Honam Mathematical J. 32 (2010), No. 1, pp. 45-51

ON TATE-SHAFAREVICH GROUPS OVER CYCLIC EXTENSIONS

Hoseog Yu

Abstract. Let A be an abelian variety defined over a number field K and let L be a cyclic extension of K with Galois group $G = \langle \sigma \rangle$ of order n. Let $\coprod(A/K)$ and $\coprod(A/L)$ denote, respectively, the Tate-Shafarevich groups of A over K and of A over L. Assume $\coprod(A/L)$ is finite. Let $M(\chi)$ be a companion matrix of $1+x+\cdots+x^{n-1}$ and let A^{χ} be the twist of A^{n-1} defined by $f^{-1} \circ f^{\sigma} = M(\chi)$ where $f: A^{n-1} \to A^{\chi}$ is an isomorphism defined over L. In this paper we compute $[\coprod(A/K)][\coprod(A^{\chi}/K)]/[\coprod(A/L)]$ in terms of cohomology, where [X] is the order of an finite abelian group X.

1. Introduction

In this paper we generalize Main Theorem in [11]. Let L/K be a cyclic extension of number fields with Galois group G of order n. Write \overline{K} , G_K , M_K , K_v for the algebraic closure of K, $\operatorname{Gal}(\overline{K}/K)$, a complete set of places on K, the completion of K at the place $v \in M_K$, respectively. Fix a place $v_L \in M_L$ lying above v for each $v \in M_K$. Denote $\operatorname{Gal}(L_w/K_w)$ by G_w for $w \in M_L$. Fix $\sigma \in G_K$ such that σG_L is a generator of $G = G_K/G_L$.

Let A be an abelian variety defined over K and let $\operatorname{III}(A/K)$ be the Tate-Shafarevich group of A over K. Denote by $M(\chi)$ the $(n-1) \times (n-1)$

Received December 3, 2009. Accepted January 15, 2010.

²⁰⁰⁰ Mathematics Subject Classification: 11G40.

Key words and phrases: Tate-Shafarevich group, corestriction map, transgression map, Kronecker product .

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (KRF-2008-331-C00003).

Hoseog Yu

matrix

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -1 & -1 & -1 & \cdots & -1 & -1 \end{pmatrix} \in \operatorname{End}_{K}(A^{n-1}),$$

where 1 is the identity homomorphism in $\operatorname{End}_K(A)$. Note that $M(\chi)$ is the companion matrix of $1 + x + \cdots + x^{n-1}$. Let A^{χ} be an abelian variety such that there is an isomorphism $f: A^{n-1} \to A^{\chi}$ defined over L satisfying $f^{-1} \circ f^{\sigma} = M(\chi)$. For the existence and the uniqueness up to K-isomorphism of such a variety A^{χ} , see [5, §2].

We write [X] for the order of a finite abelian group X and write V^T for the transpose of the matrix V.

Main Theorem. Assume that $\operatorname{III}(A/L)$ is finite. Then

$$\frac{[\mathrm{III}(A/K)][\mathrm{III}(A^{\chi}/K)]}{[\mathrm{III}(A/L)]} = \frac{[\widehat{\mathrm{H}}^0(G, A'(L))][\mathrm{H}^1(G, A(L))]}{\prod_{v \in M_K}[\mathrm{H}^1(G_{v_L}, A(L_{v_L}))]},$$

where A' is the dual variety of A.

Proof. We can prove Main Theorem from Theorem 1, Theorem 2, Lemma 3, Lemma 5, and Lemma 7. \Box

Note that the Tate-Shafarevich group is not an isogeny invariant and in general,

$$[\operatorname{III}(A/L)] \neq [\operatorname{III}(A/K)][\operatorname{III}(A^{\chi}/K)].$$

On the difference there are partial results in [3, Corollary 4.6], [5, Corollary to Theorem 3], and [7, Theorem 4.8]. For quadratic extensions, the above theorem is proved in [11, Main Theorem].

