ON TATE-SHAFAREVICH GROUPS OVER CYCLIC EXTENSIONS

Hoseog Yu

Abstract

Let A be an abelian variety defined over a number field K and let L be a cyclic extension of K with Galois group $G=\langle\sigma\rangle$ of order n. Let $\amalg(A / K)$ and $\amalg(A / L)$ denote, respectively, the Tate-Shafarevich groups of A over K and of A over L. Assume $\amalg(A / L)$ is finite. Let $M(\chi)$ be a companion matrix of $1+x+\cdots+$ x^{n-1} and let A^{χ} be the twist of A^{n-1} defined by $f^{-1} \circ f^{\sigma}=M(\chi)$ where $f: A^{n-1} \rightarrow A^{\chi}$ is an isomorphism defined over L. In this paper we compute $[\amalg(A / K)]\left[\amalg\left(A^{\chi} / K\right)\right] /[\amalg(A / L)]$ in terms of cohomology, where $[X]$ is the order of an finite abelian group X.

1. Introduction

In this paper we generalize Main Theorem in [11]. Let L / K be a cyclic extension of number fields with Galois group G of order n. Write \bar{K}, G_{K}, M_{K}, K_{v} for the algebraic closure of $K, \operatorname{Gal}(\bar{K} / K)$, a complete set of places on K, the completion of K at the place $v \in M_{K}$, respectively. Fix a place $v_{L} \in M_{L}$ lying above v for each $v \in M_{K}$. Denote $\operatorname{Gal}\left(L_{w} / K_{w}\right)$ by G_{w} for $w \in M_{L}$. Fix $\sigma \in G_{K}$ such that σG_{L} is a generator of $G=G_{K} / G_{L}$.

Let A be an abelian variety defined over K and let $\amalg(A / K)$ be the Tate-Shafarevich group of A over K. Denote by $M(\chi)$ the $(n-1) \times(n-1)$

[^0]matrix
\[

\left($$
\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-1 & -1 & -1 & \cdots & -1 & -1
\end{array}
$$\right) \in \operatorname{End}_{K}\left(A^{n-1}\right)
\]

where 1 is the identity homomorphism in $\operatorname{End}_{K}(A)$. Note that $M(\chi)$ is the companion matrix of $1+x+\cdots+x^{n-1}$. Let A^{χ} be an abelian variety such that there is an isomorphism $f: A^{n-1} \rightarrow A^{\chi}$ defined over L satisfying $f^{-1} \circ f^{\sigma}=M(\chi)$. For the existence and the uniqueness up to K-isomorphism of such a variety A^{χ}, see $[5, \S 2]$.

We write $[X]$ for the order of a finite abelian group X and write V^{T} for the transpose of the matrix V.

Main Theorem. Assume that $\amalg(A / L)$ is finite. Then

$$
\frac{[Ш(A / K)]\left[Ш\left(A^{\chi} / K\right)\right]}{[Ш(A / L)]}=\frac{\left[\hat{\mathrm{H}}^{0}\left(G, A^{\prime}(L)\right)\right]\left[\mathrm{H}^{1}(G, A(L))\right]}{\prod_{v \in M_{K}}\left[\mathrm{H}^{1}\left(G_{v_{L}}, A\left(L_{v_{L}}\right)\right)\right]},
$$

where A^{\prime} is the dual variety of A.
Proof. We can prove Main Theorem from Theorem 1, Theorem 2, Lemma 3, Lemma 5, and Lemma 7.

Note that the Tate-Shafarevich group is not an isogeny invariant and in general,

$$
[\amalg(A / L)] \neq[\amalg(A / K)]\left[\amalg\left(A^{\chi} / K\right)\right] .
$$

On the difference there are partial results in [3, Corollary 4.6], [5, Corollary to Theorem 3], and [7, Theorem 4.8]. For quadratic extensions, the above theorem is proved in [11, Main Theorem].

