submodule.
w-local modules were first studied by Ware in [18], Gerasimov and Sakhaev in
[8]. In [3], Büyükaşik and Lomp showed that this type of modules play a key
role in the study of Rad-supplemented modules. This role is as important as
the role played by local modules for supplemented modules. In fact, it is shown
(in [3]) that any Rad-supplement of a maximal submodule is w-local and any
finitely generated Rad-supplemented module is a sum of finitely many w-local
submodules. But these modules may have a complicated structure. In Section
2 we will give a brief exposition of some properties of w-local modules.

Section 3 deals with the question: When w-local modules are (Rad-)supple-
mented? We will show that a w-local module M is Rad-supplemented if and
only if M/P (M) is a local module. It is also shown that w-local nonsmall
submodules of a cyclic Rad-supplemented module are again Rad-supplemented.
We conclude this section by showing that commutative Noetherian rings over
which every w-local Rad-supplemented module is supplemented are Artinian.

It is proved in [14, Corollary 4.6] that finitely generated supplemented mod-
ules are amply supplemented. One may ask whether this is true for Rad-
supplemented modules. In Section 4 we will not solve this question, but we will
show that it has an affirmative response for some type of modules. Among other
results, we show that if a Rad-supplemented module M is a cyclic or a multipli-
cation module, then M is amply Rad-supplemented. Moreover, we show that
the study of finitely generated Rad-supplemented modules over commutative
rings can be restricted to the class of finitely generated reduced modules over
semilocal reduced rings.

In the last section we characterize finitely generated amply Rad-supplement-
ed modules.

2. Some properties of w-local modules

There was little known about the structure of w-local modules. The aim of
this section is to shed some light on the structure of w-local modules.

Proposition 2.1. The following statements are equivalent for an R-module

M :
(i) M is w-local;
(ii) (a) There exists a unique maximal ideal m of R such that M 6= mM ,

and

(b) If m0 is the maximal ideal satisfying the condition (a), then M/m0M is

indecomposable.

In this case, m0M is the unique maximal submodule of M .
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Proof. (i) ⇒ (ii) Assume that M is w-local. Then Rad(M) 6= M . So there
exists a maximal ideal m of R such that mM 6= M by [7, Lemma 3]. Since
m(M/mM) = 0, M/mM is semisimple. But M is w-local. Then M/mM has
only one maximal submodule. This implies that M/mM is simple. Hence mM
is a maximal submodule of M . Assume that there exists a maximal ideal m′ of
R such that m′ 6= m and M 6= m′M . As above, we get that m′M is a maximal
submodule of M . So m′M = mM . Therefore M = (m + m′)M = mM , a
contradiction.

(ii) ⇒ (i) It is clear that M/m0M is semisimple. Since M/m0M is nonzero
indecomposable, M/m0M is simple. Thus m0M is a maximal submodule of
M . Let N be a maximal submodule of M . Since M/N is simple, there exists a
maximal ideal q of R such that q(M/N) = 0. Therefore qM ⊆ N . So qM 6= M .
By hypothesis, we have q = m0 and N = m0M . It follows that M is a w-local
module. �

We call a w-local module satisfying the conditions of Proposition 2.1 m0-w-
local.

Corollary 2.2. Let m be a maximal ideal of R and let M be an m-w-local
R-module. Then P (M) ⊆

⋂
n≥1 m

nM .

Proof. By Proposition 2.1, P (M) ⊆ mM . Since Rad(P (M)) = P (M), we have
mP (M) = P (M) by [7, Lemma 3]. So P (M) ⊆ m2M . By induction, we get
P (M) ⊆ mnM for all n ≥ 1. The result follows. �

Corollary 2.3. Let m be a maximal ideal of R and let M be an m-w-local R-

module. Let n be a positive integer. If Rad(mnM) 6= mnM , then Rad(mnM) =
m(n+1)M .

Proof. Let n be a positive integer. Assume that Rad(mnM) 6= mnM . Let q
be a maximal ideal of R with q 6= m. By Proposition 2.1, we have qM = M .
So q(mnM) = mnM . Moreover, [7, Lemma 3] shows that m(mnM) 6= mnM
and Rad(mnM) = m(n+1)M . �

Corollary 2.4. Let m be a maximal ideal of R and let M be an m-w-local
reduced R-module. If m is principal, then for every positive integer n, mnM = 0
or mnM is m-w-local.