We can find another type of result in [6]. From [5, proof of Theorem 1] we know that $\operatorname{III}(A/L) \cong \operatorname{III}(\operatorname{Res}_{L/K}(A)/K)$, where $\operatorname{Res}_{L/K}(A)$ is the restriction of scalars of A from L to K. Note that in [5] the restriction of scalars is denoted by A_* . Simple computations implies that $\operatorname{Res}_{L/K}(A)$ is isogenous to $A \times A^{\chi}$ over K. Then by using the equality [6, (7.3.1) in p.120] we can compute the difference.

2. Proof of main theorem

At first we introduce two results from [11].

Theorem 1. Assume $\operatorname{III}(A/L)$ is finite. Let $\mathcal{F}'_0: \widehat{\operatorname{H}}^0(G, A'(L)) \to \prod_{v \in M_K} \widehat{\operatorname{H}}^0(G_{v_L}, A'(L_{v_L}))$ and let trans: $\operatorname{H}^1(L, A)^G \to \operatorname{H}^2(G, A(L))$ be the transgression map (for the definition see [4, p.129] or [11]). Then

$$\frac{[\operatorname{III}(A/L)^G]}{[\operatorname{III}(A/K)]} = \frac{[\operatorname{trans}(\operatorname{III}(A/L)^G)][\operatorname{Ker}(\mathcal{F}'_0)]}{[\widehat{\operatorname{H}}^0(G, A'(L))][\operatorname{H}^1(G, A(L))]} \prod_{v \in M_K} [\operatorname{H}^1(G_{v_L}, A(L_{v_L}))].$$

Proof. See [11, Theorem 6].

Theorem 2. Assume $\operatorname{III}(A^{\chi}/K)$ is finite. Denote by ${}_{N}\operatorname{III}(A^{\chi}/L)$ the kernel of the norm map $N: \operatorname{III}(A^{\chi}/L) \to \operatorname{III}(A^{\chi}/L)^{G}$. Define $\operatorname{res}_{(A^{\chi})'}: \operatorname{H}^{1}(K, (A^{\chi})') \to \operatorname{H}^{1}(L, (A^{\chi})')^{G}$ to be the restriction map. Write cores for the corestriction map $\operatorname{H}^{1}(L, A^{\chi}) \to \operatorname{H}^{1}(K, A^{\chi})$ (for the definition see [8] or [10, p.259]). Then

$$\frac{[\mathrm{III}(A^{\chi}/K)]}{[N(\mathrm{III}(A^{\chi}/L))]} = [\mathrm{cores}(N\mathrm{III}(A^{\chi}/L))][\mathrm{Ker}(\mathrm{res}_{(A^{\chi})'}) \cap \mathrm{III}((A^{\chi})'/K)].$$

Proof. See [11, Lemma 10].

We will show that $[N(\amalg(A^{\chi}/L))] = [(1 - \sigma)\amalg(A/L)]$ in Lemma 3, and $[\operatorname{Ker}(\mathcal{F}'_0)] = [\operatorname{Ker}(\operatorname{res}_{(A^{\chi})'}) \cap \amalg((A^{\chi})'/K)]$ in Lemma 5. Finally we will prove $[\operatorname{trans}(\amalg(A/L)^G)] = [\operatorname{cores}(_N\amalg(A^{\chi}/L))]$ in Lemma 7. Because $[\amalg(A/L)] = [\amalg(A/L)^G][(1 - \sigma)\amalg(A/L)]$, Main Theorem is immediate.

Lemma 3. $[N(III(A^{\chi}/L))] = [(1 - \sigma)III(A/L)]$

Proof. Let $\operatorname{III}(f) \colon \operatorname{III}(A/L)^{n-1} \to \operatorname{III}(A^{\chi}/L)$ be the isomorphism induced by $f \colon A^{n-1} \to A^{\chi}$. For $z = (a_1, \cdots, a_{n-1})^T \in \operatorname{III}(A/L)^{n-1}$, we know that $N(\operatorname{III}(f)(z)) = \operatorname{III}(f)(b, b^{\sigma^{n-1}}, b^{\sigma^{n-2}}, \cdots, b^{\sigma^2})^T$ with $b = \sum_{i=1}^{n-1} (a_i^{\sigma^{i-1}} - a_i^{\sigma^{n-1}}) \in (1-\sigma) \operatorname{III}(A/L)$. For $b = (1-\sigma)c \in (1-\sigma) \operatorname{III}(A/L)$, we can show that

$$N(\mathrm{III}(f)(0,\cdots,0,c^{\sigma^2})^T) = \mathrm{III}(f)(b,b^{\sigma^{n-1}},b^{\sigma^{n-2}},\cdots,b^{\sigma^2})^T.$$

