DOI QR코드

DOI QR Code

ON NON-DISPLACEABLE LAGRANGIAN SUBMANIFOLDS IN TWO-STEP FLAG VARIETIES

  • Yoosik Kim (Department of Mathematics and Institute of Mathematical Science Pusan National University)
  • Received : 2023.02.22
  • Accepted : 2023.07.19
  • Published : 2023.09.01

Abstract

We prove that the two-step flag variety 𝓕ℓ(1, n; n+1) carries a non-displaceable and non-monotone Lagrangian Gelfand-Zeitlin fiber diffeomorphic to S3 × T2n-4 and a continuum family of non-displaceable Lagrangian Gelfand-Zeitlin torus fibers when n > 2.

Keywords

References

  1. B. H. An, Y. Cho, and J. S. Kim, On the f-vectors of Gelfand-Cetlin polytopes, European J. Combin. 67 (2018), 61-77. https://doi.org/10.1016/j.ejc.2017.07.005
  2. D. Bouloc, E. Miranda, and N. T. Zung, Singular fibres of the Gelfand-Cetlin system on u(n)*, Philos. Trans. Roy. Soc. A 376 (2018), no. 2131, 20170423, 28 pp. https://doi.org/10.1098/rsta.2017.0423
  3. J. D. Carlson and J. Lane, The topology of Gelfand-Zeitlin fibers, arXiv:2107.02721, 2021.
  4. C.-H. Cho, Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus, Int. Math. Res. Not. 2004 (2004), no. 35, 1803-1843. https://doi.org/10.1155/S1073792804132716
  5. Y. Cho and Y. Kim, Lagrangian fibers of Gelfand-Cetlin systems of SO(n)-type, Transform. Groups 25 (2020), no. 4, 1063-1102. https://doi.org/10.1007/s00031-020-09566-4
  6. Y. Cho and Y. Kim, Monotone Lagrangians in flag varieties, Int. Math. Res. Not. IMRN 2021 (2021), no. 18, 13892-13945. https://doi.org/10.1093/imrn/rnz227
  7. Y. Cho, Y. Kim, and Y.-G. Oh, Lagrangian fibers of Gelfand-Cetlin systems, Adv. Math. 372 (2020), 107304, 57 pp. https://doi.org/10.1016/j.aim.2020.107304
  8. Y. Cho, Y. Kim, and Y.-G. Oh, A critical point analysis of Landau-Ginzburg potentials with bulk in Gelfand-Cetlin systems, Kyoto J. Math. 61 (2021), no. 2, 259-304. https://doi.org/10.1215/21562261-2021-0002
  9. C.-H. Cho and Y.-G. Oh, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10 (2006), no. 4, 773-814. https://doi.org/10.4310/AJM.2006.v10.n4.a10
  10. C.-H. Cho and M. Poddar, Holomorphic orbi-discs and Lagrangian Floer cohomology of symplectic toric orbifolds, J. Differential Geom. 98 (2014), no. 1, 21-116. http://projecteuclid.org/euclid.jdg/1406137695
  11. J. D. Evans and Y. Lekili, Generating the Fukaya categories of Hamiltonian G-manifolds, J. Amer. Math. Soc. 32 (2019), no. 1, 119-162. https://doi.org/10.1090/jams/909
  12. A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513-547. http://projecteuclid.org/euclid.jdg/1214442477 https://doi.org/10.4310/jdg/1214442477
  13. K. Fukaya, Cyclic symmetry and adic convergence in Lagrangian Floer theory, Kyoto J. Math. 50 (2010), no. 3, 521-590. https://doi.org/10.1215/0023608X-2010-004
  14. K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory on compact toric manifolds. I, Duke Math. J. 151 (2010), no. 1, 23-174. https://doi.org/10.1215/00127094-2009-062
  15. K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Selecta Math. (N.S.) 17 (2011), no. 3, 609-711. https://doi.org/10.1007/s00029-011-0057-z
  16. V. Guillemin and S. Sternberg, The Gelfand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal. 52 (1983), no. 1, 106-128. https://doi.org/10.1016/0022-1236(83)90092-7
  17. Y. Kim, J. Lee, and F. Sanda, Detecting non-displaceable toric fibers on compact toric manifolds via tropicalizations, Internat. J. Math. 30 (2019), no. 1, 1950003, 40 pp. https://doi.org/10.1142/S0129167X19500034
  18. M. Kogan and E. Miller, Toric degeneration of Schubert varieties and Gelfand-Tsetlin polytopes, Adv. Math. 193 (2005), no. 1, 1-17. https://doi.org/10.1016/j.aim.2004.03.017
  19. D. McDuff, Displacing Lagrangian toric fibers via probes, in Low-dimensional and symplectic topology, 131-160, Proc. Sympos. Pure Math., 82, Amer. Math. Soc., Providence, RI, 2011. https://doi.org/10.1090/pspum/082/2768658
  20. T. Nishinou, Y. Nohara, and K. Ueda, Toric degenerations of Gelfand-Cetlin systems and potential functions, Adv. Math. 224 (2010), no. 2, 648-706. https://doi.org/10.1016/j.aim.2009.12.012
  21. Y. Nohara and K. Ueda, Floer cohomologies of non-torus fibers of the Gelfand-Cetlin system, J. Symplectic Geom. 14 (2016), no. 4, 1251-1293. https://doi.org/10.4310/JSG.2016.v14.n4.a9
  22. M. Pabiniak, Displacing (Lagrangian) submanifolds in the manifolds of full flags, Adv. Geom. 15 (2015), no. 1, 101-108. https://doi.org/10.1515/advgeom-2014-0025
  23. C. T. Woodward, Gauged Floer theory of toric moment fibers, Geom. Funct. Anal. 21 (2011), no. 3, 680-749. https://doi.org/10.1007/s00039-011-0119-6
  24. A. Zinger, Pseudocycles and integral homology, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2741-2765. https://doi.org/10.1090/S0002-9947-07-04440-6