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FINITENESS PROPERTIES OF EXTENSION FUNCTORS OF

COFINITE MODULES

Yavar Irani and Kamal Bahmanpour

Abstract. Let R be a commutative Noetherian ring, I an ideal of R and
T be a non-zero I-cofinite R-module with dim(T ) ≤ 1. In this paper, for
any finitely generated R-module N with support in V (I), we show that
the R-modules ExtiR(T,N) are finitely generated for all integers i ≥ 0.
This immediately implies that if I has dimension one (i.e., dimR/I = 1),

then ExtiR(Hj

I
(M), N) is finitely generated for all integers i, j ≥ 0, and

all finitely generated R-modules M and N , with Supp(N) ⊆ V (I).

1. Introduction

Throughout this paper, let R denote a commutative Noetherian ring (with
identity) and I an ideal of R. For an R-module M , the ith local cohomology
module of M with respect to I is defined as

Hi
I(M) = lim

−→
n≥1

ExtiR(R/In,M).

We refer the reader to [9] or [5] for more details about local cohomology.
Hartshorne [10] defined an R-module M to be I-cofinite if SuppM ⊆ V (I)

and ExtjR(R/I,M) is finitely generated for all j and asked:

For which rings R and ideals I are the modules Hi
I(M) I-cofinite for all i

and all finitely generated modules M?

This question has been studied by several authors; see, for example, Hart-
shorne [10], Chiriacescu [6], Huneke-Koh [11], Delfino [7], Delfino and Marley
[8], Yoshida [15], Bahmanpour and Naghipour [2], Abazari and Bahmanpour
[1], Bahmanpour, Naghipour and Sedghi [3].

In this paper we consider the following question:
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Let I be an ideal of a Noetherian ring R and M be a non-zero I-cofinite R-

module with dim(M) ≤ 1. Are the R-modules ExtiR(M,R/I) finitely generated

for all integers i ≥ 0?

The main purpose of this paper is to provide an affirmative answer to this
question. In fact the main result of this paper states that, for any finitely
generated R-module N with support in V (I), instead of R/I, the assertion
holds.

More precisely, we shall show that:

Theorem 1.1. Let R be a Noetherian ring, I a proper ideal of R and M
be a non-zero I-cofinite R-module such that dim(M) ≤ 1. Then for each

non-zero finitely generated R-module N with support in V (I), the R-modules

ExtiR(M,N) are finitely generated for all integers i ≥ 0.

As an immediately consequence of above theorem we derive the following
new insight on the cofiniteness properties of local cohomology modules.

Theorem 1.2. Let R be a Noetherian ring, I be an ideal of R and M be a non-

zero finitely generated R-module such that dimM/IM ≤ 1 (e.g., dimR/I ≤ 1).
Then for each non-zero finitely generated R-module N with support in V (I),

the R-modules ExtiR(H
j
I (M), N) are finitely generated for all integers i ≥ 0

and j ≥ 0.

Throughout this paper, R will always be a commutative Noetherian ring
with non-zero identity and I will be an ideal of R. In [16] H. Zöschinger,
introduced the interesting class of minimax modules. The R-module N is said
to be a minimax module, if there is a finitely generated submodule L of N ,
such that N/L is Artinian. The class of minimax modules thus includes all
finitely generated and all Artinian modules. For an Artinian R-module A we
denote by AttR(A) the set of attached prime ideals of A. For each R-module
L, we denote by AsshRL, the set {p ∈ AssR L : dimR/p = dimL}. We shall
use MaxR to denote the set of all maximal ideals of R. Also, for any ideal a
of R, we denote {p ∈ SpecR : p ⊇ a} by V (a). Finally, for any ideal b of R,
the radical of b, denoted by Rad(b), is defined to be the set {x ∈ R : xn ∈ b

for some n ∈ N}. For any unexplained notation and terminology we refer the
reader to [5] and [13].

2. Main results

The following well known lemma will be quite useful in this paper.

Lemma 2.1. Let R be a Noetherian ring, I an ideal of R and k be a positive

integer. Then, for any R-module T , the followings conditions are equivalent:
(i) ExtnR(R/I, T ) is finitely generated for each integer 0 ≤ n < k,
(ii) for any finitely generated R-module N with support in V (I), ExtnR(N, T )

is finitely generated for each integer 0 ≤ n < k.