Proof. Let n be a positive integer such that mnM 6= 0. Since m is principal,
there exists an element a ∈ m such that m = Ra. Since M is reduced, we have
Rad(mnM) 6= mnM . Thus Rad(mnM) = m(n+1)M 6= mnM by Corollary 2.3.
Consider the map ϕ : M/mM → mnM/m(n+1)M defined by ϕ(x + mM) =
anx+m(n+1)M . It is easily seen that ϕ is well defined and it is an epimorphism.
It follows that mnM/m(n+1)M is a simple module. Therefore Rad(mnM) is a
maximal submodule of mnM . Hence mnM is m-w-local. �

Proposition 2.5. Let M be an m-w-local reduced R-module. Then for every

x ∈ M \mM , we have AnnR(x) = AnnR(M).
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Proof. Let x ∈ M \ mM . Then M = mM + Rx. Let α ∈ AnnR(x). Thus
αM = α(mM). That is, αM = m(αM). Moreover, it is easily seen that
for every maximal ideal m′ 6= m, we have m′(αM) = αM . It follows that
Rad(αM) = αM by [7, Lemma 3]. Since M is reduced, we have αM = 0. It
follows that α ∈ AnnR(M). Hence AnnR(x) = AnnR(M). �

Lemma 2.6. Let N and K be submodules of an R-module M . If U is a

maximal submodule of N , then U + K = N + K or U + K is a maximal

submodule of N +K.

Proof. Note that (N +K)/(U +K) = [N +(U +K)]/(U +K) ∼= N/[N ∩ (U +
K)] ∼= N/[U + (N ∩ K)]. If N ∩K 6⊆ U , then U + (N ∩ K) = N and hence
U +K = N +K. Now if N ∩K ⊆ U , then (N +K)/(U + K) ∼= N/U . The
result follows. �

Proposition 2.7. Let M be a nonzero Artinian w-local R-module. If M is

reduced, then M is a local module of finite length.

Proof. Assume that M does not have a composition series. Let U1 be the
maximal submodule of M and let a ∈ M with a 6∈ U1. Then Ra + U1 = M .
By hypothesis, Rad(U1) 6= U1 since U1 6= 0. Therefore U1 has a maximal
submodule U2. If Ra + U2 6= M , then Ra + U2 is a maximal submodule of
M by Lemma 2.6. Thus Ra + U2 = U1 and a ∈ U1, a contradiction. So
Ra + U2 = M . By repeating the same reasoning, we construct an infinite
descending chain of submodules of M . This contradicts the fact that M is
Artinian. So M is of finite length. Now the fact that M is w-local and finitely
generated implies that M is local. �

3. When w-local modules are (Rad-)supplemented?

Note that contrary to local modules which are always supplemented, a w-
local module (even if it is reduced) need not be Rad-supplemented (see Example
3.1).

Example 3.1. Let p be a prime number and consider the Z-module Z(p) =
{a
b ∈ Q | p does not divide b}. Clearly, pZ(p) 6= Z(p). Let q be a prime

number with q 6= p and let a/b ∈ Z(p) such that p does not divide b. Then
a/b = q(a/qb). Since p does not divide qb, we have a/qb ∈ Z(p). Hence Z(p) ⊆

qZ(p) and qZ(p) = Z(p). Moreover, we have
Z(p)

pZ(p)
=

pZ(p)+Z

pZ(p)

∼= Z

pZ(p)∩Z
= Z

pZ .

By Proposition 2.1, it follows that Z(p) is w-local. It is easy to see that the
module Z(p) is reduced. On the other hand, note that the module Z(p) is not
Rad-supplemented by [4, Theorem 7.1 and Proposition 7.3].

The following two results give an answer to the natural question whether a
(reduced) w-local module is Rad-supplemented.

Proposition 3.2. The following statements are equivalent for a reduced w-local
R-module M :
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(i) M is amply Rad-supplemented;
(ii) M is Rad-supplemented;
(iii) M is a local module;
(iv) M is supplemented;
(v) M is amply supplemented.

Proof. (i) ⇒ (ii) This is clear.
(ii) ⇒ (iii) Let x ∈ M \ Rad(M) and let K be a Rad-supplement of Rx in

M . Since Rx + K = M , we have M/K ∼= Rx/(Rx ∩ K). Thus M/K has a
maximal submodule. But Rad(M) is the only maximal submodule of M . Then
K ⊆ Rad(M). Now, since K is a Rad-supplement submodule of M , it follows
that Rad(K) = K ∩ Rad(M) by [4, Corollary 4.2]. Therefore Rad(K) = K.
But M is reduced. Then K = 0. This gives that M = Rx is a local module.

