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DOUBLE LINES IN THE QUINTIC DEL PEZZO FOURFOLD

Kiryong Chung

Abstract. Let Y be the quintic del Pezzo 4-fold defined by the linear

section of Gr(2, 5) by P7. In this paper, we describe the locus of double

lines in the Hilbert scheme of coincs in Y . As a corollary, we obtain the
desigularized model of the moduli space of stable maps of degree 2 in Y .

We also compute the intersection Poincaré polynomial of the stable map
space.

1. Introduction

1.1. Motivation

In previous series of papers [2, 4, 5], the authors completely solved the com-
parison problem of different moduli spaces (i.e., the stable map space, Hilbert
scheme of curves and the stable sheaf space) of rational curves in a homoge-
neous variety X when the degree of curves is ≤ 3. As a result, we obtain the
moduli theoretic birational model (in the sense of log minimal model program)
and compute the cohomology group of the moduli spaces. In this case, the con-
vexity ofX provides the mild singularity of the moduli space of stable maps and
thus one can set it as the initial point of comparison. But many of Fano vari-
eties are not convex. As such a toy example is the minimal compactification of
C3: the quintic del Pezzo 3-fold W5 and Mukai variety W22. In the case of W5,
our starting point of the comparison is the Hilbert scheme (which is isomor-
phic to the moduli space of stable sheaves). In [1], we obtain the desingularized
model of the moduli space of stable maps in W5. In this paper, as well-known
example of the minimal compactification of C4, we study the rational curves
in a quintic del Pezzo 4-fold Y which is unique up to isomorphism. We deal
with the first non-trivial case, that is, the degree two rational curves in Y . We
obtain the desingularized model of stable maps space and thus its intersection
cohomology group. Similar to the 3-fold case ([1]), the crucial part is to classify
types of the normal bundle of a line in Y . In general, the geometry of lines

Received April 5, 2022; Revised June 27, 2022; Accepted July 15, 2022.
2020 Mathematics Subject Classification. Primary 14E15, 14E08, 14M15, 32S60.
Key words and phrases. Rational curves, Fano variety, desingularization, intersection

cohomology.

©2023 Korean Mathematical Society

485



486 K. CHUNG

in a Fano variety has played an important role for determining the geometric
properties of a Fano variety ([9, 12,13]).

1.2. Results

Unless otherwise stated we define the quintic del Pezzo 4-fold Y by the linear
section of Gr(2, 5) by {p12 − p03 = p13 − p24 = 0}, where {pij} are the Plücker
coordinates of P9 under the Plücker embedding Gr(2, 5) ⊂ P9. It is known
that the normal bundle NL/Y of a line L in Y is one of the following types
([12, Lemma 1.6])

NL/Y
∼= OL(1)⊕O⊕2

L or OL(−1)⊕OL(1)
⊕2.

Let us call the line of the first case (resp. the second case) by free line (resp. non-
free line). LetHd(Y ) be the Hilbert scheme of curves C with Hilbert polynomial
χ(OC(m)) = dm + 1 in Y . Let us define the double line L2 as the non-split
extension sheaf F (∼= OL2)

0 → OL(−1) → F → OL → 0,

where L is a line. A double line L2 in Y supported on L is classified by
Ext1(OL,OL(−1)) ∼= H0(NL/Y (−1)). Hence the double line L2 for a (resp. non-

free) free line L in Y is unique (resp. parameterized by P1). The main result
of this paper is the following.

Theorem 1.1. Let D(Y ) be the locus of double lines in H2(Y ). Then D(Y )
is a 4-dimensional smooth subvariety of H2(Y ).

By combining the result of [3] and Theorem 1.1, it turns out that non-free
lines in Y consist of lines meeting with the dual conic C∨

v at a point (Corollary
3.2). Furthermore we obtain the designularized model (i.e., a subvariety of
complete conics) of the moduli space of stable maps of degree 2 in Y , which
enable to compute the intersection cohomology group of the moduli space. For
detail description, see Corollary 3.4.

Notation 1.2.

• Let us denote by Gr(k, n) the Grassimannian variety parameterizing
k-dimensional subspaces in a fixed vector space V with dimV = n.

• We sometimes do not distinguish the moduli point [x] ∈ M and the
object x parameterized by [x] when no confusion can arise.

• Let us shortly denote the projectivized linear subspace P(ei, . . . , ej) =
P(span{ei, . . . , ej}) in P(V5), where {e0, e2, . . . , e4} is the standard basis
of the vector space V5 of dimension 5.

