• Title/Summary/Keyword: cohomology

Search Result 141, Processing Time 0.02 seconds

SOME REMARKS ON NON-SYMPLECTIC AUTOMORPHISMS OF K3 SURFACES OVER A FIELD OF ODD CHARACTERISTIC

  • Jang, Junmyeong
    • East Asian mathematical journal
    • /
    • v.30 no.3
    • /
    • pp.321-326
    • /
    • 2014
  • In this paper, we present a simple proof of Corollary 3.3 in [5] using the fact that for a K3 surface of finite height over a field of odd characteristic, the height is a multiple of the non-symplectic order. Also we prove for a non-symplectic CM K3 surface defined over a number field the Frobenius invariant of the reduction over a finite field is determined by the congruence class of residue characteristic modulo the non-symplectic order of the K3 surface.

DEPTH FOR TRIANGULATED CATEGORIES

  • Liu, Yanping;Liu, Zhongkui;Yang, Xiaoyan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.551-559
    • /
    • 2016
  • Recently a construction of local cohomology functors for compactly generated triangulated categories admitting small coproducts is introduced and studied by Benson, Iyengar, Krause, Asadollahi and their coauthors. Following their idea, we introduce the depth of objects in such triangulated categories and get that when (R, m) is a graded-commutative Noetherian local ring, the depth of every cohomologically bounded and cohomologically finite object is not larger than its dimension.

DOUBLE LINES IN THE QUINTIC DEL PEZZO FOURFOLD

  • Kiryong Chung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.485-494
    • /
    • 2023
  • Let Y be the quintic del Pezzo 4-fold defined by the linear section of Gr(2, 5) by ℙ7. In this paper, we describe the locus of double lines in the Hilbert scheme of coincs in Y. As a corollary, we obtain the desigularized model of the moduli space of stable maps of degree 2 in Y. We also compute the intersection Poincaré polynomial of the stable map space.

TWO EXAMPLES OF LEFSCHETZ FIXED POINT FORMULA WITH RESPECT TO SOME BOUNDARY CONDITIONS

  • Yoonweon Lee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • The boundary conditions $\tilde{P}_0$ and $\tilde{P}_1$ were introduced in [5] by using the Hodge decomposition on the de Rham complex. In [6] the Atiyah-Bott-Lefschetz type fixed point formulas were proved on a compact Riemannian manifold with boundary for some special type of smooth functions by using these two boundary conditions. In this paper we slightly extend the result of [6] and give two examples showing these fixed point theorems.

FLOER MINI-MAX THEORY, THE CERF DIAGRAM, AND THE SPECTRAL INVARIANTS

  • Oh, Yong-Geun
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.363-447
    • /
    • 2009
  • The author previously defined the spectral invariants, denoted by $\rho(H;\;a)$, of a Hamiltonian function H as the mini-max value of the action functional ${\cal{A}}_H$ over the Novikov Floer cycles in the Floer homology class dual to the quantum cohomology class a. The spectrality axiom of the invariant $\rho(H;\;a)$ states that the mini-max value is a critical value of the action functional ${\cal{A}}_H$. The main purpose of the present paper is to prove this axiom for nondegenerate Hamiltonian functions in irrational symplectic manifolds (M, $\omega$). We also prove that the spectral invariant function ${\rho}_a$ : $H\;{\mapsto}\;\rho(H;\;a)$ can be pushed down to a continuous function defined on the universal (${\acute{e}}tale$) covering space $\widetilde{HAM}$(M, $\omega$) of the group Ham((M, $\omega$) of Hamiltonian diffeomorphisms on general (M, $\omega$). For a certain generic homotopy, which we call a Cerf homotopy ${\cal{H}}\;=\;\{H^s\}_{0{\leq}s{\leq}1}$ of Hamiltonians, the function ${\rho}_a\;{\circ}\;{\cal{H}}$ : $s\;{\mapsto}\;{\rho}(H^s;\;a)$ is piecewise smooth away from a countable subset of [0, 1] for each non-zero quantum cohomology class a. The proof of this nondegenerate spectrality relies on several new ingredients in the chain level Floer theory, which have their own independent interest: a structure theorem on the Cerf bifurcation diagram of the critical values of the action functionals associated to a generic one-parameter family of Hamiltonian functions, a general structure theorem and the handle sliding lemma of Novikov Floer cycles over such a family and a family version of new transversality statements involving the Floer chain map, and many others. We call this chain level Floer theory as a whole the Floer mini-max theory.

