• Title/Summary/Keyword: bumping

Search Result 87, Processing Time 0.018 seconds

Novel Bumping Process for Solder on Pad Technology

  • Choi, Kwang-Seong;Bae, Ho-Eun;Bae, Hyun-Cheol;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.340-343
    • /
    • 2013
  • A novel bumping process using solder bump maker is developed for the maskless low-volume solder on pad (SoP) technology of fine-pitch flip chip bonding. The process includes two main steps: one is the aggregation of powdered solder on the metal pads on a substrate via an increase in temperature, and the other is the reflow of the deposited powder to form a low-volume SoP. Since the surface tension that exists when the solder is below its melting point is the major driving force of the solder deposit, only a small quantity of powdered solder adjacent to the pads can join the aggregation process to obtain a uniform, low-volume SoP array on the substrate, regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of $130{\mu}m$ is successfully formed.

New Products for High Reliable Connections in Packaging Technology

  • Mueller, Tobias
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2006.10a
    • /
    • pp.179-212
    • /
    • 2006
  • 1. $Welco^{(R)}$ Ultra fine solder powders are suitable for wafer bumping applications; mass production of ultra fine powders with high quality and high yield. - UFP based pastes for wafer bumping by stencil printing ($60-80{\mu}m$ pitch) are now available - Residue free solder flux was developed; meets voids specification of 20%. - F645 type 5 paste is suitable for components 01005

  • PDF

신경망 초기치 탐색방법 비교연구

  • 최대우;구자용;박헌진
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.219-225
    • /
    • 2000
  • 데이터 마이닝 분야에서 널리 사용되고 있는 신경망은 최근 많은 통계인들의 관심을 끌고 있다. 그러나 범용 근사성(universal approximator)이라는 성질에도 불구하고 초기치에 따라 적합 결과가 크게 좌우되는 단점이 있다. 본 논문에서는 붓스트랩 표본을 통해 초기치를 발견하는 bumping 기법이 신경망 분야에서 사용되고 있는 무작위 탐색법 보다 더 정확하고 안정적인 초기치를 제공하여 주는가를 살펴 보았다.

  • PDF

Fine-Pitch Solder on Pad Process for Microbump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Choi, Kwang-Seong;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1152-1155
    • /
    • 2013
  • A cost-effective and simple solder on pad (SoP) process is proposed for a fine-pitch microbump interconnection. A novel solder bump maker (SBM) material is applied to form a 60-${\mu}m$ pitch SoP. SBM, which is composed of ternary Sn3.0Ag0.5Cu (SAC305) solder powder and a polymer resin, is a paste material used to perform a fine-pitch SoP through a screen printing method. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder, the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. Test vehicles with a daisy chain pattern are fabricated to develop the fine-pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si chip has 6,724 bumps with a 45-${\mu}m$ diameter and 60-${\mu}m$ pitch. The chip is flip chip bonded with a Si substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of the underfill. The optimized bonding process is validated through an electrical characterization of the daisy chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and microbump interconnection using a screen printing process.

Critical Cleaning Requirements for Back End Wafer Bumping Processes

  • Bixenman, Mike
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • As integrated circuits become more complex, the number of I/O connections per chip grow. Conventional wire-bonding, lead-frame mounting techniques are unable to keep up. The space saved by shrinking die size is lost when the die is packaged in a huge device with hundreds of leads. The solution is bumps; gold, conductive adhesive, but most importantly solder bumps. Virtually every semiconductor manufacturer in the world is using or planning to use bump technology for their larger and more complex devices. Several wafer-bumping processes used in the manufacture of bumped wafer. Some of the more popular techniques are evaporative, stencil or screen printing, electroplating, electroless nickel, solder jetting, stud humping, decal transfer, punch and die, solder injection or extrusion, tacky dot process and ball placement. This paper will discuss the process steps for bumping wafers using these techniques. Critical cleaning is a requirement for each of these processes. Key contaminants that require removal are photoresist and flux residue. Removal of these contaminants requires wet processes, which will not attack, wafer metallization or passivation. Research has focused on enhanced cleaning solutions that meet this critical cleaning requirement. Process parameters defining time, temperature, solvency and impingement energy required to solvate and remove residues from bumped wafers will be presented herein.

  • PDF

High-Speed Cu Filling into TSV and Non-PR Bumping for 3D Chip Packaging (3차원 실장용 TSV 고속 Cu 충전 및 Non-PR 범핑)

  • Hong, Sung-Chul;Kim, Won-Joong;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.49-53
    • /
    • 2011
  • High-speed Cu filling into a through-silicon-via (TSV) and simplification of bumping process by electroplating for three dimensional stacking of Si dice were investigated. The TSV was prepared on a Si wafer by deep reactive ion etching, and $SiO_2$, Ti and Au layers were coated as functional layers on the via wall. In order to increase the filling rate of Cu into the via, a periodic-pulse-reverse wave current was applied to the Si chip during electroplating. In the bumping process, Sn-3.5Ag bumping was performed on the Cu plugs without lithography process. After electroplating, the cross sections of the vias and appearance of the bumps were observed by using a field emission scanning electron microscope. As a result, voids in the Cu-plugs were produced by via blocking around via opening and at the middle of the via when the vias were plated for 60 min at -9.66 $mA/cm^2$ and -7.71 $mA/cm^2$, respectively. The Cu plug with a void or a defect led to the production of imperfect Sn-Ag bump which was formed on the Cu-plug.

FLIP CHIP SOLDER BUMPING PROCESS BY ELECTROLESS NI

  • Lee, Chang-Youl;Cho, Won-Jong;Jung, Seung-Boo;Shur, Chang-Chae
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.456-462
    • /
    • 2002
  • In the present work, a low cost and fine pitch bumping process by electroless Ni/immersion Au UBM (under bump metallurgy) and stencil printing for the solder bump on the Al pad is discussed. The Chip used this experimental had an array of pad 14x14 and zincate catalyst treatment is applied as the pretreatment of Al bond pad, it was shown that the second zincating process produced a dense continuous zincating layer compared to first zincating. Ni UBM was analyzed using Scanning electron microscopy, Energy dispersive x-ray, Atomic force microscopy, and X-ray diffractometer. The electroless Ni-P had amorphous structures in as-plated condition. and crystallized at 321 C to Ni and Ni$_3$P. Solder bumps are formed on without bridge or missing bump by stencil print solder bump process.

  • PDF

Non-PR direct bumping for 3D wafer stacking (3차원 실장을 위한 Non-PR 직접범핑법)

  • Jeon, Ji-Heon;Hong, Seong-Jun;Lee, Gi-Ju;Lee, Hui-Yeol;Jeong, Jae-Pil
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.229-231
    • /
    • 2007
  • Recently, 3D-electronic packaging by TSV is in interest. TSV(Through Silicon Via) is a interconnection hole on Si-wafer filled with conducting metal such as Copper. In this research, chips with TSV are connected by electroplated Sn bump without PR. Then chips with TSV are put together and stacked by the methode of Reflow soldering. The stacking was successfully done and had no noticeable defects. By eliminating PR process, entire process can be reduced and makes it easier to apply on commercial production.

  • PDF

Wafer Bumping Technology

  • Park, Sung-Chang;Kyoung-Soon, Bok;In-Ho, Chi;Jina, Chung
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.09a
    • /
    • pp.161-180
    • /
    • 2002
  • PDF