Now

$$N(\amalg(A^{\chi}/L))$$

$$= \{ \operatorname{III}(f)(b, b^{\sigma^{n-1}}, b^{\sigma^{n-2}}, \cdots, b^{\sigma^2})^T \mid b \in (1-\sigma) \operatorname{III}(A/L) \}$$
nma follows.

So the lemma follows.

Lemma 4. For $P \in {}_N A^{\chi}(L)$ there is $Q = (0, 0, \dots, 0, a)^T \in A(L)^{n-1}$ with $a \in A(K)$ such that $P - f(Q) \in (1 - \sigma)A^{\chi}(L)$.

Hoseog Yu

Proof. Note $(1 - \sigma)A^{\chi}(L) \subseteq {}_{N}A^{\chi}(L)$. Let $P = f(a_1, \cdots, a_{n-1})^T$. Define $b_i = -\sum_{j=1}^{i-1} a_j^{\sigma^{n+j-i}}$ for $i \ge 2$. Then we have

$$P - (1 - \sigma)f(0, b_2, \cdots, b_{n-1})^T = f(0, \cdots, 0, a)^T \in {}_N A^{\chi}(L).$$

Now it is easy to show that $a \in A(K)$.

Define a surjective homomorphism $A(K) \to {}_N A^{\chi}(L)/(1-\sigma)A^{\chi}(L)$ induced by $a \in A(K) \to f(0, \dots, 0, a)^T \in {}_N A^{\chi}(L)$. It is easy to show that the kernel is NA(L). Then $A(K)/NA(L) \cong {}_NA^{\chi}(L)/(1-\sigma)A^{\chi}(L)$, that is,

(1)
$$\widehat{\mathrm{H}}^{0}(G, A(L)) \cong \mathrm{H}^{1}(G, A^{\chi}(L)).$$

Lemma 5. $[\operatorname{Ker}(\mathcal{F}'_0)] = [\operatorname{Ker}(\operatorname{res}_{(A^{\chi})'}) \cap \amalg((A^{\chi})'/K)].$

Proof. Note that

 $\operatorname{Ker}(\operatorname{res}_{(A^{\chi})'}) \cap \operatorname{III}((A^{\chi})'/K) \cong \operatorname{Ker}(\operatorname{res}_{(A')\chi}) \cap \operatorname{III}((A')^{\chi}/K).$

From [11, diagram (1)] it follows that $\operatorname{Ker}(\operatorname{res}_{(A')\chi}) \cap \operatorname{III}((A')^{\chi}/K) =$ $\operatorname{Ker} \{ \operatorname{H}^1(G, (A')^{\chi}(L)) \to \prod_{v \in M_K} \operatorname{H}^1(G_{v_L}, (A')^{\chi}(L_{v_L})) \}.$ Now from the natural isomorphism (1), the lemma follows.

Lemma 6. For $z \in {}_{N} \amalg (A^{\chi}/L)$, there is $z' = (0, \cdots, 0, z_1)^T \in$ $\operatorname{III}(A/L)^{n-1}$ such that $z - \operatorname{III}(f)(z') \in \operatorname{Ker}(\operatorname{cores})$. Furthermore, $z_1 \in$ $\operatorname{III}(A/L)^G$ and $\operatorname{III}(f)(z') \in {}_N\operatorname{III}(A^{\chi}/L).$