We can find another type of result in [6]. From [5, proof of Theorem 1] we know that $\amalg(A / L) \cong \amalg\left(\operatorname{Res}_{L / K}(A) / K\right)$, where $\operatorname{Res}_{L / K}(A)$ is the restriction of scalars of A from L to K. Note that in [5] the restriction of scalars is denoted by A_{*}. Simple computations implies that $\operatorname{Res}_{L / K}(A)$ is isogenous to $A \times A^{\chi}$ over K. Then by using the equality $[6,(7.3 .1)$ in p.120] we can compute the difference.

2. Proof of main theorem

At first we introduce two results from [11].

Theorem 1. Assume $\amalg(A / L)$ is finite. Let $\mathcal{F}_{0}^{\prime}: \widehat{\mathrm{H}}^{0}\left(G, A^{\prime}(L)\right) \rightarrow$ $\prod_{v \in M_{K}} \widehat{\mathrm{H}}^{0}\left(G_{v_{L}}, A^{\prime}\left(L_{v_{L}}\right)\right)$ and let trans: $\mathrm{H}^{1}(L, A)^{G} \rightarrow \mathrm{H}^{2}(G, A(L))$ be the transgression map (for the definition see [4, p.129] or [11]). Then

$$
\frac{\left[\amalg(A / L)^{G}\right]}{[\amalg(A / K)]}=\frac{\left[\operatorname{trans}\left(\amalg(A / L)^{G}\right)\right]\left[\operatorname{Ker}\left(\mathcal{F}_{0}^{\prime}\right)\right]}{\left[\widehat{\mathrm{H}}^{0}\left(G, A^{\prime}(L)\right)\right]\left[\mathrm{H}^{1}(G, A(L))\right]} \prod_{v \in M_{K}}\left[\mathrm{H}^{1}\left(G_{v_{L}}, A\left(L_{v_{L}}\right)\right)\right]
$$

Proof. See [11, Theorem 6].
Theorem 2. Assume $\amalg\left(A^{\chi} / K\right)$ is finite. Denote by ${ }_{N} \amalg\left(A^{\chi} / L\right)$ the kernel of the norm map $N: \amalg\left(A^{\chi} / L\right) \rightarrow \amalg\left(A^{\chi} / L\right)^{G}$. Define $\operatorname{res}_{\left(A^{\chi}\right)^{\prime}}: \mathrm{H}^{1}\left(K,\left(A^{\chi}\right)^{\prime}\right) \rightarrow \mathrm{H}^{1}\left(L,\left(A^{\chi}\right)^{\prime}\right)^{G}$ to be the restriction map. Write cores for the corestriction map $\mathrm{H}^{1}\left(L, A^{\chi}\right) \rightarrow \mathrm{H}^{1}\left(K, A^{\chi}\right)$ (for the definition see [8] or [10, p.259]). Then

$$
\frac{\left[\amalg\left(A^{\chi} / K\right)\right]}{\left[N\left(\amalg\left(A^{\chi} / L\right)\right)\right]}=\left[\operatorname{cores}\left({ }_{N} \amalg\left(A^{\chi} / L\right)\right)\right]\left[\operatorname{Ker}\left(\operatorname{res}_{\left(A^{\chi}\right)^{\prime}}\right) \cap \amalg\left(\left(A^{\chi}\right)^{\prime} / K\right)\right] .
$$

Proof. See [11, Lemma 10].
We will show that $\left[N\left(\amalg\left(A^{\chi} / L\right)\right)\right]=[(1-\sigma) \amalg(A / L)]$ in Lemma 3, and $\left[\operatorname{Ker}\left(\mathcal{F}_{0}^{\prime}\right)\right]=\left[\operatorname{Ker}\left(\operatorname{res}_{\left(A^{\chi}\right)^{\prime}}\right) \cap \amalg\left(\left(A^{\chi}\right)^{\prime} / K\right)\right]$ in Lemma 5. Finally we will prove $\left[\operatorname{trans}\left(\amalg(A / L)^{G}\right)\right]=\left[\operatorname{cores}\left({ }_{N} \amalg\left(A^{\chi} / L\right)\right)\right]$ in Lemma 7. Because $[\amalg(A / L)]=\left[\amalg(A / L)^{G}\right][(1-\sigma) \amalg(A / L)]$, Main Theorem is immediate.