Proof. See [12, Lemma 1]. �
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The following lemma is needed in the proof of Theorem 2.3.

Lemma 2.2. Let R be a Noetherian ring, I a proper ideal of R and A be a

non-zero Artinian I-cofinite R-module. Then V (I) ∩ AttR(A) ⊆ Max(R).

Proof. Let p ∈ V (I) ∩ AttR A, and let

A = T + S1 + · · ·+ Sn,

be a minimal secondary representation of A, where T is p-secondary and Si

is pi-secondary for every i = 1, . . . , n. Since T is p-secondary, it follows that
there exists a positive integer k such that pkT = 0, and so IkT = 0 (note that
I ⊆ p). On the other hand, since HomR(R/I,A) is finitely generated, it follows
from Lemma 2.1 that HomR(R/Ik, A) ∼= (0 :A Ik) is also a finitely generated
R-module. Hence from T ⊆ (0 :A Ik), it follows that T has finite length, and
so Supp(T ) ⊆ Max(R). By definition we have p = Rad(AnnR(T )) and hence
p ∈ V (AnnR(T )) = Supp(T ). Therefore, p ∈ Max(R) and so V (I) ∩ AttR A ⊆
Max(R), as required. �

Before bringing of the next result, recall the important concept of the arith-
metic rank of an ideal. The arithmetic rank of an ideal b in a commutative
Noetherian ring R, denoted by ara(b), is the least number of elements of R
required to generate an ideal which has the same radical as b, i.e.,

ara(b) = min{n ∈ N0 : ∃b1, . . . , bn ∈ R with Rad(b1, . . . , bn) = Rad(b)}.

Let K be a R-module. The arithmetic rank of an ideal b of R with respect
to K, denoted by araK(b), is defined the arithmetic rank of the ideal b +
AnnR(K)/AnnR(K) in the ring R/AnnR(K).

Theorem 2.3. Let R be a Noetherian ring, I a proper ideal of R and A
be a non-zero Artinian I-cofinite R-module. Then for each non-zero finitely

generated R-module N with support in V (I), the R-modules ExtiR(A,N) have

finite length for all integers i ≥ 0.

Proof. Since N is finitely generated with support in V (I), it follows that IkN =
0 for some positive integers k. On the other hand, as V (Ik) = V (I), using
Lemma 2.1 we deduce that the R-module A is Ik-cofinite, too. Consequently,
without loss of generality, by replacing I by Ik, we may assume that IN = 0.
Now we use induction on t := araA(I) = ara(I + AnnR(A)/AnnR(A)). If
t = 0, then, it follows from the definition that In ⊆ AnnR(A) for some positive
integer n, and so A = (0 :A In). But since by hypothesis the R-module
HomR(R/I,A) is finitely generated it follows from Lemma 2.1 that the R-
module HomR(R/In, A) ∼= (0 :A In) = A is also finitely generated with support
in Max(R) and hence is of finite length. Therefore, the assertion holds for
the case t = 0. So assume that t > 0 and the result has been proved for
0, 1, . . . , t− 1. By definition there exist elements a1, . . . , at ∈ I, such that

Rad(I +AnnR(A)/AnnR(A)) = Rad((a1, . . . , at) + AnnR(A)/AnnR(A)).
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From the Lemma 2.2, we have V (I) ∩ AttR(A) ⊆ Max(R) and so

V (I +AnnR(A)) ∩ AttR(A) ⊆ Max(R).

Therefore,

V ((a1, . . . , at) + AnnR(A)) ∩ AttR(A) ⊆ Max(R).

Hence, using the fact that AttR(A) ⊆ V (AnnR(A)), it follows that

V ((a1, . . . , at)) ∩ AttR(A) ⊆ Max(R).

Consequently, we have

(a1, . . . , at) 6⊆
⋃

p∈(AttR(A)\Max(R))

p.

Therefore, by [13, Exercise 16.8] there is c ∈ (a2, . . . , at) such that

a1 + c 6∈
⋃

p∈(AttR(A)\Max(R))

p.

