Acknowledgement
This work was supported by the Civil Military Cooperation Center funded by the Ministry of Defense (Grant 20NB1400). R&D Program Number: 17-CM-AS-19 (2017.06.23 to 2020.06.22).
References
- J. C. Campbell, Recent advances in telecommunications avalanche photodiodes, J. Lightwave. Tech. 25 (2007), no. 1, 109-121. https://doi.org/10.1109/JLT.2006.888481
- Q. Y. Zeng et al., Dependence of dark current on carrier lifetime for InGaAs/InP avalanche photodiodes, Opt. Quantum Electron. 47 (2015), no. 7, 1671-1677. https://doi.org/10.1007/s11082-014-0024-y
- Y. Yu, B. Liu, and Z. Chen, Analyzing the performance of pseudorandom single photon counting ranging Lidar, Appl. Optics 57 (2018), no. 27, 7733-7739. https://doi.org/10.1364/AO.57.007733
- A. Rouvie et al., High gain bandwidth product over 140-GHz planar junction AlInAs avalanche photodiodes, IEEE Photon. Technol. Lett. 20 (2008), no. 6, 455-457. https://doi.org/10.1109/LPT.2008.918229
- S. G. Park et al., Temperature, current, and voltage dependences of junction failure in PIN photodiodes, ETRI J. 28 (2006), no. 5, 555-560. https://doi.org/10.4218/etrij.06.0105.0250
- K. Czuba, J. Jurenczyk, and J. Kaniewski, Comprehensive analysis of new near-infrared avalanche photodiode structure, J. Appl. Remote Sensing. 8 (2014), no. 084999, 1-8.
- J. Burm et al., Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications, IEEE Photon. Technol. Lett. 16 (2004), no. 7, 1721-1723. https://doi.org/10.1109/LPT.2004.829546
- P. Yuan et al., A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes, IEEE Trans. Electron Dev. 46 (1999), no. 8, 1632-1639. https://doi.org/10.1109/16.777151
- F. Capasso et al., Impact ionization rates for electrons and holes in Al0.48In0.52As, Appl. Phys. Lett. 45, (1984), no. 9, 968-970. https://doi.org/10.1063/1.95467
- Y. L. Goh et al., Avalanche multiplication in InAlAs, IEEE Trans. Electron Devices 54 (2007), no. 1, 11-16. https://doi.org/10.1109/TED.2006.887229
- T. Nakata et al., Multiplication noise characterization of InAlAs-APD with heterojunction, IEEE Photon. Technol. Lett. 21 (2009), no. 24, 1852-1854. https://doi.org/10.1109/LPT.2009.2032783
- L. J. Tan et al., Temperature dependence of avalanche breakdown in InP and InAlAs, IEEE J. Quantum Electron. 46 (2010), no. 8, 1153-1157. https://doi.org/10.1109/JQE.2010.2044370
- J. S. Huang et al., Temperature dependence study of mesa-type InGaAs/InAlAs avalanche photodiode characteristics, Adv. Optoelectron. (2017), 1-5.
- J. S. Huang et al., Highly reliable, cost-effective and temperature-stable top-illuminated avalanche photodiode (APD) for 100G inter-datacenter ER4-lite applications, in PHOTOICS, Science and Technology Publications, Funchal, Portugal, 2018, pp. 119-124.
- N. Li et al., InGaAs/InAlAs avalanche photodiode with undepleted absorber, Appl. Phys. Lett. 82 (2003), no. 13, 2175-2177. https://doi.org/10.1063/1.1559437
- S. Shimizu et al., 40 Gbit/s waveguide avalanche photodiode with p-type absorption layer and thin InAlAs multiplication layer, Electron. Lett. 43 (2007), no. 8, 476-477. https://doi.org/10.1049/el:20070344
- Y. Zhao et al., InGaAs-InP avalanche photodiodes with dark current limited by generation recombination, Opt. Express 19 (2011), no. 9, 8546-8556. https://doi.org/10.1364/OE.19.008546
- G. Ribordy et al., Photon counting at telecom wavelengths with commercial InGaAsP/InP avalanche photodiodes: Current performance, J. Mod. Opt. 51 (2004), no. 9-10, 1381-1398. https://doi.org/10.1080/09500340410001677094
- C. L. F. Ma, M. J. Deen, and L. E. Tarof, Device parameter extraction in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes, IEEE Trans. Electron Devices 42 (1995), no. 12, 2070-2079. https://doi.org/10.1109/16.477763
- L. W. Cook, G. E. Bulman, and G. E. Stillman, Electron and hole impact ionization coefficients in InP determined by photo-multiplication measurements, Appl. Phys. Lett. 40 (1982), no. 7, 589-591. https://doi.org/10.1063/1.93190
- R. J. McIntyre, Multiplication noise in uniform avalanche diodes, IEEE Trans. Electron. Devices 13 (1966), no. 1, 164-168. https://doi.org/10.1109/T-ED.1966.15651
- P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed., Prentice Hall, Upper Saddle River, NJ, USA, 1997.
- G. M. Williams et al., Multi-gain-stage InGaAs avalanche photodiode with enhanced gain and reduced excess noise, IEEE J. Electron. Devices Soc. 1 (2013), no. 2, 54-65. https://doi.org/10.1109/JEDS.2013.2258072
- J. S. Sim et al., A four-channel laser array with four 10Gbps monolithic EAMs each integrated with a DBR laser, ETRI J. 28 (2006), no. 4, 533-536. https://doi.org/10.4218/etrij.06.0205.0119
- J. D. Kim et al., Compact 2.5Gb/s burst-mode receiver with optimum APD gain for XG-PON 1 and GPON applications, ETRI J. 31 (2009), no. 5, 622-624. https://doi.org/10.4218/etrij.09.0209.0227
- J. D. Kim, J. J. Lee, and S. Lee, Physical media dependent prototype for 10-gigabit-capable PON OLT, ETRI J. 35 (2013), no. 2, 245-252. https://doi.org/10.4218/etrij.12.0112.0441