A SUBFOLIATION OF A CR-FOLIATION ON A LOCALLY CONFORMAL ALMOST KAHLER MANIFOLD

  • Kim, Tae-Wan;Pak, Hong-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.5
    • /
    • pp.865-874
    • /
    • 2004
  • The present paper treats with a subfoliation of a CR-foliation F on an almost Hermitian manifold M. When M is locally conformal almost Kahler, it has three OR-foliations. We show that a CR-foliation F on such manifold M admits a canonical subfoliation D(1/ F) defined by its totally real subbundle. Furthermore, we investigate some cohomology classes for D(1/ F). Finally, we construct a new one from an old locally conformal almost K hler (in particular, an almost generalized Hopf) manifold.

ON TATE-SHAFAREVICH GROUPS OVER CYCLIC EXTENSIONS

  • Yu, Ho-Seog
    • Honam Mathematical Journal
    • /
    • v.32 no.1
    • /
    • pp.45-51
    • /
    • 2010
  • Let A be an abelian variety defined over a number field K and let L be a cyclic extension of K with Galois group G = <${\sigma}$> of order n. Let III(A/K) and III(A/L) denote, respectively, the Tate-Shafarevich groups of A over K and of A over L. Assume III(A/L) is finite. Let M(x) be a companion matrix of 1+x+${\cdots}$+$x^{n-1}$ and let $A^x$ be the twist of $A^{n-1}$ defined by $f^{-1}{\circ}f^{\sigma}$ = M(x) where $f:A^{n-1}{\rightarrow}A^x$ is an isomorphism defined over L. In this paper we compute [III(A/K)][III($A^x$/K)]/[III(A/L)] in terms of cohomology, where [X] is the order of an finite abelian group X.

GOTTLIEB GROUPS AND SUBGROUPS OF THE GROUP OF SELF-HOMOTOPY EQUIVALENCES

  • Kim, Jae-Ryong;Oda, Nobuyuki;Pan, Jianzhong;Woo, Moo-Ha
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.5
    • /
    • pp.1047-1063
    • /
    • 2006
  • Let $\varepsilon_#(X)$ be the subgroups of $\varepsilon(X)$ consisting of homotopy classes of self-homotopy equivalences that fix homotopy groups through the dimension of X and $\varepsilon_*(X) $ be the subgroup of $\varepsilon(X)$ that fix homology groups for all dimension. In this paper, we establish some connections between the homotopy group of X and the subgroup $\varepsilon_#(X)\cap\varepsilon_*(X)\;of\;\varepsilon(X)$. We also give some relations between $\pi_n(W)$, as well as a generalized Gottlieb group $G_n^f(W,X)$, and a subset $M_{#N}^f(X,W)$ of [X, W]. Finally we establish a connection between the coGottlieb group of X and the subgroup of $\varepsilon(X)$ consisting of homotopy classes of self-homotopy equivalences that fix cohomology groups.

FINITENESS PROPERTIES OF EXTENSION FUNCTORS OF COFINITE MODULES

  • Irani, Yavar;Bahmanpour, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.649-657
    • /
    • 2013
  • Let R be a commutative Noetherian ring, I an ideal of R and T be a non-zero I-cofinite R-module with dim(T) ${\leq}$ 1. In this paper, for any finitely generated R-module N with support in V(I), we show that the R-modules $Ext^i_R$(T,N) are finitely generated for all integers $i{\geq}0$. This immediately implies that if I has dimension one (i.e., dim R/I = 1), then $Ext^i_R$($H^j_I$(M), N) is finitely generated for all integers $i$, $j{\geq}0$, and all finitely generated R-modules M and N, with Supp(N) ${\subseteq}$ V(I).