Let b := a1 + c. Then b ∈ I and V (Rb) ∩ AttR(A) ⊆ Max(R). Also, we have

Rad(I + AnnR(A)/AnnR(A)) = Rad((b, a2, . . . , at) + AnnR(A)/AnnR(A)).

Now, let B := (0 :A b). Then it is easy to see that

araB(I) = ara(I +AnnR(B)/AnnR(B)) ≤ t− 1

(Note that b ∈ AnnR(B) and hence

Rad(I +AnnR(B)/AnnR(B)) = Rad((a2, . . . , at) + AnnR(B)/AnnR(B))).

On the other hand, since A is I-cofinite and Artinian, it follows from [14, Corol-
lary 4.4] that B is also an Artinian I-cofinite R-module. Therefore, by inductive
hypothesis for all integers i ≥ 0, the R-modules ExtiR(B,N) are of finite length.
Next, let C := A/bA. Then it is easy to see that AttR(C) ⊆ V (Rb)∩AttR(A) ⊆
Max(R). Next, let AttR(C) = {m1, . . . ,mn}. Then as m1m2 · · ·mn ⊆ ∩n

j=1mj =

Rad(AnnR(C)), it follows that (m1m2 · · ·mn)
kC = 0 for some positive integer

k. Now as C is an Artinian R-module and {m1, . . . ,mn} ⊆ Max(R), it fol-
lows that the R-module C has finite length. Hence, for all integers i ≥ 0, the
R-modules ExtiR(C,N) are of finite length. We have two exact sequences

0 → B → A
f
→ bA → 0 and 0 → bA

g
→ A → C → 0,

where g ◦ f is the map A
b
→ A. Since b ∈ I and by hypothesis we have IN = 0

it follows that bN = 0. In particular, for each i ≥ 0, the map ExtiR(A,N)
b
→

ExtiR(A,N) is the zero R-homomorphism. Therefore, Coker(ExtiR(g ◦ f,N)) ∼=
ExtiR(A,N) for all integers i ≥ 0. As,

ExtiR(g ◦ f,N) = ExtiR(f,N) ◦ ExtiR(g,N),

it follows that, for all integers i ≥ 0, there is an exact sequence

Coker(ExtiR(g,N)) → Coker(ExtiR(g ◦ f,N)) → Coker(ExtiR(f,N)) → 0.
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Since, for all integers i ≥ 0, the R-modules

Coker(ExtiR(g,N)) and Coker(ExtiR(f,N))

have finite length, it follows that the R-module

Coker(ExtiR(g ◦ f,N)) = ExtiR(A,N)

has finite length for any i ≥ 0. This completes the inductive step. �

The following proposition, which generalizes the argument of Theorem 2.3 to
the larger class of minimax modules, is an immediately consequence of Theorem
2.3 and will be useful in the proof of the main result of this paper.

Proposition 2.4. Let R be a Noetherian ring, I a proper ideal of R and M
be a non-zero minimax I-cofinite R-module. Then for each non-zero finitely

generated R-module N with support in V (I), the R-modules ExtiR(M,N) are

finitely generated for all integers i ≥ 0.

Proof. By definition M has a finitely generated submodule H such that the
R-module M/H is Artinian. According to [14, Corollary 4.4], the R-module
M/H is I-cofinite. Now the assertion follows from the exact sequence

0 → H → M → M/H → 0,

using Theorem 2.3. �

Now we need the following well known result.

Lemma 2.5. Let (R,m) be a local Noetherian ring and A be a non-zero Ar-

tinian R-module. Suppose that x is an element in m such that V (Rx)∩AttR A ⊆
{m}. Then the R-module A/xA has finite length.

Proof. See [2, Lemma 2.4]. �

Before bringing the main result of this paper we need the following well
known result and its corollary.

Theorem 2.6. Let R be a Noetherian ring and I be a proper ideal of R. Let

M and N be two non-zero I-cofinite R-modules such that dim(M) ≤ 1 and

dim(N) ≤ 1 and f : M → N be an R-homomorphism. Then the R-modules

Ker(f) and Coker(f) are I-cofinite.

Proof. See [4, Theorem 2.7]. �

Corollary 2.7. Let R be a Noetherian ring, I a proper ideal of R and M be a

non-zero I-cofinite R-modules such that

dim(M) = 1 and ara(I +AnnR(M)/AnnR(M)) = t ≥ 1.

