• Title/Summary/Keyword: breakdown rate

Search Result 350, Processing Time 0.03 seconds

Experimental Study of Breakdown Pressure, Acoustic Emission, and Crack Morphology in Liquid CO2 Fracturing (액체 이산화탄소 파쇄법의 파쇄 압력, 음향 방출, 균열 형상에 관한 실험적 연구)

  • Ha, Seong Jun;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.157-171
    • /
    • 2019
  • The fracturing by liquid carbon dioxide ($LCO_2$) as a fracking fluid has been an alternative to mitigate the environmental issues often caused by the conventional hydraulic fracking since it facilitates the fluid permeation owing to its low viscosity. This study presents how $LCO_2$ injection influences the breakdown pressure, acoustic emission, and fracture morphology. Three fracturing fluids such as $LCO_2$, water, and oil are injected with different pressurization rate to the synthetic and porous mortar specimens. Also, the shale which has been a major target formation in conventional fracking practices is also tested to examine the failure characteristics. The results show that $LCO_2$ injection induces more tortuous and undulated fractures, and particularly the larger fractures are developed in cases of shale specimen. On the other hand, the relationship between the fracturing fluids and the breakdown pressure shows opposite tendency in the tests of mortar and shale specimens.

A Novel GPU Power Model for Accurate Smartphone Power Breakdown

  • Kim, Young Geun;Kim, Minyong;Kim, Jae Min;Sung, Minyoung;Chung, Sung Woo
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.157-164
    • /
    • 2015
  • As GPU power consumption in smartphones increases with more advanced graphic performance, it becomes essential to estimate GPU power consumption accurately. The conventional GPU power model assumes, simply, that a GPU consumes constant power when turned on; however, this is no longer true for recent smartphone GPUs. In this paper, we propose an accurate GPU power model for smartphones, considering newly adopted dynamic voltage and frequency scaling. For the proposed GPU power model, our evaluation results show that the error rate for system power estimation is as low as 2.9%, on average, and 4.6% in the worst case.

Characteristics of Oxynitride Dielectics Prepared in $N_2O$ Ambient by Furnace (Furnace로 $N_2O$ 분위기에서 성장시킨 Oxynitride 절연막 특성)

  • 이은구;박인길;박진성
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.31-36
    • /
    • 1995
  • (100) Si was oxidized in N2O ambient, and the film properties of oxynitride dielectrics were compared with pure SiO2. The growth rate, after pre-oxidation in O2/N2 ambient with raising temperature, is faster than that of O2/N2O treatment during the same condition. Nitrogen piles up at the interface of SiO2 and Si substrate and the content is about 2atom%. Comparing with pure SiO2, oxynitride dielectrics shows less dielectric breakdown failures and flat-band voltage shift, and good diffusion barrier property to dopant(BF2) is also observed.

  • PDF

Project Management Information System Using Work Breakdown Structure (업무분할체계를 이용한 사업관리정보시스템)

  • 이정구
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.11a
    • /
    • pp.303-320
    • /
    • 1997
  • In A institute, project managers present quarterly project performance report according to institute's law. In quarterly project performance report, progress of project performance and budget expended should be written. Progress of project performance and progress of budget expended are key management factors in A institute. Because financial database system Is already constructed, progress of budget expended is got from information system. But the progress of project performance that project manager estimate subjectively can not be judged of its correctness because there is not project management information system that is able to calculate the progress of project performance systematically. In this study, we present the project management system assign all activities to every project participator according to their work share rate using WBS(Work Breakdown Structure) and calculate the progress of project performance systematically Also we construct project management information system for above project management system implementing.

  • PDF

Radiation Effects on the Power MOSFET for Space Applications

  • Lho, Young-Hwan;Kim, Ki-Yup
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.449-452
    • /
    • 2005
  • The electrical characteristics of solid state devices such as the bipolar junction transistor (BJT), metal-oxide semiconductor field-effect transistor (MOSFET), and other active devices are altered by impinging photon radiation and temperature in the space environment. In this paper, the threshold voltage, the breakdown voltage, and the on-resistance for two kinds of MOSFETs (200 V and 100 V of $V_{DSS}$) are tested for ${\gamma}-irradiation$ and compared with the electrical specifications under the pre- and post-irradiation low dose rates of 4.97 and 9.55 rad/s as well as at a maximum total dose of 30 krad. In our experiment, the ${\gamma}-radiation$ facility using a low dose, available at Korea Atomic Energy Research Institute (KAERI), has been applied on two commercially available International Rectifier (IR) products, IRFP250 and IRF540.

