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ON TATE-SHAFAREVICH GROUPS
OVER CYCLIC EXTENSIONS

Hoseog Yu

Abstract. Let A be an abelian variety defined over a number field
K and let L be a cyclic extension of K with Galois group G = 〈σ〉
of order n. Let X(A/K) and X(A/L) denote, respectively, the
Tate-Shafarevich groups of A over K and of A over L. Assume
X(A/L) is finite. Let M(χ) be a companion matrix of 1+x+ · · ·+
xn−1 and let Aχ be the twist of An−1 defined by f−1 ◦ fσ = M(χ)
where f : An−1 → Aχ is an isomorphism defined over L. In this
paper we compute [X(A/K)][X(Aχ/K)]/[X(A/L)] in terms of
cohomology, where [X] is the order of an finite abelian group X.

1. Introduction

In this paper we generalize Main Theorem in [11]. Let L/K be a cyclic
extension of number fields with Galois group G of order n. Write K, GK ,
MK , Kv for the algebraic closure of K, Gal(K/K), a complete set of
places on K, the completion of K at the place v ∈ MK , respectively. Fix
a place vL ∈ ML lying above v for each v ∈ MK . Denote Gal(Lw/Kw)
by Gw for w ∈ ML. Fix σ ∈ GK such that σGL is a generator of
G = GK/GL.

Let A be an abelian variety defined over K and let X(A/K) be the
Tate-Shafarevich group of A over K. Denote by M(χ) the (n−1)×(n−1)
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matrix 


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
−1 −1 −1 · · · −1 −1



∈ EndK(An−1),

where 1 is the identity homomorphism in EndK(A). Note that M(χ)
is the companion matrix of 1 + x + · · · + xn−1. Let Aχ be an abelian
variety such that there is an isomorphism f : An−1 → Aχ defined over
L satisfying f−1 ◦ fσ = M(χ). For the existence and the uniqueness up
to K-isomorphism of such a variety Aχ, see [5, §2].

We write [X] for the order of a finite abelian group X and write V T

for the transpose of the matrix V .

Main Theorem. Assume that X(A/L) is finite. Then

[X(A/K)][X(Aχ/K)]
[X(A/L)]

=
[Ĥ0(G,A′(L))][H1(G,A(L))]∏

v∈MK
[H1(GvL , A(LvL))]

,

where A′ is the dual variety of A.

Proof. We can prove Main Theorem from Theorem 1, Theorem 2,
Lemma 3, Lemma 5, and Lemma 7.

Note that the Tate-Shafarevich group is not an isogeny invariant and in
general,

[X(A/L)] 6= [X(A/K)][X(Aχ/K)].

On the difference there are partial results in [3, Corollary 4.6], [5, Corol-
lary to Theorem 3], and [7, Theorem 4.8]. For quadratic extensions, the
above theorem is proved in [11, Main Theorem].

We can find another type of result in [6]. From [5, proof of Theorem 1]
we know that X(A/L) ∼= X(ResL/K(A)/K), where ResL/K(A) is the
restriction of scalars of A from L to K. Note that in [5] the restriction of
scalars is denoted by A∗. Simple computations implies that ResL/K(A)
is isogenous to A×Aχ over K. Then by using the equality [6, (7.3.1) in
p.120] we can compute the difference.

2. Proof of main theorem

At first we introduce two results from [11].
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Theorem 1. Assume X(A/L) is finite. Let F ′0 : Ĥ0(G,A′(L)) →∏
v∈MK

Ĥ0(GvL , A′(LvL)) and let trans : H1(L,A)G → H2(G,A(L)) be

the transgression map (for the definition see [4, p.129] or [11]). Then

[X(A/L)G]
[X(A/K)]

=
[trans(X(A/L)G)][Ker(F ′0)]
[Ĥ0(G,A′(L))][H1(G,A(L))]

∏

v∈MK

[H1(GvL , A(LvL))].

Proof. See [11, Theorem 6].

Theorem 2. Assume X(Aχ/K) is finite. Denote by NX(Aχ/L)
the kernel of the norm map N : X(Aχ/L) → X(Aχ/L)G. Define
res(Aχ)′ : H1(K, (Aχ)′) → H1(L, (Aχ)′)G to be the restriction map. Write

cores for the corestriction map H1(L,Aχ) → H1(K, Aχ) (for the defini-
tion see [8] or [10, p.259]). Then

[X(Aχ/K)]
[N(X(Aχ/L))]

= [cores(NX(Aχ/L))][Ker(res(Aχ)′) ∩X((Aχ)′/K)].

Proof. See [11, Lemma 10].

We will show that [N(X(Aχ/L))] = [(1− σ)X(A/L)] in Lemma 3,
and [Ker(F ′0)] = [Ker(res(Aχ)′) ∩X((Aχ)′/K)] in Lemma 5. Finally
we will prove [trans(X(A/L)G)] = [cores(NX(Aχ/L))] in Lemma 7.
Because [X(A/L)] = [X(A/L)G][(1 − σ)X(A/L)], Main Theorem is
immediate.