(iii) ⇒ (i) This is immediate.
(v) ⇒ (iv) ⇒ (iii) ⇒ (v) These run as before. �

Proposition 3.3. The following statements are equivalent for a w-local R-

module M :
(i) M is Rad-supplemented;
(ii) M/P (M) is Rad-supplemented;
(iii) M/P (M) is supplemented;
(iv) M/P (M) is a local module;
(v) For every x ∈ M \Rad(M), M = P (M)+Rx and the ring R/Ix is local,

where Ix = {r ∈ R | rx ∈ P (M)};
(vi) There exists x ∈ M such that M = P (M) + Rx and the ring R/Ix is

local, where Ix = {r ∈ R | rx ∈ P (M)}.
If the ring R/P (R) is semiperfect, then (i)-(vi) are equivalent to:
(vii) M = P (M) +Rx for every x ∈ M \Rad(M);
(viii) There exists x ∈ M such that M = P (M) +Rx.

Proof. (i)⇒ (iv) SinceM isRad-supplemented,M/P (M) is Rad-supplemented
by [4, Proposition 4.8]. It is easily seen thatM/P (M) is a reduced w-local mod-
ule. Applying Proposition 3.2, we conclude that M/P (M) is a local module.

(iv) ⇒ (v) Let x ∈ M \Rad(M). Since Rad(M) is a maximal submodule of
M , we have M = Rad(M) + Rx. As P (M) ⊆ Rad(M), we have M/P (M) =
(Rad(M)/P (M)) + ((P (M) +Rx)/P (M)). Since M/P (M) is local and M 6=
Rad(M), we get M = P (M)+Rx. Moreover, note that M/P (M) ∼= Rx/(Rx∩
P (M)) and AnnR(M/P (M)) = Ix. Thus R/Ix is a local ring.

(v) ⇒ (vi) This is clear.
(vi) ⇒ (iii) This follows from the fact that M/P (M) ∼= Rx/(Rx∩P (M)) ∼=

R/Ix.
(iii) ⇒ (ii) This is immediate.
(ii) ⇒ (i) By [4, Proposition 4.8].
(v) ⇒ (vii) ⇒ (viii) These are immediate.
(viii) ⇒ (ii) By [4, Theorem 6.5] and the fact that M/P (M) is cyclic. �
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Corollary 3.4. Assume that R is a Dedekind domain. The following state-

ments are equivalent for an R-module M :
(i) M is a w-local Rad-supplemented module;
(ii) There exist a submodule E ≤ M with Rad(E) = E and a local submodule

L ≤ M such that M = E ⊕ L.

Proof. (i) ⇒ (ii) By Proposition 3.3, M/P (M) is a local module. Since R is
a Dedekind domain, P (M) is injective. Thus there exists a local submodule
L ≤ M such that M = P (M)⊕ L.

(ii) ⇒ (i) It is clear that E is Rad-supplemented. So M is Rad-supplemented
by [17, Proposition 2.5]. Moreover, note that if K is the maximal submodule
of L, then E ⊕K is the only maximal submodule of M . �

Next we will be concerned with the study of w-local submodules of a finitely
generated Rad-supplemented module.

Proposition 3.5. Let M be an R-module with Rad(M) ≪ M . The following

statements are equivalent for a nonsmall submodule N of M :
(i) N is w-local;
(ii) N is a Rad-supplement of a maximal submodule of M .

Proof. (i) ⇒ (ii) Since N is not small in M , there exists a maximal submodule
K of M such that N + K = M . Suppose that N ∩ K 6⊆ Rad(N). Then
(N ∩ K) + Rad(N) = N . Therefore (N ∩ K) + Rad(N) + K = M . Hence
Rad(N) + K = M . Since Rad(N) ⊆ Rad(M) ≪ M , we get K = M , a
contradiction. So N ∩K ⊆ Rad(N) and hence N is a Rad-supplement of K in
M .

(ii) ⇒ (i) This follows from [3, Lemma 3.3]. �

Proposition 3.6. Let M be a finitely generated Rad-supplemented R-module.

Consider the following conditions:
(i) Every nonsmall w-local submodule of M is Rad-supplemented;
(ii) M/P (M) is supplemented.

Then (i) ⇒ (ii).