Acknowledgements. The author gratefully acknowledges the many helpful
suggestions of Sang-Bum Yoo and Joonyeong Won during the preparation of
the paper. The author would like to thank the anonymous referee for valuable
comments and suggestions to improve the quality of the paper.



DOUBLE LINES IN THE QUINTIC DEL PEZZO FOURFOLD 487

2. Preliminaries

In this section we collect some facts about the quintic del Pezzo fourfold
which are mostly taken from [3] and [11].

One can define a Schburt variety relating with lines and planes in Gr(2, 5)
as follow. For fixed a flag p ∈ P1 ⊂ P2 ⊂ P3 ⊂ P4, let

• σ3,2 = {ℓ | p ∈ ℓ ⊂ P2},
• σ3,1 = {ℓ | p ∈ ℓ ⊂ P3},
• σ2,2 = {ℓ | ℓ ⊂ P2}.

Clearly, σ3,2 is a line in Gr(2, 5) and thus it is parameterized by the flag variety
Gr(1, 3, 5). Also, we note that the planes in Gr(2, 5) with σ3,1 (resp. σ2,2)-
type is parameterized by Gr(1, 4, 5) (resp. Gr(3, 5)). The projection maps
v1 : Gr(1, 3, 5) → Gr(1, 5) and v2 : Gr(1, 4, 5) → Gr(1, 5) are called by the
vertex map. In [11], the Hilbert scheme of lines and planes in Y are explicitly
described. For a projective variety X with fixed embedding in PN , let H1(X)
(resp. F2(X)) be the Hilbert scheme of lines (resp. planes) in X.

Proposition 2.1 ([11, Proposition 2.7]). Let i : H1(Y ) ⊂ H1(Gr(2, 5)) =
Gr(1, 3, 5) be the inclusion map and v1 : Gr(1, 3, 5) → Gr(1, 5) be the vertex
map. Then the composition map v1 ◦ i : H1(Y ) → Gr(1, 5) is a smooth blow-up
along the smooth conic Cv ⊂ Gr(1, 5).

Let us call Cv by the vertex conic in Proposition 2.1.

Proposition 2.2 ([11, Proposition 2.2]). The Hilbert scheme of planes in Y
is isomorphic to

F2(Y ) ∼= Cv ⊔ {[S]}.
Here each point t ∈ Cv(∼= P1) parameterizes the σ3,1-type planes Pt such that
the vertex of the plane Pt is the point {t} in Cv. Also the point [S] parameterizes
the σ2,2-type plane S in Y determined by the linear spanning ⟨Cv⟩ ⊂ Gr(1, 5) ∼=
P4 of Cv.

Let {e0, e1, e2, e3, e4} be the standard coordinate vectors of the space V5(∼=
C5), which provides the original projective space P(V5)(= P4). Let {pij}0≤i<j≤4

be the Plücker coordinates of P9. Let P7 = H1 ∩ H2 be the linear subspace
of P9 defined by p12 − p03 = p13 − p24 = 0. The vertex conic Cv is given by
([3, Lemma 6.3])

Cv = {[a0 : a1 : a2 : a3 : a4] | a0a4 + a21 = a2 = a3 = 0} ⊂ P(V5).

Remark 2.3. From the proof of [3, Lemma 6.3], we know that σ3,1-type planes
Pt in Y are Pt = P(V1 ∧ V4), where V1 = span{e0 + te1 − t2e4} and V4 =
span{e0, e1, e2+te3, e4}. Also the unique plane S in Y is given by S = P(∧2V3)
such that V3 = span{e0, e1, e4}.

The positional relations of planes in Y are as follows.

Proposition 2.4 ([11, Proposition 2.2]). Let Pt be a σ3,1-type plane and S be
the unique σ2,2-type plane in Y . Then
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(1) the intersection part Pt ∩ S is a tangent line of the dual conic1 C∨
v in

Y .
(2) the intersection part Pt ∩ Pt′ is a point in S for any t ̸= t′ ∈ Cv.

The lines in Y have a stratification relating with the plane’s type in Y .

Proposition 2.5 ([11, Corollary 3.7]). Let L be a line in Y and R =
⋃

t∈Cv
Pt

be the union of planes in Y . Then there are five types of lines in Y such that
the automorphism group Aut(Y ) of Y transitively acts on each stratum.

(a) L ̸⊂ R ∪ S.
(b) L ⊂ R, L ∩ S = {pt.} and L ∩ C∨

v = ∅.
(c) L ⊂ R, L ∩ S = L ∩ C∨

v = {pt.}.
(d) L ⊂ S and L is a tangent line of C∨

v .
(e) L ⊂ S and L ∩ C∨

v = {p1, p2} for p1 ̸= p2.