Lemma 3. $\left[N\left(\amalg\left(A^{\chi} / L\right)\right)\right]=[(1-\sigma) \amalg(A / L)]$
Proof. Let $\amalg(f): Ш(A / L)^{n-1} \rightarrow \amalg\left(A^{\chi} / L\right)$ be the isomorphism induced by $f: A^{n-1} \rightarrow A^{\chi}$. For $z=\left(a_{1}, \cdots, a_{n-1}\right)^{T} \in \amalg(A / L)^{n-1}$, we know that $N(\amalg(f)(z))=\amalg(f)\left(b, b^{\sigma^{n-1}}, b^{\sigma^{n-2}}, \cdots, b^{\sigma^{2}}\right)^{T}$ with $b=$ $\sum_{i=1}^{n-1}\left(a_{i}^{\sigma^{i-1}}-a_{i}^{\sigma^{n-1}}\right) \in(1-\sigma) \amalg(A / L)$. For $b=(1-\sigma) c \in(1-$ $\sigma) \amalg(A / L)$, we can show that

$$
N\left(\amalg(f)\left(0, \cdots, 0, c^{\sigma^{2}}\right)^{T}\right)=\amalg(f)\left(b, b^{\sigma^{n-1}}, b^{\sigma^{n-2}}, \cdots, b^{\sigma^{2}}\right)^{T} .
$$

Now

$$
\begin{aligned}
& N\left(\amalg\left(A^{\chi} / L\right)\right) \\
& \quad=\left\{\amalg(f)\left(b, b^{\sigma^{n-1}}, b^{\sigma^{n-2}}, \cdots, b^{\sigma^{2}}\right)^{T} \mid b \in(1-\sigma) \amalg(A / L)\right\}
\end{aligned}
$$

So the lemma follows.
Lemma 4. For $P \in{ }_{N} A^{\chi}(L)$ there is $Q=(0,0, \cdots, 0, a)^{T} \in A(L)^{n-1}$ with $a \in A(K)$ such that $P-f(Q) \in(1-\sigma) A^{\chi}(L)$.

Proof. Note $(1-\sigma) A^{\chi}(L) \subseteq{ }_{N} A^{\chi}(L)$. Let $P=f\left(a_{1}, \cdots, a_{n-1}\right)^{T}$. Define $b_{i}=-\sum_{j=1}^{i-1} a_{j}^{\sigma^{n+j-i}}$ for $i \geq 2$. Then we have

$$
P-(1-\sigma) f\left(0, b_{2}, \cdots, b_{n-1}\right)^{T}=f(0, \cdots, 0, a)^{T} \in_{N} A^{\chi}(L)
$$

Now it is easy to show that $a \in A(K)$.
Define a surjective homomorphism $A(K) \rightarrow{ }_{N} A^{\chi}(L) /(1-\sigma) A^{\chi}(L)$ induced by $a \in A(K) \rightarrow f(0, \cdots, 0, a)^{T} \in{ }_{N} A^{\chi}(L)$. It is easy to show that the kernel is $N A(L)$. Then $A(K) / N A(L) \cong{ }_{N} A^{\chi}(L) /(1-\sigma) A^{\chi}(L)$, that is,

$$
\begin{equation*}
\widehat{\mathrm{H}}^{0}(G, A(L)) \cong \mathrm{H}^{1}\left(G, A^{\chi}(L)\right) \tag{1}
\end{equation*}
$$