  • PDF

Electrical Characteristics of Super Junction MOSFET According to Trench Etch Angle of P-pillar (P-pillar 식각 각도에 따른 Super Junction MOSFET의 전기적 특성 분석에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.497-500
    • /
    • 2014
  • In this paper, we analyze electrical characteristics of n/p-pillar layer according to trench angle which is the most important characteristics of SJ MOSFET and core process. Because research target is 600 V class SJ MOSFET, so conclusively trench angle deduced 89.5 degree to implement the breakdown voltage 750 V with 30% margin rate. we found that on resistance is $22mohm{\cdot}cm^2$ and threshold voltage is 3.5 V. Moreover, depletion layer of electric field distribution also uniformly distributes.

Estimation of Insulation Life of PAI/Nano Silica Hybrid Coil by Accelerated Thermal Stress (가속된 열적 스트레스에 의한 PAI / Nano Silica 하이브리드 코일의 절연수명 추정)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.52-60
    • /
    • 2019
  • In this paper, four types of insulation coils were fabricated by adding various kinds of glycols to improve the flexibility and adhesion of insulating coils in varnish dispersed with PAI / Nano Silica_15wt%. The applied voltage and frequency were 1.5 kV / 20 kHz for accelerated life evaluation. Through the 6th temperature stress level, the cause of the insulation breakdown of the coil was ignored and only the breakdown time was measured. The Arrhenius model was chosen based on the theoretical relationship between chemical reaction rate and temperature for estimating the insulation life of the coil due to accelerated thermal stress. Three types of distributions (Weibull, Lognormal, Exponential) were selected as the relationship between thermal stress model and distribution. The average insulation lifetime was estimated under the temperature stress of four types of insulation coils through the relationship between one kind of model and three kinds of distributions.

Optimization of charge and multiplication layers of 20-Gbps InGaAs/InAlAs avalanche photodiode

  • Sim, Jae-Sik;Kim, Kisoo;Song, Minje;Kim, Sungil;Song, Minhyup
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.916-922
    • /
    • 2021
  • We calculated the correlation between the doping concentration of the charge layer and the multiplication layer for separate absorption, grading, charge, and multiplication InGaAs/InAlAs avalanche photodiodes (APDs). For this purpose, a predictable program was developed according to the concentration and thickness of the charge layer and the multiplication layer. We also optimized the design, fabrication, and characteristics of an APD for 20 Gbps application. The punch-through voltage and breakdown voltage of the fabricated device were 10 V and 33 V, respectively, and it was confirmed that these almost matched the designed values. The 3-dB bandwidth of the APD was 10.4 GHz, and the bit rate was approximately 20.8 Gbps.

Influence of the Cleavage Anisotropy of Pocheon Granite on Hydraulic Fracturing Behaviour (포천 화강암의 결 이방성이 수압파쇄거동에 미치는 영향)

  • Jung, Sung-Gyu;Zhuang, Li;Yeom, Sun;Kim, Kwang-Yeom;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.327-337
    • /
    • 2016
  • In this study, laboratory hydraulic fracturing tests are carried out to evaluate the effects of the cleavage anisotropy of Pocheon granite. Breakdown pressure is smaller when cracks are generated to the direction of rift plane in constant pressurization rate condition because of higher microcracks density. Besides not only injection rate changes but also the amount of injection pressure for fracture initiation and crack expansion is detected while testing due to internal deformation. Pressurization rate is higher while hydraulic fracture testing with constant injection rate condition in case of the specimen which has rift plane perpendicular to borehole because there are much flow paths to penetrate compared to the specimen which has hardway plane perpendicular to borehole. Observation by X-ray CT scanning shows that almost all of cracks due to hydraulic fracturing are generated to the direction of plane which has higher microcrack density that is rift plane or grain plane.

Thickness Dependent Temperature Accelerated Dielectric Break-down Strength of On-wafer Low Dielectric Constant Polymer Films

  • Kim, H. K.;Lee, S. W.;F. G. Shi;B. Zhao
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.281-286
    • /
    • 2002
  • The temperature accelerated dielectric breakdown strength of on-wafer low-k dielectric polymer films with thicknesses ranging from 94 nm to 1141 nm is investigated by using the current-voltage characteristic measurements with MIS structures. The temperature dependence of dielectric strength is demonstrated to be Arrhenious for all thicknesses. However, the activation energy is found to be strongly thickness dependent. It follows an exponential relationship rather than being a single value, i.e., the activation energy increase significantly as film thickness increases for the thickness below 500 nm, but it is almost constant for the thickness above 500 nm. This relationship suggests that the change of the activation energy corresponding to different film thickness is closely related to the temperature dependence of the electron trapping/detrapping process in polymer thin films, and is determined by both the trapping rate and the detrapping rate. Thinner films need less energy to form a conduction path compared to thicker films. Hence, it leads to smaller activation energy in thinner films, and the activation energy increases with the increase in film thickness. However, a nearly constant value of the activation energy is achieved above a certain range of film thickness, indicating that the trapping rate and detrapping rate is almost equal and eventually the activation energy approaches the value of bulk material.