Proof. Since M is Rad-supplemented, M =
∑k

i=1 Mi is an irredundant sum

of w-local submodules Mi (1 ≤ i ≤ k). Then M/P (M) =
∑k

i=1(Mi +
P (M))/P (M). Let 1 ≤ i ≤ k. We have (Mi + P (M))/P (M) ∼= Mi/(Mi ∩
P (M)) and P (Mi) ⊆ Mi ∩ P (M). Thus (Mi + P (M))/P (M) is a factor mod-
ule of Mi/P (Mi). By (i) and Proposition 3.3, Mi/P (Mi) is supplemented and
so is (Mi + P (M))/P (M) (see [19, 41.2(3)]). Therefore M/P (M) is supple-
mented by [19, 41.2(2)]. �

Theorem 3.7. Let M be a cyclic module over a commutative ring R. If M
is Rad-supplemented, then every nonsmall w-local submodule of M is Rad-
supplemented.
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Proof. We first note that there exists an ideal I of R such that M ∼= R/I.
It is clear that R(R/I) is Rad-supplemented if and only if (R/I)(R/I) is Rad-
supplemented. So without loss of generality we can assume that I = 0 andM =
R. Since RR is Rad-supplemented, R/P (R) is semiperfect by [4, Theorem 6.5].
Let J be the Jacobson radical of R. Then the ring R/J ∼= (R/P (R))/(J/P (R))
is semisimple. Let W be a nonsmall w-local submodule of RR and let U be
a submodule of W . If U ⊆ Rad(W ), then it is easy to see that W is a Rad-
supplement of U in M . Now assume that U 6⊆ Rad(W ). Since W is nonsmall in

RR, there exists a maximal idealK of R such thatW+K = R. Clearly, we have
R/K ∼= W/(W ∩K). So W ∩K = Rad(W ) is the maximal submodule of W .
Since U+Rad(W ) = W , we have U+Rad(W )+K = R. Therefore U+K = R
since Rad(W ) ≪ R. Note that the module RR is amply Rad-supplemented by
[16, Theorem 3.7]. Then there is a submodule L ≤ K such that U + L = R
and U ∩ L ⊆ Rad(L). Now we have W ∩ L ⊆ W ∩K = Rad(W ) = JW and
W ∩ L ⊆ (Rad(R)) ∩ L = Rad(L) = JL by [4, Corollary 4.2]. It follows that
W∩L = JW ∩JL. Since W+L = R, we have Rad(W∩L) = J(W∩L) = W∩L
by [4, Lemma 6.3]. Moreover, we have U + (W ∩ L) = W . Therefore W ∩L is
a Rad-supplement of U in M . This completes the proof. �

Remark 3.8. Let M be a cyclic reduced Rad-supplemented R-module. From
Theorem 3.7 and Proposition 3.2, it follows that every nonsmall w-local sub-
module of M is a local module. This is not true, in general, if the module M
is not reduced (see the following example).

Example 3.9. Let R be an integral domain with exactly two maximal ideals
m1 and m2 such that both of m1 and m2 are idempotent (see [9, p. 293]). Then
the Jacobson radical Rad(R) = m1 ·m2 of R is idempotent. So Rad(R) = P (R).
Therefore R/P (R) is semiperfect (even semisimple), but R is not semiperfect
since a semiperfect integral domain is local.

(1) Note that RR = m1 + m2, Rad(m1) = Rad(R) · m1 = Rad(R) and
Rad(m2) = Rad(R) ·m2 = Rad(R). Moreover, we have m1/m1 ·m2

∼= R/m2

and m2/m1 ·m2
∼= R/m1. It follows that m1 and m2 are w-local R-modules.

Since R/P (R) is semiperfect, RR is Rad-supplemented by [4, Theorem 6.5].
Therefore the R-modules Rm1 and Rm2 are Rad-supplemented by Theorem
3.7.

(2) Since R is not semiperfect, it follows that at least one of the Rmi (i = 1, 2)
is not local.

(3) Note that R is a commutative ring such that RR is Rad-supplemented,
but RR is not supplemented (see [11, Corollary 4.42]).

The next example shows that, in general, the converse of Theorem 3.7 need
not be true.

Example 3.10. Let K be a field and let R =
∏∞

i=1 Ki with Ki = K for
i = 1, 2, . . .. It is well known that the ring R is von Neumann regular which
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is not semisimple. Thus R is a V -ring and hence Rad(M) = 0 for any R-
module M . Let N be a w-local submodule of RR. Since Rad(N) = 0, N is
simple. So N is Rad-supplemented. On the other hand, the module RR is
not Rad-supplemented. For if not, the ring R/P (R) will be semiperfect by [4,
Theorem 6.5]. But P (R) = 0. Then R is semiperfect and so R is semisimple,
a contradiction.