Then there exists an element x ∈ I such that the following conditions hold:
(i) The R-module T := (0 :M x) is I-cofinite and

araT (I) = ara(I +AnnR(T )/AnnR(T )) ≤ t− 1.

(ii) The R-module L := M/xM is I-cofinite and minimax.
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Proof. Let

T := {p ∈ SuppM | dimR/p = 1}.

It is easy to see that T = AsshRM . As AssR HomR(R/I,M) = V (I) ∩
AssR M = AssR M , it follows that the set AssR M is finite. Hence T is fi-
nite. Moreover, since for each p ∈ T the Rp-module HomRp

(Rp/IRp,Mp) is
finitely generated, by [13, Exercise 7.7], and Mp is an IRp-torsion Rp-module
with SuppMp ⊆ V (pRp), it follows that the Rp-module HomRp

(Rp/IRp,Mp)
is Artinian and so is of finite length. Consequently, according to Melkersson’s
results [14, Proposition 4.1], Mp is an Artinian and IRp-cofinite Rp-module.
Let

T := {p1, . . . , pn}.

By Lemma 2.1, we have

V (IRpj
) ∩ AttRpj

(Mpj
) ⊆ V (pjRpj

)

for all j = 1, 2, . . . , n. Next, let

U :=

n⋃

j=1

{q ∈ SpecR | qRpj
∈ AttRpj

(Mpj
)}.

Then it is easy to see that U ∩ V (I) ⊆ T .
On the other hand, since t = araM (I) ≥ 1, there exist elements y1, . . . , yt ∈ I

such that

Rad(I +AnnR(M)/AnnR(M)) = Rad((y1, . . . , yt) + AnnR(M)/AnnR(M)).

Now, as

I 6⊆
⋃

q∈U\V (I)

q,

it follows that

(y1, . . . , yt) + AnnR(M) 6⊆
⋃

q∈U\V (I)

q.

On the other hand, for each q ∈ U we have

qRpj
∈ AttRpj

(Mpj
)

for some integer 1 ≤ j ≤ n. Whence,

AnnR(M)Rpj
⊆ AnnRpj

(Mpj
) ⊆ qRpj

,

which implies AnnR(M) ⊆ q. Consequently, it follows from

AnnR(M) ⊆
⋂

q∈U\V (I)

q,

that

(y1, . . . , yt) 6⊆
⋃

q∈U\V (I)

q.
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Therefore, by [13, Exercise 16.8] there is a ∈ (y2, . . . , yt) such that

y1 + a 6∈
⋃

q∈U\V (I)

q.

Let x := y1 + a. Then x ∈ I and

Rad(I +AnnR(M)/AnnR(M)) = Rad((x, y2, . . . , yt) + AnnR(M)/AnnR(M)).

Next, let N := (0 :M x). Now, it is easy to see that

araN (I) = ara(I +AnnR(N)/AnnR(N)) ≤ t− 1

(Note that x ∈ AnnR(N) and hence

Rad(I +AnnR(N)/AnnR(N)) = Rad((y2, . . . , yt) + AnnR(N)/AnnR(N))).

According to Theorem 2.6, the R-modules T = Ker(M
x
→ M) and L =

Coker(M
x
→ M) are I-cofinite. But, from Lemma 2.5, it is easy to see that

(M/xM)pj
is of finite length for all j = 1, . . . , n. Therefore, there exists a

finitely generated submodule Lj of M/xM such that (M/xM)pj
= (Lj)pj

. Let
L := L1 + · · ·+ Ln. Then L is a finitely generated submodule of M/xM such
that

SuppR(M/xM)/L ⊆ Supp(M) \ {p1, . . . , pn} ⊆ MaxR.

Now, from the sequence

0 −→ L −→ M/xM −→ (M/xM)/L −→ 0,

we get the following exact sequence:

HomR(R/I,M/xM) −→ HomR(R/I, (M/xM)/L) −→ Ext1R(R/I, L),

which implies that the R-module HomR(R/I, (M/xM)/L) is finitely gener-
ated. We must show that M/xM is a minimax R-module. To do this, since
Supp(M/xM)/L ⊆ MaxR and (M/xM)/L is I-torsion, so that, according to
Melkersson [14, Proposition 4.1], (M/xM)/L is an Artinian R-module. That
is, M/xM is a minimax R-module. This completes the proof. �

Now we are ready to state and prove the main result of this paper.

