Browse > Article
http://dx.doi.org/10.4134/BKMS.2013.50.2.649

FINITENESS PROPERTIES OF EXTENSION FUNCTORS OF COFINITE MODULES  

Irani, Yavar (Department of Mathematics Islamic Azad University Meshkin-Shahr branch)
Bahmanpour, Kamal (Department of Mathematics Islamic Azad University-Ardabil branch)
Publication Information
Bulletin of the Korean Mathematical Society / v.50, no.2, 2013 , pp. 649-657 More about this Journal
Abstract
Let R be a commutative Noetherian ring, I an ideal of R and T be a non-zero I-cofinite R-module with dim(T) ${\leq}$ 1. In this paper, for any finitely generated R-module N with support in V(I), we show that the R-modules $Ext^i_R$(T,N) are finitely generated for all integers $i{\geq}0$. This immediately implies that if I has dimension one (i.e., dim R/I = 1), then $Ext^i_R$($H^j_I$(M), N) is finitely generated for all integers $i$, $j{\geq}0$, and all finitely generated R-modules M and N, with Supp(N) ${\subseteq}$ V(I).
Keywords
arithmetic rank; cofinite modules; local cohomology; minimax modules;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Abazari and K. Bahmanpour, Cofiniteness of extension functors of cofinite modules, J. Algebra 330 (2011), 507-516.   DOI   ScienceOn
2 K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra 321 (2009), no. 7, 1997-2011.   DOI   ScienceOn
3 K. Bahmanpour, R. Naghipour, and M. Sedghi, Minimaxness and cofiniteness properties of local cohomology modules, Comm. Algebra, In press.
4 K. Bahmanpour, R. Naghipour, and M. Sedghi, On the category of cofinite modules which is Abelian, Proc. Amer. Math. Soc., In press.
5 M. P. Brodmann and R. Y. Sharp, Local Cohomology: an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
6 G. Chiriacescu, Cofiniteness of local cohomology modules, Bull. London Math. Soc. 32 (2000), no. 1, 1-7.   DOI
7 D. Delfino, On the cofiniteness of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 1, 79-84.   DOI
8 D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 (1997), no. 1, 45-52.   DOI   ScienceOn
9 A. Grothendieck, Local cohomology, Notes by R. Hartshorne, Lecture Notes in Math., 862, Springer, New York, 1966.
10 R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), 145-164.   DOI
11 C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 421-429.   DOI
12 K. I. Kawasaki, On the finiteness of Bass numbers of local cohomology modules, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3275-3279.   DOI   ScienceOn
13 H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, Cambridge, UK, 1986.
14 L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2005), no. 2, 649-668.   DOI   ScienceOn
15 K. I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147(1997), 179-191.
16 H. Zoschinger, Minimax modules, J. Algebra 102 (1986), no. 1, 1-32.   DOI