We conclude this section by dealing with the question when a w-local Rad-
supplemented module is supplemented. We begin with an example showing
that a w-local Rad-supplemented module need not be supplemented, in general.

Example 3.11. Consider the Z-module M = Q⊕L such that Q is the field of
rational numbers and L is a local Z-module. Let K be the maximal submodule
of L. Clearly, M is a w-local module with the maximal submodule Q ⊕ K.
Since Q and L are Rad-supplemented, so is M by [17, Proposition 2.5]. On the
other hand, M is not supplemented since its factor module M/L ∼= Q is not
supplemented (see [5, Example 20.12 and Corollary 20.15]).

Proposition 3.12. Let M be a w-local Rad-supplemented module over a com-

mutative Noetherian ring. The following statements are equivalent:
(i) M is supplemented;
(ii) P (M) is supplemented.

Proof. By [12, Proposition 2.6] and Proposition 3.3. �

As in [21], a module M is called minimax if it has a finitely generated
submodule N such that M/N is Artinian.

Recall that a module M is said to be weakly supplemented if for every
submodule N ≤ M , there exists a submodule L ≤ M such that M = N + L
and N ∩ L ≪ M (see [5]).

The following theorem characterizes the class of commutative Noetherian
rings over which w-local Rad-supplemented modules are supplemented.

Theorem 3.13. The following are equivalent for a commutative Noetherian

ring R:
(i) Every Rad-supplemented R-module is supplemented;
(ii) Every Rad-supplemented R-module is weakly supplemented;
(iii) Every radical R-module is supplemented;
(iv) Every w-local Rad-supplemented R-module is supplemented;
(v) R is Artinian.

Proof. (i) ⇒ (ii) This is obvious.
(ii) ⇒ (v) Assume that the ring R is not Artinian. Then there exists a

nonzero module K such that Rad(K) = K by [10, Theorem 1]. Let M =
K(N). Since Rad(M) = M , M is Rad-supplemented. Hence M is weakly
supplemented by (ii). By [12, Proposition 3.4], Mm is an Rm-minimax module
for all maximal ideals m of R. Since K 6= 0, there exists a maximal ideal m0
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of R such that Km0 6= 0. Thus Mm0 = (Km0)
(N) is a minimax Rm0 -module

having an infinite decomposition, a contradiction (see [13, Theorem 2.1]).
(v) ⇒ (iv) This follows from the fact that every R-module is supplemented

by [11, Theorem 4.41].
(iv) ⇒ (iii) Let M be a radical module and let S be any simple module.

Clearly, the module M ⊕ S is w-local. Moreover, the module M ⊕ S is Rad-
supplemented since it is a direct sum of two Rad-supplemented modules. By
hypothesis, M⊕S is supplemented. Therefore M is supplemented by [5, Corol-
lary 20.15].

(iii) ⇒ (i) Let M be a Rad-supplemented module. By (iii), P (M) is sup-
plemented. Note that M/P (M) is Rad-supplemented by [17, Proposition 2.6].
Then M/P (M) is supplemented by [4, Proposition 7.3]. Now [12, Proposition
2.6] shows that M is supplemented. �

4. When finitely generated Rad-supplemented modules are amply
Rad-supplemented?

It is shown in [14, Corollary 4.6] that any finitely generated supplemented
R-module is amply supplemented. We begin this section with giving some ex-
amples of classes of rings over which every finitely generated Rad-supplemented
module is amply supplemented. First we prove the following proposition.

Proposition 4.1. Let M be a finitely generated Rad-supplemented R-module.

Assume that every w-local submodule of M is local. Then M is amply supple-

mented.

Proof. By [3, Corollary 3.8], M = W1+· · ·+Wn is a sum of w-local submodules
Wi (1 ≤ i ≤ n). Since eachWi (1 ≤ i ≤ n) is a local module, M is supplemented
by [19, 41.6(1)]. So M is amply supplemented by [14, Corollary 4.6]. �

Recall that a ring R is said to be a left max ring if every left R-module has
a maximal submodule, equivalently Rad(M) ≪ M for every left R-module M .

Example 4.2. (1) Let R be a commutative Noetherian ring or a commutative
max ring. Let M be a finitely generated Rad-supplemented R-module. If W
is a w-local submodule of M , then W is local since Rad(W ) ≪ W . Therefore
M is amply supplemented by Proposition 4.1.