In Section 6 of [3], the authors reproduce the results of Propositions 2.1, 2.2,
and 2.4 by specifying the linear subspace P7 ⊂ P9.

Example 2.6. Let Pt0 be the plane determined by the vertex P(e0) and the
three dimensional space P(e0, e1, e2, e4). The intersection point is Pt0 ∩ C∨

v =
P(e0 ∧ e1) which is the tangent line of Cv at P(e0). Furthermore, the example
of lines in Proposition 2.5 is given in Table 1.

Table 1. Example of lines in Y

Type Vertex Plane

(a) P(e2) P(e0, e2, e3)
(b) P(e0) P(e0, e2, e4)
(c) P(e0) P(e0, e1, e2)
(d) P(e0) P(e0, e1, e4)
(e) P(e1) P(e0, e1, e4)

Let H2(Y ) be the Hilbert scheme of conics in Y . For a general conic C in Y ,
it determines linear spanning in two meanings: the linear space P2 containing
C in P(∧2V5) = P9 and the linear space P3 containing two skew lines in P(V5) =
P5. Motivated this observation, we have a birational model of H2(Y ) as follow.
Let U be the universal subbundle on Gr(4, 5) and

K := ker{∧2U ⊂ ∧2O⊕5 → O⊕2}

be the kernel of the composition map, where the arrow is given by {p12 −
p03, p13 − p24}. Let S(Y ) := Gr(3,K) be the relative Grassmannian over
Gr(4, 5).

1That is, the curve is generated by the tangent lines of Cv .
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Proposition 2.7 ([3, Proposition 6.7 and Remark 6.8]). Under above definition
and notations, H2(Y ) is obtained from S(Y ) by a blow-down followed by a blow-
up

S̃(Y )

##||
S(Y )

Ψ // H2(Y ),

where

(1) the blow-up center in S(Y ) (resp. H2(Y )) is a disjoint union P1 ⊔ P1

(resp. P5) of P1’s and

(2) the space S̃(Y ) is a relative conics space over Gr(4, 5) such the fiber
over Gr(4, 5) is the Hilbert scheme H2(Gr(2, 4)∩H1 ∩H2) of conics in
the quadric surface Gr(2, 4) ∩H1 ∩H2.

In special H2(Y ) is an irreducible and smooth variety of dimension 7.

Remark 2.8. The relative Grassimannian S(Y ) = Gr(3,K) in Proposition 2.7
can be regarded as the incident variety

(2.1) S(Y ) = {(U3, V4) | U3 ⊂ K[V4]} ⊂ Gr(3,∧2V5)×Gr(4, V5),

where K[V4] = ker{∧2V4 ⊂ ∧2V5
(p12−p03)⊕(p13−p24)→ C⊕ C}. Also the birational

correspondence Ψ : S(Y ) 99K H2(Y ) is Ψ([(U3, V4)]) = P(U3)∩Gr(2, V4). Note
that the map Ψ is not defined at the two distinct points [Pt] and [S] over a
linear subspace P1(∼= Cv) in Gr(4, 5) ([3, Remark 6.8]).

3. Results

In this section we prove Theorem 1.1. As corollaries, we have a description of
the locus of non-free lines in Y (Corollary 3.2). Also we obtain the desinguarized
model of stable maps space in Y and thus its intersection cohomology (Corollary
3.4).

3.1. Proof of Theorem 1.1

Firstly, we describe the closure of the birational inverse Ψ−1 of the double
line in H2(Y ) in Proposition 2.7. Then we find explicitly the strict transform
of the closure along the blow-up/down maps in Proposition 2.7.

Let D̄(Y ) be the locus of the pairs (U3, V4) in S(Y ) such that the restriction
qG|P(U3) to P(U3) of the quadric form qG associated to Gr(2, V4) is rank ≤ 1.
Let

p = p2 ◦ i : D̄(Y ) → Gr(4, 5)

be the composition of the second projection map p2 : S(Y ) → Gr(4, 5) in
equation (2.1) and the inclusion map i : D̄(Y ) ⊂ S(Y ).
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Lemma 3.1. Under above definition and notations, the image p(D̄(Y )) := Q3

is an irreducible quadric 3-fold in Gr(4, 5) with the homogenous coordinates
x0, x1, x2, x3, x4 such that Q3 is defined by x2

1 + 4x0x2 = 0.