Lemma 5. $\left[\operatorname{Ker}\left(\mathcal{F}_{0}^{\prime}\right)\right]=\left[\operatorname{Ker}\left(\operatorname{res}_{\left(A^{\chi}\right)^{\prime}}\right) \cap \amalg\left(\left(A^{\chi}\right)^{\prime} / K\right)\right]$.
Proof. Note that

$$
\operatorname{Ker}\left(\operatorname{res}_{(A \chi)^{\prime}}\right) \cap \amalg\left(\left(A^{\chi}\right)^{\prime} / K\right) \cong \operatorname{Ker}\left(\operatorname{res}_{\left(A^{\prime}\right) \chi}\right) \cap \amalg\left(\left(A^{\prime}\right)^{\chi} / K\right)
$$

From [11, diagram (1)] it follows that $\operatorname{Ker}\left(\operatorname{res}_{\left.\left(A^{\prime}\right)^{\chi}\right)} \cap \amalg\left(\left(A^{\prime}\right)^{\chi} / K\right)=\right.$ $\operatorname{Ker}\left\{\mathrm{H}^{1}\left(G,\left(A^{\prime}\right)^{\chi}(L)\right) \rightarrow \prod_{v \in M_{K}} \mathrm{H}^{1}\left(G_{v_{L}},\left(A^{\prime}\right)^{\chi}\left(L_{v_{L}}\right)\right)\right\}$. Now from the natural isomorphism (1), the lemma follows.

Lemma 6. For $z \in{ }_{N} \amalg\left(A^{\chi} / L\right)$, there is $z^{\prime}=\left(0, \cdots, 0, z_{1}\right)^{T} \in$ $\amalg(A / L)^{n-1}$ such that $z-\amalg(f)\left(z^{\prime}\right) \in \operatorname{Ker}($ cores $)$. Furthermore, $z_{1} \in$ $\amalg(A / L)^{G}$ and $\amalg(f)\left(z^{\prime}\right) \in{ }_{N} \amalg\left(A^{\chi} / L\right)$.

Proof. Note that $(1-\sigma) \amalg\left(A^{\chi} / L\right) \subseteq \operatorname{Ker}($ cores $)$ because $\operatorname{cores}(z)=$ $\operatorname{cores}\left(z^{\sigma}\right)$ for $z \in \mathrm{H}^{1}\left(L, A^{\chi}\right)$ (see [1, Exercises 1, p.83] or [2, (10), p.256]). Let $z=\amalg(f)\left(y_{1}, \cdots, y_{n-1}\right)^{T}$ where $y_{i} \in \amalg(A / L)$.

Define $w_{i}=-\sum_{j=1}^{i-1} y_{j}^{\sigma^{n+j-i}}$ for $i \geq 2$. Note that $\amalg(f)^{\sigma}=\amalg\left(f^{\sigma}\right)=$ $\amalg(f) M(\chi)$. Then we can prove that

$$
\begin{aligned}
z-(1-\sigma) \amalg(f)\left(0, w_{2}, \cdots,\right. & \left.w_{n-1}\right)^{T} \\
& =\amalg(f)\left(0, \cdots, 0, z_{1}\right)^{T} \in{ }_{N} \amalg\left(A^{\chi} / L\right) .
\end{aligned}
$$

It is easy to show that $z_{1} \in \amalg(A / L)^{G}$.
Define a homomorphism

$$
\Phi: Ш(A / L)^{G} \hookrightarrow{ }_{N} \amalg\left(A^{\chi} / L\right) \xrightarrow{\text { cores }} \amalg\left(A^{\chi} / K\right)
$$

by $\Phi(a)=\operatorname{cores}(\amalg(f)(0, \cdots, 0, a))$. From the previous lemma we know that $\Phi\left(\amalg(A / L)^{G}\right)=\operatorname{cores}\left({ }_{N} \amalg\left(A^{\chi} / L\right)\right)$.

Lemma 7. For $z \in \amalg(A / L)^{G}$, $\operatorname{trans}(z)=0$ if and only if $\Phi(z)=0$. Furthermore, $\left[\operatorname{trans}\left(\amalg(A / L)^{G}\right)\right]=\left[\operatorname{cores}\left({ }_{N} \amalg\left(A^{\chi} / L\right)\right)\right]$.