(2) It is well known that over a semiperfect ring, every finitely generated
module is amply supplemented (see [11, Theorem 4.41]).

Recall that a module M is called hereditary if every submodule of M is
projective.

Example 4.3. LetM be a finitely generated hereditary R-module. LetW be a
w-local submodule of M . Since W is projective, W is local by [18, Proposition
4.11]. Hence M is amply supplemented by Proposition 4.1.

Recall that a module M is called Rad-⊕-supplemented if every submodule
has a Rad-supplement that is a direct summand of M .
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Remark 4.4. Let M be a finitely generated Rad-⊕-supplemented R-module.
By [6, Corollary 2.20], M is a finite sum of local submodules. Thus M is
amply supplemented by [19, 41.6(1)] and [14, Corollary 4.6].

Lemma 4.5 (See [16, Corollary 3.6]). Let M be a finitely generated R-module

such that every cyclic submodule of M is Rad-supplemented. Then M is amply

Rad-supplemented.

A module M is called a multiplication R-module provided for each submod-
ule N ≤ M , there exists an ideal I of R such that N = IM .

Proposition 4.6. The following are equivalent for a commutative ring R:
(i) The ring R/P (R) is semiperfect;
(ii) The module RR is Rad-supplemented;
(iii) The module RR is amply Rad-supplemented;
(iv) Every finitely generated R-module is Rad-supplemented;
(v) Every finitely generated R-module is amply Rad-supplemented;
(vi) R has a finitely generated faithful multiplication Rad-supplemented R-

module M .

Proof. (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) By [4, Theorem 6.5] and Lemma 4.5.
(ii) ⇒ (vi) It suffices to take M = RR.
(vi)⇒ (ii) We first note thatRad(M) = JM , where J is the Jacobson radical

of R by [1, Theorem 2.13]. Let A be an ideal of R. By hypothesis, there exists
an ideal B of R such that AM + BM = M and AM ∩ BM ⊆ Rad(BM). So
Rad(BM) = BM ∩ JM by [4, Theorem 4.1]. Now [1, Lemma 2.6] shows that
AM ∩BM = (A∩B)M and BM ∩JM = (B∩J)M . According to [1, Theorem
2.9], we have A + B = R and A ∩ B ⊆ J ≪ R. Therefore the module RR is
weakly supplemented. By [5, Corollary 18.7], the ring R is semilocal. It follows
that Rad(BM) = JBM by [2, Corollary 15.18]. So A ∩ B ⊆ JB = Rad(B)
by [1, Theorem 2.9] and [2, Corollary 15.18]. This implies that B is a Rad-
supplement of A in RR. Consequently, RR is Rad-supplemented. �

Proposition 4.7. Let M be a finitely generated multiplication R-module. If

M is Rad-supplemented, then M is amply Rad-supplemented.

Proof. Assume that M is Rad-supplemented. Consider the ring

R′ = R/AnnR(M).

Note that M can be regarded as an R′-module and the submodules of M are
the same whether it is regarded as an R-module or as an R′-module. Then
M is a faithful multiplication Rad-supplemented R′-module. It follows from
Proposition 4.6 that M is amply Rad-supplemented. �

Proposition 4.8. Let M = Rx be a cyclic R-module. Then:
(1) If M is Rad-supplemented, then M is amply Rad-supplemented.

(2) If M is reduced and Rad-supplemented, then M is amply supplemented.
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Proof. Note that M ∼= R/I, where I = AnnR(x).
(1) By hypothesis, (R/I)(R/I) is Rad-supplemented. By Proposition 4.6,

(R/I)(R/I) is amply Rad-supplemented. This shows that RM is amply Rad-
supplemented.

(2) By Proposition 3.6 and Theorem 3.7, M/P (M) is supplemented. Since
M is reduced, M is supplemented. So M is amply supplemented by [14, Corol-
lary 4.6]. �

Proposition 4.9. Let M =
∑n

i=1 Rxi be an R-module which is a sum of

cyclic Rad-supplemented submodules Rxi (1 ≤ i ≤ n). Let Ii = AnnR(xi)
(1 ≤ i ≤ n). Then:

(1) If Ii+ Ij = R for all 1 ≤ i < j ≤ n, then M is amply Rad-supplemented.

(2) If M is reduced, then M is amply supplemented.