Proof. For the chart x3 ̸= 0, let

[V4] :=


1 0 0 a 0
0 1 0 b 0
0 0 1 c 0
0 0 0 d 1


be an affine chart of Gr(4, 5) with a = x0/x3, b = x1/x3, c = x4/x3, d = x2/x3

and V4 = span{e0 + ae3, e1 + be3, e2 + ce3, e4 + de3}. Then for an affine chart
of Gr(2, V4)

[V2] =

(
1 0 t1 t3
0 1 t2 t4

)
,

the affine chart of Gr(2, V4) in Gr(2, 5) is

[V2][V4] =

(
1 0 t1 a+ ct1 + dt3 t3
0 1 t2 b+ ct2 + dt4 t4

)
.

After eliminating the variables {t1, t2, t3, t4} by the computer program ([8]), we
have a defining equation of Gr(2, V4) ∩H1 ∩H2

(3.1)
⟨bcp201 + c2p01p02 + cdp01p04 − ap201 + bp01p04 + cp02p04

+ dp204 + dp01p14 − p02p14, h1, h2, h3, h4, h5, h6⟩,

where

h1 = p03 − p12, h2 = p12 − bp01 − cp02 − dp04, h3 = p13 − p24,

h4 = p23 + ap02 + bp12 − dp24, h5 = p24 + ap01 − cp12 − dp14,

h6 = p34 − ap04 − bp14 − cp24

in P9 × C(a,b,c,d).
For the chart x4 ̸= 0, let a = x0/x4, b = x1/x4, u = x3/x4, d = x2/x4. By

doing the same calculation as before, we obtain the local equation of Gr(2, V4)∩
H1 ∩H2 as follows:

(3.2)
⟨ap204 + ap01p14 + bp04p14 − dp214 − p01p34 − aup04p14

− bup214 − up04p34 + u2p14p34, k1, k2, k3, k4, k5, k6⟩,

where

k1 = p02 + bp01 + dp04 − up12, k2 = p03 − p12, k3 = p12 − ap01 + dp14 − up24,

k4 = p13 − p24, k5 = p23 + ap12 + bp24 − dp34, k6 = p24 + ap04 + bp14 − up34

in P9 × C(a,b,u,d).
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Since the restricted form qG associated to Gr(2, V4) is of rank(qG|P(U3)) ≤ 1,
the quadratics of the defining equations (3.1) and (3.2) is of rank ≤ 3. Therefore
the defining equation of the image p(D̄(Y )) is given by

⟨b2 + 4ad⟩

in both cases. □

Obviously, the singular locus Sing(Q3)(∼= P1) is defined by ISing(Q3) =
⟨x0, x1, x2⟩.

Proof of Theorem 1.1. Step 1. For each [V4] ∈ Q3 \ Sing(Q3), the quadric
surface Gr(2, V4) ∩ H1 ∩ H2 is of rank 3. Hence the fiber p−1([V4]) is iso-
morphic to P1 which parameterizes tangent planes (i.e., lines) of the quadric
cone Gr(2, V4) ∩ H1 ∩ H2. If [V4] ∈ Sing(Q3), the singular quadric surface
Gr(2, V4) ∩H1 ∩H2 is the union of the plane Pt and S. In fact, for the affine
chart x3 ̸= 0 (similarly, x4 ̸= 0), it is defined by the union of σ3,1-type planes:

⟨c2p01 + cp04 − p14, p23, cp24 − p34, cp02 − p12,−cp12 + p24, p13 − p24, p03 − p12⟩

and the σ2,2-plane S:

⟨p02, p23, cp24 − p34, cp02 − p12,−cp12 + p24, p13 − p24, p03 − p12⟩

which matches with Remark 2.3 (by letting c = t). Hence the fiber p−1([V4])
is isomorphic to P1 which parameterizes planes containing the intersection line
Pt ∩ S. After all, D̄(Y ) is a P1-fiberation over Q3.

Step 2. Note that the birational map Ψ in Proposition 2.7 is not defined for
the two points: {[Pt], [S]} over Sing(Q3)(∼= P1). Hence the blow-up center of

η : S̃(Y ) → S(Y ) is contained in D̄(Y ) and thus the strict transform of D̄(Y )

by the blow-up map η is nothing but the blow-up D̃(Y ) of D̄(Y ) along the
center P1⊔P1. Since the blow-center of D̄(Y ) is of Z2-quotient singularity, one

can easily check that D̃(Y ) is smooth and the exceptional divisor E in D̃(Y ) is
a P(1, 2, 2)(∼= P2)-bundle over P1 ⊔ P1. Each fiber P2 parameterizes the double
line in the plane because any flat family in D̄(Y ) is obviously supported on
lines by its construction.