Proof. Because G is a cycle group, for any 2-cocyle $\alpha \in Z^{2}(G, A(L))$ there is $\beta \in Z^{2}(G, A(L))$ cohomologous to α such that with $P \in A(K)$ for $\tau_{i} \in \sigma^{k_{i}} G_{L}$

$$
\beta\left(\tau_{1}, \tau_{2}\right)= \begin{cases}0, & \text { when } k_{1}+k_{2}<n \tag{2}\\ P, & \text { when } k_{1}+k_{2} \geq n\end{cases}
$$

From the definition of transgression map(see [4, p.129] and [11]) for given $z \in \amalg(A / L)^{G}$ there are a cochain $\Gamma \in Z^{1}\left(G_{K}, A\right)$ and a 2-cocycle $\beta \in Z^{2}(G, A(L))$ satisfying (2) such that $\left.\Gamma\right|_{G_{L}} \in z, \beta \in \operatorname{trans}(z)$ and

$$
\begin{equation*}
\beta\left(\tau_{1}, \tau_{2}\right)=-\Gamma\left(\tau_{1} \tau_{2}\right)+\Gamma\left(\tau_{1}\right)+\tau_{1} \Gamma\left(\tau_{2}\right) \text { for } \tau_{i} \in G_{K} \tag{3}
\end{equation*}
$$

Now $\operatorname{trans}(z)=0$, that is, β is a coboundary, if and only if $P \in N(A(L))$.
From the definition in [8], we know that for $\tau \in \sigma^{k} G_{L}$,

$$
\begin{aligned}
\operatorname{cores}\left(f \circ\left(0, \cdots, 0, \Gamma \mid G_{L}\right)^{T}\right)(\tau) & =\sum_{i=0}^{n-1} \sigma^{i}\left(f\left(0, \cdots, 0, \Gamma\left(\sigma^{-i} \tau \sigma^{p_{k}(i)}\right)\right)^{T}\right) \\
& =\sum_{i=0}^{n-1} f M^{i}\left(0, \cdots, 0, \sigma^{i} \Gamma\left(\sigma^{-i} \tau \sigma^{p_{k}(i)}\right)\right)^{T}
\end{aligned}
$$

where

$$
p_{k}(i)= \begin{cases}n+i-k, & \text { when } i<k \\ i-k, & \text { when } i \geq k\end{cases}
$$

Using the equation (3) we compute

$$
\sigma^{i} \Gamma\left(\sigma^{-i} \tau \sigma^{p_{k}(i)}\right)= \begin{cases}\tau \Gamma\left(\sigma^{n+i-k}\right)+\Gamma(\tau)-\Gamma\left(\sigma^{i}\right)-P, & \text { when } i<k \\ \tau \Gamma\left(\sigma^{i-k}\right)+\Gamma(\tau)-\Gamma\left(\sigma^{i}\right), & \text { when } i \geq k\end{cases}
$$

From direct computation we know that the i-th element of the column vector $\sum_{i=0}^{n-1} M^{i}\left(0, \cdots, 0, \sigma^{i} \Gamma\left(\sigma^{-i} \tau \sigma^{p_{k}(i)}\right)\right)^{T}$ is

$$
\begin{cases}\left(\sigma^{n-i-1}-\tau \sigma^{n-k-i-1}\right) \Gamma(\sigma), & \text { when } i<n-k \\ \tau \Gamma\left(\sigma^{n-1}\right)+\sigma^{k-1} \Gamma(\sigma)-P, & \text { when } i=n-k \\ \left(\sigma^{n-i-1}-\tau \sigma^{2 n-k-i-1}\right) \Gamma(\sigma), & \text { when } i>n-k\end{cases}
$$