Proof. (1) Let I =
⋂n

i=1 Ii. Note that M is an (R/I)-module and its submod-
ules over R and over R/I are the same. Since Ii+ Ij = R for all 1 ≤ i < j ≤ n,
we have R/I ∼=

⊕n
i=1 R/Ii by the Chinese Remainder Theorem. Since the R-

modules R/Ii (1 ≤ i ≤ n) are Rad-supplemented, R/I is a Rad-supplemented
R-module by [17, Proposition 2.5]. So R/I is a Rad-supplemented (R/I)-
module. It follows from Proposition 4.6 that M is amply Rad-supplemented.

(2) By Proposition 4.8, [14, Corollary 4.6] and [5, 20.14]. �

Let a be an ideal of R. An R-module M is called a-local if AnnR(x) ⊆ m
(where x ∈ M and m is a maximal ideal of R) implies a ⊆ m (see [20, p. 52]).

Proposition 4.10. Let M be a finitely generated Rad-supplemented R-module.

Then there exist maximal ideals m1, . . . ,mn of R such that M is an a-local
module, where a = m1 · · ·mn.

Proof. By [3, Corollary 3.8], M =
∑n

i=1 Wi is the sum of w-local submodules
Wi (1 ≤ i ≤ n). For each 1 ≤ i ≤ n, let mi be the maximal ideal of R such that
Wi is mi-w-local. By rearranging the submodules Wi (1 ≤ i ≤ n), if necessary,
we can suppose that there exists an integer k, with 1 ≤ k ≤ n, such that m1,
. . ., mk are the distinct members of the set {mi : 1 ≤ i ≤ n}. Note that by
Proposition 2.1, we have miMj = Mj for each i 6= j. Let a = m1 · · ·mk and
for each 1 ≤ i ≤ k, let Mi =

∑
{Wj : 1 ≤ j ≤ n and mj = mi}. Therefore,

for each 1 ≤ i ≤ k, we have miMi =
∑

{miWj : 1 ≤ j ≤ n and mj = mi}=∑
{Rad(Wj) : 1 ≤ j ≤ n and mj = mi} ⊆ Rad(M) (see Proposition 2.1). It

follows that aM =
∑k

i=1 aMi =
∑k

i=1 miMi ⊆ Rad(M) ≪ M . By [20, Lemma
2.1], the module M is a-local. �

The next result shows that the study of finitely generated Rad-supplemented
modules over commutative rings can be reduced to modules over semilocal
rings.

Corollary 4.11. Let M be a finitely generated Rad-supplemented R-module.

Then the ring R/AnnR(M) is semilocal.
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Proof. Assume M =
∑n

i=1 Rxi. Then AnnR(M) =
⋂n

i=1 AnnR(xi). Let m be
a maximal ideal of R such that AnnR(M) ⊆ m. Then AnnR(xi) ⊆ m for some
1 ≤ i ≤ n. By Proposition 4.10, there exist maximal ideals m1, . . . ,mk of R,
for some k ≥ 1, such that M is (m1m2 · · ·mk)-local. So m1m2 · · ·mk ⊆ m.
Therefore m = mj for some 1 ≤ j ≤ k. It follows that the ring R/AnnR(M)
has finitely many maximal ideals. This completes the proof. �

Remark 4.12. Assume that R is a commutative ring having infinitely many
maximal ideals. Let M be a finitely generated Rad-supplemented R-module.
By Proposition 4.10, there exist maximal ideals m1, . . . ,mn of R such that M is
(m1 · · ·mk)-local. So for every nonzero element x ∈ M , we have AnnR(x) 6= 0.

A commutative ring R is called a Gelfand ring (or a pm ring) if each prime
ideal is contained in exactly one maximal ideal (see [20, p. 49]).

Corollary 4.13. Let M be a finitely generated Rad-supplemented R-module.

Then:
(1) If the ring R/p is local for every prime ideal p of R with AnnR(M) ⊆ p,

then M is amply supplemented.

(2) If Rad(R/AnnR(M)) is idempotent, then M is amply Rad-supplemented.

(3) If m is a maximal ideal of R such that M is a sum of finitely many

m-w-local submodules, then M is amply supplemented.

Proof. (1) By Corollary 4.11, the ringR/AnnR(M) is semilocal. By hypothesis,
R/AnnR(M) is Gelfand. Thus R/AnnR(M) is semiperfect by [20, Folgerung
p. 50]. So M is amply supplemented by [11, Theorem 4.41].