Step 3. The restriction to each fiber P1 of the normal bundle NE/D̃(Y ) of

the exceptional divisor E is NE/D̃(Y )|P1 ∼= OP1(−1), the image D(Y ) of the

restriction to D̃(Y ) of the blow-down map S̃(Y ) → H2(Y ) is smooth by the
Fujiki-Nakano criterion ([6]). So we finish the proof. □

3.2. Non-free lines in Y and the intersection cohomology of stable
maps

Corollary 3.2. Let Z be the locus of non-free lines in the Hilbert scheme
H1(Y ) of lines in Y . Then Z is isomorphic to a P1-fiberation over the vertex
conic Cv(∼= P1).
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Proof. Geometrically, non-free lines are lines in Y meeting with the dual conic
C∨

v at a point uniquely. Since the automorphism of Y transitively acts on each
stratum of Proposition 2.5, it is enough to check each case in Table 1. For the
case (d) and (e), L is a non-free line if and only if L is a tangent line of C∨

v by
[3, Proposition 6.6]. Thus the lines of the case (d) are only non-free. For the case
(c), the line L is defined by p03 = p04 = p12 = p13 = p14 = p23 = p24 = p34 = 0.
Thus for the affine chart x3 ̸= 0, it lies on irreducible quadric cones defined by
dp204+(dp01−p02)p14 = h1 = p12−dp04 = h3 = p23−dp24 = p24−dp14 = p34 = 0
for d ̸= 0. Hence there exists one parameter family of double lines supported
on L. That is, L is non-free. For other cases (a) and (b), we know that each
line is free by a similar computation. □

Let C be a projective connected reduced curve. A map f : C → Y is
considered stable if C has at worst nodal singularities and |Aut(f)| < ∞. Let
M(Y, d) be the moduli space of isomorphism classes of stable maps f : C → Y
with genus g(C) = 0 and deg(f∗OY (1)) = d. The moduli space M(Y, d) might
be singular and reducible depending on the geometric property (for example,
convexity) of Y .

Remark 3.3. Let f : C → L ⊂ Y be a stable map of the degree deg(f) = 2 such
that L is non-free. From the tangent bundle sequence of L ⊂ Y , H1(f∗TY ) ∼=
H1(f∗NL/Y ) ∼= H1(f∗OC ⊗ NL/Y ) ∼= C. That is, Y is not convex and thus
M(Y, 2) is not a smooth stack ([7]).

Let X be a quasi-projective variety. For the (resp. intersection) Hodge-
Deligne polynomial Ec(X)(u, v) (resp. IEc(X)(u, v)) for compactly supported
(resp. intersection) cohomology of X, let

P(X) = Ec(X)(−t,−t) (resp. IP(X) = IEc(X)(−t,−t))

be the virtual (resp. intersection) Poincaré polynomial of X. A map π : X → Y
is small if for a locally closed stratification of Y =

⊔
i Yi such that the restriction

map π|π−1(Yi) : π
−1(Yi) → Yi is etale locally trivial, the inequality

dimπ−1(y) <
1

2
codimY (Yi)

holds for each closed point y ∈ Yi except a dense open stratum of Y . Let
π : X → Y be a small map such that X has at most finite group quotient
singularities. Then P(X) = IP(Y ) ([10, Definition 6.6.1 and Theorem 6.6.3]).

Corollary 3.4. The intersection cohomology of the moduli space M(Y, 2) is
given by

IP(M(Y, 2)) = 1 + 4t2 + 10t4 + 15t6 + 15t8 + 10t10 + 4t12 + t14.

Proof. By the same method of the proof of Theorem 1.2 in [1], one can show

that the blow-up H̃2(Y ) of H2(Y ) along D(Y ) is smooth one and thus we have
a birational morphism

π : H̃2(Y ) → M(Y, 2)
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such that the exceptional divisor (i.e., P2-bundle over D(Y )) contracts to a
P2-bundle over H1(Y ). From Corollary 3.2, the map π is a small map and thus

P(H̃2(Y )) = IP(M(Y, 2)). By Proposition 2.7, Corollary 3.2, and Proposition
2.1, we have

P (H2(Y )) = P (S(Y )) + 2P (P1) · (P (P5)− 1)− P (P5) · (P (P1)− 1),

P (D(Y )) = P (H1(Y ))− P (Z) + P (Z) · P (P1),

P (H1(Y )) = P (P4) + P (Cv) · (P (P2)− 1).

Also, by the equality

P(H̃2(Y )) = P(H2(Y )) + (P(P2)− 1) · P(D(Y )),

we obtain the result. □
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