Proof. Note that $(1 - \sigma) \coprod (A^{\chi}/L) \subseteq \text{Ker}(\text{cores})$ because cores(z) = $cores(z^{\sigma})$ for $z \in H^1(L, A^{\chi})$ (see [1, Exercises 1, p.83] or [2, (10), p.256]). Let $z = \coprod(f)(y_1, \cdots, y_{n-1})^T$ where $y_i \in \coprod(A/L)$. Define $w_i = -\sum_{j=1}^{i-1} y_j^{\sigma^{n+j-i}}$ for $i \ge 2$. Note that $\coprod(f)^{\sigma} = \coprod(f^{\sigma}) =$

 $\operatorname{III}(f)M(\chi)$. Then we can prove that

$$z - (1 - \sigma) \operatorname{III}(f)(0, w_2, \cdots, w_{n-1})^T$$
$$= \operatorname{III}(f)(0, \cdots, 0, z_1)^T \in {}_N \operatorname{III}(A^{\chi}/L).$$

It is easy to show that $z_1 \in \coprod (A/L)^G$.

Define a homomorphism

$$\Phi \colon \mathrm{III}(A/L)^G \hookrightarrow {}_N\mathrm{III}(A^{\chi}/L) \xrightarrow{\mathrm{cores}} \mathrm{III}(A^{\chi}/K)$$

by $\Phi(a) = \operatorname{cores}(\operatorname{III}(f)(0, \dots, 0, a))$. From the previous lemma we know that $\Phi(\mathrm{III}(A/L)^G) = \operatorname{cores}({}_N\mathrm{III}(A^{\chi}/L)).$

Lemma 7. For $z \in III(A/L)^G$, trans(z) = 0 if and only if $\Phi(z) = 0$. Furthermore, $[\operatorname{trans}(\operatorname{III}(A/L)^G)] = [\operatorname{cores}(_N \operatorname{III}(A^{\chi}/L))].$

Proof. Because G is a cycle group, for any 2-cocyle $\alpha \in Z^2(G, A(L))$ there is $\beta \in Z^2(G, A(L))$ cohomologous to α such that with $P \in A(K)$ for $\tau_i \in \sigma^{k_i} G_L$

(2)
$$\beta(\tau_1, \tau_2) = \begin{cases} 0, & \text{when } k_1 + k_2 < n \\ P, & \text{when } k_1 + k_2 \ge n. \end{cases}$$

,

From the definition of transgression map(see [4, p.129] and [11]) for given $z \in \mathrm{III}(A/L)^G$ there are a cochain $\Gamma \in Z^1(G_K, A)$ and a 2-cocycle $\beta \in Z^2(G, A(L))$ satisfying (2) such that $\Gamma|_{G_L} \in z, \beta \in \mathrm{trans}(z)$ and

(3)
$$\beta(\tau_1, \tau_2) = -\Gamma(\tau_1 \tau_2) + \Gamma(\tau_1) + \tau_1 \Gamma(\tau_2) \text{ for } \tau_i \in G_K$$

Now trans(z) = 0, that is, β is a coboundary, if and only if $P \in N(A(L))$. From the definition in [8], we know that for $\tau \in \sigma^k G_L$,

$$\operatorname{cores}(f \circ (0, \cdots, 0, \Gamma|_{G_L})^T)(\tau) = \sum_{i=0}^{n-1} \sigma^i (f(0, \cdots, 0, \Gamma(\sigma^{-i}\tau\sigma^{p_k(i)}))^T)$$
$$= \sum_{i=0}^{n-1} f M^i (0, \cdots, 0, \sigma^i \Gamma(\sigma^{-i}\tau\sigma^{p_k(i)}))^T,$$

where

$$p_k(i) = \begin{cases} n+i-k, & \text{when } i < k\\ i-k, & \text{when } i \ge k. \end{cases}$$

Using the equation (3) we compute

$$\sigma^{i} \Gamma(\sigma^{-i} \tau \sigma^{p_{k}(i)}) = \begin{cases} \tau \Gamma(\sigma^{n+i-k}) + \Gamma(\tau) - \Gamma(\sigma^{i}) - P, & \text{when } i < k \\ \tau \Gamma(\sigma^{i-k}) + \Gamma(\tau) - \Gamma(\sigma^{i}), & \text{when } i \ge k. \end{cases}$$