Lemma 3. [N(X(Aχ/L))] = [(1− σ)X(A/L)]

Proof. Let X(f) : X(A/L)n−1 → X(Aχ/L) be the isomorphism
induced by f : An−1 → Aχ. For z = (a1, · · · , an−1)T ∈ X(A/L)n−1,
we know that N(X(f)(z)) = X(f)(b, bσn−1

, bσn−2
, · · · , bσ2

)T with b =∑n−1
i=1 (aσi−1

i − aσn−1

i ) ∈ (1 − σ)X(A/L). For b = (1 − σ)c ∈ (1 −
σ)X(A/L), we can show that

N(X(f)(0, · · · , 0, cσ2
)T ) = X(f)(b, bσn−1

, bσn−2
, · · · , bσ2

)T .

Now

N(X(Aχ/L))

= {X(f)(b, bσn−1
, bσn−2

, · · · , bσ2
)T | b ∈ (1− σ)X(A/L)}

So the lemma follows.

Lemma 4. For P ∈ NAχ(L) there is Q = (0, 0, · · · , 0, a)T ∈ A(L)n−1

with a ∈ A(K) such that P − f(Q) ∈ (1− σ)Aχ(L).
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Proof. Note (1 − σ)Aχ(L) ⊆ NAχ(L). Let P = f(a1, · · · , an−1)T .
Define bi = −∑i−1

j=1 aσn+j−i

j for i ≥ 2. Then we have

P − (1− σ)f(0, b2, · · · , bn−1)T = f(0, · · · , 0, a)T ∈ NAχ(L).

Now it is easy to show that a ∈ A(K).

Define a surjective homomorphism A(K) → NAχ(L)/(1 − σ)Aχ(L)
induced by a ∈ A(K) → f(0, · · · , 0, a)T ∈ NAχ(L). It is easy to show
that the kernel is NA(L). Then A(K)/NA(L) ∼= NAχ(L)/(1−σ)Aχ(L),
that is,

(1) Ĥ0(G, A(L)) ∼= H1(G, Aχ(L)).

Lemma 5. [Ker(F ′0)] = [Ker(res(Aχ)′) ∩X((Aχ)′/K)].

Proof. Note that

Ker(res(Aχ)′) ∩X((Aχ)′/K) ∼= Ker(res(A′)χ) ∩X((A′)χ/K).

From [11, diagram (1)] it follows that Ker(res(A′)χ) ∩X((A′)χ/K) =
Ker{H1(G, (A′)χ(L)) → ∏

v∈MK
H1(GvL , (A′)χ(LvL))}. Now from the

natural isomorphism (1), the lemma follows.

Lemma 6. For z ∈ NX(Aχ/L), there is z′ = (0, · · · , 0, z1)T ∈
X(A/L)n−1 such that z −X(f)(z′) ∈ Ker(cores). Furthermore, z1 ∈
X(A/L)G and X(f)(z′) ∈ NX(Aχ/L).

Proof. Note that (1− σ)X(Aχ/L) ⊆ Ker(cores) because cores(z) =
cores(zσ) for z ∈ H1(L, Aχ) (see [1, Exercises 1, p.83] or [2, (10), p.256]).
Let z = X(f)(y1, · · · , yn−1)T where yi ∈X(A/L).

Define wi = −∑i−1
j=1 yσn+j−i

j for i ≥ 2. Note that X(f)σ = X(fσ) =
X(f)M(χ). Then we can prove that

z − (1− σ)X(f)(0, w2, · · · , wn−1)T

= X(f)(0, · · · , 0, z1)T ∈ NX(Aχ/L).

It is easy to show that z1 ∈X(A/L)G.

Define a homomorphism

Φ: X(A/L)G ↪→ NX(Aχ/L) cores−−−−→X(Aχ/K)

by Φ(a) = cores(X(f)(0, · · · , 0, a)). From the previous lemma we know
that Φ(X(A/L)G) = cores(NX(Aχ/L)).

Lemma 7. For z ∈X(A/L)G, trans(z) = 0 if and only if Φ(z) = 0.
Furthermore, [trans(X(A/L)G)] = [cores(NX(Aχ/L))].
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Proof. Because G is a cycle group, for any 2-cocyle α ∈ Z2(G,A(L))
there is β ∈ Z2(G,A(L)) cohomologous to α such that with P ∈ A(K)
for τi ∈ σkiGL

(2) β(τ1, τ2) =

{
0, when k1 + k2 < n

P, when k1 + k2 ≥ n.

From the definition of transgression map(see [4, p.129] and [11]) for
given z ∈X(A/L)G there are a cochain Γ ∈ Z1(GK , A) and a 2-cocycle
β ∈ Z2(G, A(L)) satisfying (2) such that Γ|GL

∈ z, β ∈ trans(z) and

(3) β(τ1, τ2) = −Γ(τ1τ2) + Γ(τ1) + τ1Γ(τ2) for τi ∈ GK .