Theorem 2.8. Let R be a Noetherian ring, I a proper ideal of R and M
be a non-zero I-cofinite R-module such that dim(M) ≤ 1. Then for each

non-zero finitely generated R-module N with support in V (I), the R-modules

ExtiR(M,N) are finitely generated for all integers i ≥ 0.

Proof. As in the proof of Theorem 2.3, we may assume that IN = 0. If
dim(M) = 0, then it follows from hypothesis that the R-module

HomR(R/I,M) ∼= (0 :M I)

is finitely generated with support in Max(R) and so has finite length. Therefore,
it follows from [14, Prposition 4.1] that M is Artinian and hence the assertion
follows from Theorem 2.3. So we may assume dimM = 1. We prove the
assertion by induction on t := araM (I) = ara(I + AnnR M/AnnR M). If
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t = 0, then it follows from definition that In ⊆ AnnR(M) for some positive
integer n, and so M = (0 :M In). Therefore the assertion follows from Lemma
2.2. So assume that t > 0 and the result has been proved for all i ≤ t − 1.
Then by Corollary 2.7 there exists an element x ∈ I such that the R-module
T := (0 :M x) is I-cofinite and

araT (I) = ara(I +AnnR(T )/AnnR(T )) ≤ t− 1,

and the R-module L := M/xM is I-cofinite and minimax. So it follows from

inductive hypothesis that the R-modules ExtiR(T,N) are finitely generated for
all integers i ≥ 0. Also, it follows from Proposition 2.4, that the R-modules
ExtiR(L,N) are finitely generated for all integers i ≥ 0. Now, using the fact
that xN = 0 and applying the method used in the proof of Theorem 2.3, it
follows that the R-modules ExtiR(M,N) are finitely generated for all integers
i ≥ 0. This completes the inductive step. �

The following result is an immediate consequence of Theorem 2.8.

Theorem 2.9. Let R be a Noetherian ring, I be an ideal of R and M be a non-

zero finitely generated R-module such that dimM/IM ≤ 1 (e.g., dimR/I ≤ 1).
Then for each non-zero finitely generated R-module N with support in V (I),

the R-modules ExtiR(H
j
I (M), N) are finitely generated for all integers i ≥ 0

and j ≥ 0.

Proof. The assertion follows from [2, Corollary 2.7] and Theorem 2.8. �

References

[1] R. Abazari and K. Bahmanpour, Cofiniteness of extension functors of cofinite modules,
J. Algebra 330 (2011), 507–516.

[2] K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals

of small dimension, J. Algebra 321 (2009), no. 7, 1997–2011.
[3] K. Bahmanpour, R. Naghipour, and M. Sedghi, Minimaxness and cofiniteness properties

of local cohomology modules, Comm. Algebra, In press.
[4] , On the category of cofinite modules which is Abelian, Proc. Amer. Math. Soc.,

In press.
[5] M. P. Brodmann and R. Y. Sharp, Local Cohomology: an algebraic introduction with

geometric applications, Cambridge University Press, Cambridge, 1998.

[6] G. Chiriacescu, Cofiniteness of local cohomology modules, Bull. London Math. Soc. 32
(2000), no. 1, 1–7.

[7] D. Delfino, On the cofiniteness of local cohomology modules, Math. Proc. Cambridge
Philos. Soc. 115 (1994), no. 1, 79–84.

[8] D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra
121 (1997), no. 1, 45–52.

[9] A. Grothendieck, Local cohomology, Notes by R. Hartshorne, Lecture Notes in Math.,
862, Springer, New York, 1966.

[10] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), 145–164.
[11] C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math.

Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 421–429.
[12] K. I. Kawasaki, On the finiteness of Bass numbers of local cohomology modules, Proc.

Amer. Math. Soc. 124 (1996), no. 11, 3275–3279.



FINITENESS PROPERTIES OF EXTENSION FUNCTORS 657

[13] H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, Cambridge, UK,
1986.

[14] L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2005), no. 2,
649–668.

[15] K. I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one,
Nagoya Math. J. 147(1997), 179–191.
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