(2) By Corollary 4.11, the ring R/AnnR(M) is semilocal. By [3, Proposition
2.1], the module (R/AnnR(M))(R/AnnR(M)) is Rad-supplemented. Therefore
M is amply Rad-supplemented by Proposition 4.6.

(3) By the proof of Proposition 4.10, the module M is m-local. Thusm is the
only maximal ideal containing AnnR(M) (see the proof of Corollary 4.11). It
follows that the ring R/AnnR(M) is local. ThereforeM is amply supplemented
(see [11, Theorem 4.41]). �

Proposition 4.14. Let R be a semilocal ring with J = Rad(R) and A = P (R).
If M is a reduced R-module, then M is an (R/A)-module and its submodules

over R and over R/A are the same.

Proof. Since R is semilocal, we have JA = A and Rad(AM) = J(AM) =
(JA)M = AM by [2, Corollary 15.18]. But M is reduced. So AM = 0. That
is, A ⊆ AnnR(M). This completes the proof. �

Remark 4.15. Combining [4, Proposition 4.8], Corollary 4.11 and Proposition
4.14, we conclude that the study of finitely generated Rad-supplemented mod-
ules over commutative rings can be restricted to the class of finitely generated
reduced modules over semilocal reduced rings.
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5. Amply Rad-supplemented modules

In this section we consider modules over an arbitrary ring R (not necessarily
commutative). We conclude this paper with Theorem 5.2 which characterizes
finitely generated amply Rad-supplemented modules. We shall require the
following lemma which is taken from [15, Lemma 3.5]. Note that [16, Theorem
3.5] showed that the statements (i) and (ii) of Theorem 5.2 are equivalent.

Lemma 5.1. Let M be a finitely generated R-module. Let C be a family of

submodules of M . Suppose that M has a submodule N such that M 6= N + A
for every A ∈ C. Then M has a submodule U such that U is maximal in the

set of submodules Ω = {L ≤ M | N ⊆ L and M 6= L+A for every A ∈ C}.

Proof. Let M = Rm1 + · · · + Rmk. By hypothesis, N ∈ Ω. let (Kλ)λ∈Λ be
a chain in Ω. Let K =

⋃
λ∈Λ Kλ. Suppose that K 6∈ Ω. Then M = K + B

for some element B ∈ C. So for each 1 ≤ i ≤ k, there exist elements xi ∈ K

and yi ∈ B such that mi = xi + yi. It follows that M = [
∑k

i=1 Rxi] + B.
On the other hand, for each 1 ≤ i ≤ k, there is λi ∈ Λ such that xi ∈ Kλi

.
Since (Kλ)λ∈Λ is a chain, there exists an integer j, with 1 ≤ j ≤ k, such that
Kλi

≤ Kλj
for each 1 ≤ i ≤ k. Therefore M = Kλj

+B, a contradiction. This
shows that K ∈ Ω. It follows by Zorn’s Lemma that Ω possesses a maximal
member U . �

Theorem 5.2. Let M be a finitely generated R-module. The following state-

ments are equivalent:
(i) M is amply Rad-supplemented;
(ii) Every maximal submodule of M has ample Rad-supplements in M ;
(iii) For every submodules N and L of M such that M = N+L and N 6= M ,

we have M = N +W1 + · · ·+Wn, where n is a positive integer and each Wi is

a w-local submodule of L.

Proof. (i) ⇒ (ii) This is clear.
(ii) ⇒ (iii) Let L and N be submodules of M such that M = N + L and

N 6= M . Let S be the collection of submodules X ≤ M such that X ⊆ L and
X = 0 or X is a finite sum of w-local submodules. Suppose that M 6= N + A
for every A ∈ S. By Lemma 5.1, there is a submodule U of M such that N ⊆ U
and U is maximal with respect to the property M 6= U + A for every A ∈ S.
Since M is finitely generated and U 6= M , there is a maximal submodule K
of M such that U ⊆ K. Thus K + L = M . By (ii), there exists a submodule
E of L such that E is a Rad-supplement of K in M . By [3, Lemma 3.3], E
is a w-local submodule of L. Note that U 6= U + E, since otherwise we have
E ⊆ U ⊆ K and K = K + E = M . It follows that M = U + E + F for some
element F ∈ S. But E + F ∈ S, a contradiction. The result follows.

(iii) ⇒ (i) By [6, Proposition 2.14]. �

Remark 5.3. It is easily seen that Lemma 2.6 and Propositions 2.7, 3.2, 3.5
and 4.14 remain true if the ring R is not commutative.
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2006.
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