From direct computation we know that the *i*-th element of the column vector $\sum_{i=0}^{n-1} M^i(0, \cdots, 0, \sigma^i \Gamma(\sigma^{-i} \tau \sigma^{p_k(i)}))^T$ is

$$\begin{cases} (\sigma^{n-i-1} - \tau \sigma^{n-k-i-1}) \Gamma(\sigma), & \text{when } i < n-k \\ \tau \Gamma(\sigma^{n-1}) + \sigma^{k-1} \Gamma(\sigma) - P, & \text{when } i = n-k \\ (\sigma^{n-i-1} - \tau \sigma^{2n-k-i-1}) \Gamma(\sigma), & \text{when } i > n-k. \end{cases}$$

Then it follows that

$$\Phi(\Gamma)(\tau) = \operatorname{cores}(f \circ (0, \cdots, 0, \Gamma|_{G_L})^T)(\tau) = (1 - \tau)f(Q(\Gamma)) - f(Q(\tau)),$$

where $Q(\Gamma) = (\sigma^{n-2}\Gamma(\sigma), \cdots, \sigma\Gamma(\sigma), \Gamma(\sigma))^T$ and
$$Q(\tau) = \begin{cases} (0, \cdots, 0, \stackrel{(n-k)}{P}, 0, \cdots, 0)^T, & \text{when } \tau \in \sigma^k G_L \text{ with } k \ge 1 \end{cases}$$

$$\begin{cases} (0, \cdots, 0, \stackrel{(n-k)}{P}, 0, \cdots, 0)^T, & \text{when } \tau \in \sigma^k G_L \text{ with } k \ge 1\\ 0, & \text{when } \tau \in G_L. \end{cases}$$

Hoseog Yu

Then $\Phi(z) = 0$ if and only if $f(Q(\tau)) = (1 - \tau)Q_2$ with $Q_2 \in A^{\chi}(L)$. Now it is easy to show $\Phi(z) = 0$ if and only if $P \in NA(L)$. So the lemma follows.

3. Corollary

Denote by R the companion matrix of $x^n - 1$. Assume that $h_i(x) \in \mathbf{Z}[x](i = 1, 2)$ are integral polynomials of degree m_i such that $x^n - 1 = h_1(x)h_2(x)$. Let M_i be the companion matrices of $h_i(x)(i = 1, 2)$. Then there are abelian varieties B_i and isomorphisms $\psi_i \colon A^{m_i} \to B_i$ defined over L such that $\psi_i^{-1} \circ \psi_i^{\sigma} = M_i$.

Corollary 8. Assume that $\operatorname{III}(A/L)$ is finite. Then

$$\frac{[\mathrm{III}(B_1/K)][\mathrm{III}(B_2/K)]}{[\mathrm{III}(A/L)]} = \frac{[\widehat{\mathrm{H}}^0(G, B_1'(L))][\mathrm{H}^1(G, B_1(L))]}{\prod_{v \in M_K}[\mathrm{H}^1(G_{v_L}, B_1(L_{v_L}))]}.$$

Proof. From Main Theorem we know that

$$\frac{[\mathrm{III}(B_1/K)][\mathrm{III}(B_1^{\chi}/K)]}{[\mathrm{III}(B_1/L)]} = \frac{[\widehat{\mathrm{H}}^0(G, B_1'(L))][\mathrm{H}^1(G, B_1(L))]}{\prod_{v \in M_K}[\mathrm{H}^1(G_{v_L}, B_1(L_{v_L}))]}.$$

Note that $[\mathrm{III}(B_1/L)] = [\mathrm{III}(A/L)]^{m_1}$. From the definition of restriction of scalars(see [5]) it is obvious that the restriction of scalar $\operatorname{Res}_{L/K}(A)$ is the twist of A^n defined by R. Then the following lemma implies that B_1^{χ} is isomorphic to $\operatorname{Res}_{L/K}(A)^{m_1-1} \times B_2$ over K. Because $\mathrm{III}(A/L) \cong$ $\mathrm{III}(\operatorname{Res}_{L/K}(A)/K)$ (see [5, proof of Theorem 1]), we get $[\mathrm{III}(B_1^{\chi}/K)] =$ $[\mathrm{III}(B_2/K)][\mathrm{III}(A/L)]^{m_1-1}$. So the corollary is obvious. \Box

Lemma 9. The Kronecker product $M_1 \otimes M(\chi)$ is similar to the direct sum $\underbrace{R \oplus \cdots \oplus R}_{m_1-1} \oplus M_2$, where $M(\chi)$ is the companion matrix of $1 + x + \cdots + x^{n-1}$.

