Browse > Article
http://dx.doi.org/10.4218/etrij.2020-0427

Optimization of charge and multiplication layers of 20-Gbps InGaAs/InAlAs avalanche photodiode  

Sim, Jae-Sik (Quantum Optics Research Section, Electronics and Telecommunications Research Institute)
Kim, Kisoo (Photonic Convergence Components Research Section, Electronics and Telecommunications Research Institute)
Song, Minje (Photonic Convergence Components Research Section, Electronics and Telecommunications Research Institute)
Kim, Sungil (Photonic Convergence Components Research Section, Electronics and Telecommunications Research Institute)
Song, Minhyup (Photonic Convergence Components Research Section, Electronics and Telecommunications Research Institute)
Publication Information
ETRI Journal / v.43, no.5, 2021 , pp. 916-922 More about this Journal
Abstract
We calculated the correlation between the doping concentration of the charge layer and the multiplication layer for separate absorption, grading, charge, and multiplication InGaAs/InAlAs avalanche photodiodes (APDs). For this purpose, a predictable program was developed according to the concentration and thickness of the charge layer and the multiplication layer. We also optimized the design, fabrication, and characteristics of an APD for 20 Gbps application. The punch-through voltage and breakdown voltage of the fabricated device were 10 V and 33 V, respectively, and it was confirmed that these almost matched the designed values. The 3-dB bandwidth of the APD was 10.4 GHz, and the bit rate was approximately 20.8 Gbps.
Keywords
avalanche photodiodes; breakdown voltage; charge layer; InGaAs/InAlAs; multiplication; ROSA;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Yu, B. Liu, and Z. Chen, Analyzing the performance of pseudorandom single photon counting ranging Lidar, Appl. Optics 57 (2018), no. 27, 7733-7739.   DOI
2 Q. Y. Zeng et al., Dependence of dark current on carrier lifetime for InGaAs/InP avalanche photodiodes, Opt. Quantum Electron. 47 (2015), no. 7, 1671-1677.   DOI
3 C. L. F. Ma, M. J. Deen, and L. E. Tarof, Device parameter extraction in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes, IEEE Trans. Electron Devices 42 (1995), no. 12, 2070-2079.   DOI
4 L. J. Tan et al., Temperature dependence of avalanche breakdown in InP and InAlAs, IEEE J. Quantum Electron. 46 (2010), no. 8, 1153-1157.   DOI
5 J. C. Campbell, Recent advances in telecommunications avalanche photodiodes, J. Lightwave. Tech. 25 (2007), no. 1, 109-121.   DOI
6 A. Rouvie et al., High gain bandwidth product over 140-GHz planar junction AlInAs avalanche photodiodes, IEEE Photon. Technol. Lett. 20 (2008), no. 6, 455-457.   DOI
7 S. G. Park et al., Temperature, current, and voltage dependences of junction failure in PIN photodiodes, ETRI J. 28 (2006), no. 5, 555-560.   DOI
8 K. Czuba, J. Jurenczyk, and J. Kaniewski, Comprehensive analysis of new near-infrared avalanche photodiode structure, J. Appl. Remote Sensing. 8 (2014), no. 084999, 1-8.
9 F. Capasso et al., Impact ionization rates for electrons and holes in Al0.48In0.52As, Appl. Phys. Lett. 45, (1984), no. 9, 968-970.   DOI
10 N. Li et al., InGaAs/InAlAs avalanche photodiode with undepleted absorber, Appl. Phys. Lett. 82 (2003), no. 13, 2175-2177.   DOI
11 P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed., Prentice Hall, Upper Saddle River, NJ, USA, 1997.
12 J. S. Huang et al., Highly reliable, cost-effective and temperature-stable top-illuminated avalanche photodiode (APD) for 100G inter-datacenter ER4-lite applications, in PHOTOICS, Science and Technology Publications, Funchal, Portugal, 2018, pp. 119-124.
13 J. D. Kim et al., Compact 2.5Gb/s burst-mode receiver with optimum APD gain for XG-PON 1 and GPON applications, ETRI J. 31 (2009), no. 5, 622-624.   DOI
14 S. Shimizu et al., 40 Gbit/s waveguide avalanche photodiode with p-type absorption layer and thin InAlAs multiplication layer, Electron. Lett. 43 (2007), no. 8, 476-477.   DOI
15 Y. Zhao et al., InGaAs-InP avalanche photodiodes with dark current limited by generation recombination, Opt. Express 19 (2011), no. 9, 8546-8556.   DOI
16 G. Ribordy et al., Photon counting at telecom wavelengths with commercial InGaAsP/InP avalanche photodiodes: Current performance, J. Mod. Opt. 51 (2004), no. 9-10, 1381-1398.   DOI
17 L. W. Cook, G. E. Bulman, and G. E. Stillman, Electron and hole impact ionization coefficients in InP determined by photo-multiplication measurements, Appl. Phys. Lett. 40 (1982), no. 7, 589-591.   DOI
18 R. J. McIntyre, Multiplication noise in uniform avalanche diodes, IEEE Trans. Electron. Devices 13 (1966), no. 1, 164-168.   DOI
19 J. Burm et al., Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications, IEEE Photon. Technol. Lett. 16 (2004), no. 7, 1721-1723.   DOI
20 J. S. Huang et al., Temperature dependence study of mesa-type InGaAs/InAlAs avalanche photodiode characteristics, Adv. Optoelectron. (2017), 1-5.
21 P. Yuan et al., A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes, IEEE Trans. Electron Dev. 46 (1999), no. 8, 1632-1639.   DOI
22 Y. L. Goh et al., Avalanche multiplication in InAlAs, IEEE Trans. Electron Devices 54 (2007), no. 1, 11-16.   DOI
23 T. Nakata et al., Multiplication noise characterization of InAlAs-APD with heterojunction, IEEE Photon. Technol. Lett. 21 (2009), no. 24, 1852-1854.   DOI
24 G. M. Williams et al., Multi-gain-stage InGaAs avalanche photodiode with enhanced gain and reduced excess noise, IEEE J. Electron. Devices Soc. 1 (2013), no. 2, 54-65.   DOI
25 J. S. Sim et al., A four-channel laser array with four 10Gbps monolithic EAMs each integrated with a DBR laser, ETRI J. 28 (2006), no. 4, 533-536.   DOI
26 J. D. Kim, J. J. Lee, and S. Lee, Physical media dependent prototype for 10-gigabit-capable PON OLT, ETRI J. 35 (2013), no. 2, 245-252.   DOI