Then it follows that
$\Phi(\Gamma)(\tau)=\operatorname{cores}\left(f \circ\left(0, \cdots, 0,\left.\Gamma\right|_{G_{L}}\right)^{T}\right)(\tau)=(1-\tau) f(Q(\Gamma))-f(Q(\tau))$,
where $Q(\Gamma)=\left(\sigma^{n-2} \Gamma(\sigma), \cdots, \sigma \Gamma(\sigma), \Gamma(\sigma)\right)^{T}$ and

$$
Q(\tau)= \begin{cases}(0, \cdots, 0, \stackrel{(n-k)}{P}, 0, \cdots, 0)^{T}, & \text { when } \tau \in \sigma^{k} G_{L} \text { with } k \geq 1 \\ 0, & \text { when } \tau \in G_{L}\end{cases}
$$

Then $\Phi(z)=0$ if and only if $f(Q(\tau))=(1-\tau) Q_{2}$ with $Q_{2} \in A^{\chi}(L)$. Now it is easy to show $\Phi(z)=0$ if and only if $P \in N A(L)$. So the lemma follows.

3. Corollary

Denote by R the companion matrix of $x^{n}-1$. Assume that $h_{i}(x) \in$ $\mathbf{Z}[x](i=1,2)$ are integral polynomials of degree m_{i} such that $x^{n}-1=$ $h_{1}(x) h_{2}(x)$. Let M_{i} be the companion matrices of $h_{i}(x)(i=1,2)$. Then there are abelian varieties B_{i} and isomorphisms $\psi_{i}: A^{m_{i}} \rightarrow B_{i}$ defined over L such that $\psi_{i}^{-1} \circ \psi_{i}^{\sigma}=M_{i}$.

Corollary 8. Assume that $\amalg(A / L)$ is finite. Then

$$
\frac{\left[Ш\left(B_{1} / K\right)\right]\left[Ш\left(B_{2} / K\right)\right]}{[Ш(A / L)]}=\frac{\left[\widehat{\mathrm{H}}^{0}\left(G, B_{1}^{\prime}(L)\right)\right]\left[\mathrm{H}^{1}\left(G, B_{1}(L)\right)\right]}{\prod_{v \in M_{K}}\left[\mathrm{H}^{1}\left(G_{v_{L}}, B_{1}\left(L_{v_{L}}\right)\right)\right]} .
$$

Proof. From Main Theorem we know that

$$
\frac{\left[\amalg\left(B_{1} / K\right)\right]\left[\amalg\left(B_{1}{ }^{\chi} / K\right)\right]}{\left[\amalg\left(B_{1} / L\right)\right]}=\frac{\left[\widehat{\mathrm{H}}^{0}\left(G, B_{1}{ }^{\prime}(L)\right)\right]\left[\mathrm{H}^{1}\left(G, B_{1}(L)\right)\right]}{\prod_{v \in M_{K}}\left[\mathrm{H}^{1}\left(G_{v_{L}}, B_{1}\left(L_{v_{L}}\right)\right)\right]}
$$

Note that $\left[\amalg\left(B_{1} / L\right)\right]=[\amalg(A / L)]^{m_{1}}$. From the definition of restriction of scalars(see [5]) it is obvious that the restriction of scalar $\operatorname{Res}_{L / K}(A)$ is the twist of A^{n} defined by R. Then the following lemma implies that B_{1}^{χ} is isomorphic to $\operatorname{Res}_{L / K}(A)^{m_{1}-1} \times B_{2}$ over K. Because $\amalg(A / L) \cong$ $Ш\left(\operatorname{Res}_{L / K}(A) / K\right)\left(\right.$ see $\left[5\right.$, proof of Theorem 1]), we get $\left[\amalg\left(B_{1}^{\chi} / K\right)\right]=$ $\left[\amalg\left(B_{2} / K\right)\right][\amalg(A / L)]^{m_{1}-1}$. So the corollary is obvious.

Lemma 9. The Kronecker product $M_{1} \otimes M(\chi)$ is similar to the direct sum $\underbrace{R \oplus \cdots \oplus R}_{m_{1}-1} \oplus M_{2}$, where $M(\chi)$ is the companion matrix of $1+x+\cdots+x^{n-1}$.