Proof. Denote by $\operatorname{Id}(k)$ the $k \times k$ identity matrix. It is enough to show that $x \operatorname{Id}(m_1(n-1)) - R \oplus \cdots \oplus R \oplus M_2$ is equivalent to $x \operatorname{Id}(m_1(n-1)) - M_1 \otimes M(\chi)$ over $\mathbf{Z}[x]$ (see [9, Theorem A.2]). Note that [9, proof of Theorem A.3(i)] implies that $x \operatorname{Id}(m_1(n-1)) - R \oplus \cdots \oplus R \oplus M_2$ is equivalent to a diagonal matrix $\operatorname{Diag}(1, \ldots, 1, \underbrace{x^n - 1, \ldots, x^n - 1}_{m_1 - 1}, f_2(x))$.

Now using the similar methods in [9, proof of Theorem A.3(i)] it is easy

to show that $x \operatorname{Id}(m_1(n-1)) - M_1 \otimes M(\chi)$ is equivalent to $\operatorname{Id}(m_1(n-2)) \oplus \left(\sum_{k=1}^n x^{n-k} M_1^{k-1}\right)$. Note that

$$\left(\sum_{k=1}^{n} x^{n-k} M_1^{k-1}\right) (x \operatorname{Id}(m_1) - M_1) = (x^n - 1) \operatorname{Id}(m_1).$$

Because $x \operatorname{Id}(m_1) - M_1$ is equivalent to $\operatorname{Diag}(1, \ldots, 1, f_1(x))$ (see [9, proof of Theorem A.3(i)]), $\sum_{k=1}^n x^{n-k} M_1^{k-1}$ is equivalent to the diagonal matrix $\operatorname{Diag}(x^n - 1, \ldots, x^n - 1, f_2(x))$. Then the lemma follows. \Box

References

- [1] K. S. Brown, *Cohomology of groups*, Grad. Texts in Math. 87. Springer-Verlag 1982.
- [2] K. Cartan and S. Eilenberg, *Homological algebra*, Princeton University Press 1956.
- [3] C. D. Gonzalez-Avilés, On Tate-Shafarevich groups of abelian varieties, Proc. Amer. Math. Soc. 128 (2000), 953–961.
- [4] G. Hochschild and J-P. Serre, Cohomology of Group Extension, Trans. Amer. Math. Soc. 74 (1953), 110–134.
- [5] J. S. Milne, On the arithmetic of abelian varieties, Inventiones Math. 17 (1972), 177–190.
- [6] J. S. Milne, Arithmetic Duality Theorems, Perspectives in Math. vol. 1. Academic Press Inc. 1986.
- [7] Hwasin Park, Idempotent relations and the conjecture of Birch and Swinnerton-Dyer, In: Algebra and Topology 1990 (Taejon, 1990), 97–125.
- [8] Carl Riehm, The Corestriction of Algebraic Structures, Inven. Math. 11 (1970), 73–98.
- [9] L. Solomon, Similarity of the companion matrix and its transpose, Linear Algebra Appl. 302/303 (1999), 555–561.
- [10] J. Tate, Relations between K₂ and Galois cohomology, Inventiones Math. 36 (1976), 257–274.
- [11] H. Yu, On Tate-Shafarevich groups over Galois extensions, Israel Journal of Math. 141 (2004), 211–220.

Hoseog Yu Department of Applied Mathematics, Sejong University, Seoul, 143-747, Korea *E-mail*: hsyu@sejong.ac.kr