Now trans(z) = 0, that is, β is a coboundary, if and only if P ∈ N(A(L)).
From the definition in [8], we know that for τ ∈ σkGL,

cores(f ◦ (0, · · · , 0, Γ|GL
)T )(τ) =

n−1∑

i=0

σi(f(0, · · · , 0,Γ(σ−iτσpk(i)))T )

=
n−1∑

i=0

fM i(0, · · · , 0, σiΓ(σ−iτσpk(i)))T ,

where

pk(i) =

{
n + i− k, when i < k

i− k, when i ≥ k.

Using the equation (3) we compute

σiΓ(σ−iτσpk(i)) =

{
τΓ(σn+i−k) + Γ(τ)− Γ(σi)− P, when i < k

τΓ(σi−k) + Γ(τ)− Γ(σi), when i ≥ k.

From direct computation we know that the i-th element of the column
vector

∑n−1
i=0 M i(0, · · · , 0, σiΓ(σ−iτσpk(i)))T is





(σn−i−1 − τσn−k−i−1)Γ(σ), when i < n− k

τΓ(σn−1) + σk−1Γ(σ)− P, when i = n− k

(σn−i−1 − τσ2n−k−i−1)Γ(σ), when i > n− k.

Then it follows that

Φ(Γ)(τ) = cores(f ◦ (0, · · · , 0, Γ|GL
)T )(τ) = (1− τ)f(Q(Γ))− f(Q(τ)),

where Q(Γ) = (σn−2Γ(σ), · · · , σΓ(σ), Γ(σ))T and

Q(τ) =





(0, · · · , 0,
(n−k)

P , 0, · · · , 0)T , when τ ∈ σkGL with k ≥ 1
0, when τ ∈ GL.
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Then Φ(z) = 0 if and only if f(Q(τ)) = (1 − τ)Q2 with Q2 ∈ Aχ(L).
Now it is easy to show Φ(z) = 0 if and only if P ∈ NA(L). So the
lemma follows.

3. Corollary

Denote by R the companion matrix of xn − 1. Assume that hi(x) ∈
Z[x](i = 1, 2) are integral polynomials of degree mi such that xn − 1 =
h1(x)h2(x). Let Mi be the companion matrices of hi(x)(i = 1, 2). Then
there are abelian varieties Bi and isomorphisms ψi : Ami → Bi defined
over L such that ψ−1

i ◦ ψσ
i = Mi.

Corollary 8. Assume that X(A/L) is finite. Then

[X(B1/K)][X(B2/K)]
[X(A/L)]

=
[Ĥ0(G,B1

′(L))][H1(G, B1(L))]∏
v∈MK

[H1(GvL , B1(LvL))]
.

Proof. From Main Theorem we know that

[X(B1/K)][X(B1
χ/K)]

[X(B1/L)]
=

[Ĥ0(G,B1
′(L))][H1(G,B1(L))]∏

v∈MK
[H1(GvL , B1(LvL))]

.

Note that [X(B1/L)] = [X(A/L)]m1 . From the definition of restriction
of scalars(see [5]) it is obvious that the restriction of scalar ResL/K(A)
is the twist of An defined by R. Then the following lemma implies that
Bχ

1 is isomorphic to ResL/K(A)m1−1 ×B2 over K. Because X(A/L) ∼=
X(ResL/K(A)/K)(see [5, proof of Theorem 1]), we get [X(B1

χ/K)] =
[X(B2/K)][X(A/L)]m1−1. So the corollary is obvious.

Lemma 9. The Kronecker product M1 ⊗ M(χ) is similar to the
direct sum R⊕ · · · ⊕R︸ ︷︷ ︸

m1−1

⊕M2, where M(χ) is the companion matrix of

1 + x + · · ·+ xn−1.

Proof. Denote by Id(k) the k×k identity matrix. It is enough to show
that x Id(m1(n − 1)) − R ⊕ · · · ⊕ R ⊕M2 is equivalent to x Id(m1(n −
1))−M1 ⊗M(χ) over Z[x] (see [9, Theorem A.2]). Note that [9, proof
of Theorem A.3(i)] implies that x Id(m1(n− 1)) − R ⊕ · · · ⊕ R ⊕M2 is
equivalent to a diagonal matrix Diag(1, . . . , 1, xn − 1, . . . , xn − 1︸ ︷︷ ︸

m1−1

, f2(x)).

Now using the similar methods in [9, proof of Theorem A.3(i)] it is easy
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to show that x Id(m1(n − 1)) −M1 ⊗M(χ) is equivalent to Id(m1(n −
2))⊕

(∑n
k=1 xn−kMk−1

1

)
. Note that

(
n∑

k=1

xn−kMk−1
1

)
(x Id(m1)−M1) = (xn − 1) Id(m1).

Because x Id(m1)−M1 is equivalent to Diag(1, . . . , 1, f1(x)) (see [9, proof
of Theorem A.3(i)]),

∑n
k=1 xn−kMk−1

1 is equivalent to the diagonal ma-
trix Diag(xn − 1, . . . , xn − 1, f2(x)). Then the lemma follows.
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