Proof. Denote by $\operatorname{Id}(k)$ the $k \times k$ identity matrix. It is enough to show that $x \operatorname{Id}\left(m_{1}(n-1)\right)-R \oplus \cdots \oplus R \oplus M_{2}$ is equivalent to $x \operatorname{Id}\left(m_{1}(n-\right.$ 1)) $-M_{1} \otimes M(\chi)$ over $\mathbf{Z}[x]$ (see [9, Theorem A.2]). Note that [9, proof of Theorem A.3(i)] implies that $x \operatorname{Id}\left(m_{1}(n-1)\right)-R \oplus \cdots \oplus R \oplus M_{2}$ is equivalent to a diagonal matrix $\operatorname{Diag}(1, \ldots, 1, \underbrace{x^{n}-1, \ldots, x^{n}-1}_{m_{1}-1}, f_{2}(x))$. Now using the similar methods in [9, proof of Theorem A.3(i)] it is easy
to show that $x \operatorname{Id}\left(m_{1}(n-1)\right)-M_{1} \otimes M(\chi)$ is equivalent to $\operatorname{Id}\left(m_{1}(n-\right.$ 2)) $\oplus\left(\sum_{k=1}^{n} x^{n-k} M_{1}^{k-1}\right)$. Note that

$$
\left(\sum_{k=1}^{n} x^{n-k} M_{1}^{k-1}\right)\left(x \operatorname{Id}\left(m_{1}\right)-M_{1}\right)=\left(x^{n}-1\right) \operatorname{Id}\left(m_{1}\right)
$$

Because $x \operatorname{Id}\left(m_{1}\right)-M_{1}$ is equivalent to $\operatorname{Diag}\left(1, \ldots, 1, f_{1}(x)\right)$ (see [9, proof of Theorem A.3(i)]), $\sum_{k=1}^{n} x^{n-k} M_{1}^{k-1}$ is equivalent to the diagonal ma$\operatorname{trix} \operatorname{Diag}\left(x^{n}-1, \ldots, x^{n}-1, f_{2}(x)\right)$. Then the lemma follows.

References

[1] K. S. Brown, Cohomology of groups, Grad. Texts in Math. 87. Springer-Verlag 1982.
[2] K. Cartan and S. Eilenberg, Homological algebra, Princeton University Press 1956.
[3] C. D. Gonzalez-Avilés, On Tate-Shafarevich groups of abelian varieties, Proc. Amer. Math. Soc. 128 (2000), 953-961.
[4] G. Hochschild and J-P. Serre, Cohomology of Group Extension, Trans. Amer. Math. Soc. 74 (1953), 110-134.
[5] J. S. Milne, On the arithmetic of abelian varieties, Inventiones Math. 17 (1972), 177-190.
[6] J. S. Milne, Arithmetic Duality Theorems, Perspectives in Math. vol. 1. Academic Press Inc. 1986.
[7] Hwasin Park, Idempotent relations and the conjecture of Birch and SwinnertonDyer, In: Algebra and Topology 1990 (Taejon, 1990), 97-125.
[8] Carl Riehm, The Corestriction of Algebraic Structures, Inven. Math. 11 (1970), 73-98.
[9] L. Solomon, Similarity of the companion matrix and its transpose, Linear Algebra Appl. 302/303 (1999), 555-561.
[10] J. Tate, Relations between K_{2} and Galois cohomology, Inventiones Math. 36 (1976), 257-274.
[11] H. Yu, On Tate-Shafarevich groups over Galois extensions, Israel Journal of Math. 141 (2004), 211-220.

Hoseog Yu
Department of Applied Mathematics,
Sejong University,
Seoul, 143-747, Korea
E-mail: hsyu@sejong.ac.kr

[^0]: Received December 3, 2009. Accepted January 15, 2010.
 2000 Mathematics Subject Classification: 11G40.
 Key words and phrases: Tate-Shafarevich group,corestriction map, transgression map, Kronecker product .

 This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (KRF-2008-331-C00003).

