DOI QR코드

DOI QR Code

Experimental Study of Breakdown Pressure, Acoustic Emission, and Crack Morphology in Liquid CO2 Fracturing

액체 이산화탄소 파쇄법의 파쇄 압력, 음향 방출, 균열 형상에 관한 실험적 연구

  • Ha, Seong Jun (School of Civil and Environmental Engineering, Yonsei University) ;
  • Yun, Tae Sup (School of Civil and Environmental Engineering, Yonsei University)
  • 하성준 (연세대학교 공과대학 건설환경공학과) ;
  • 윤태섭 (연세대학교 공과대학 건설환경공학과)
  • Received : 2019.05.17
  • Accepted : 2019.06.27
  • Published : 2019.06.30

Abstract

The fracturing by liquid carbon dioxide ($LCO_2$) as a fracking fluid has been an alternative to mitigate the environmental issues often caused by the conventional hydraulic fracking since it facilitates the fluid permeation owing to its low viscosity. This study presents how $LCO_2$ injection influences the breakdown pressure, acoustic emission, and fracture morphology. Three fracturing fluids such as $LCO_2$, water, and oil are injected with different pressurization rate to the synthetic and porous mortar specimens. Also, the shale which has been a major target formation in conventional fracking practices is also tested to examine the failure characteristics. The results show that $LCO_2$ injection induces more tortuous and undulated fractures, and particularly the larger fractures are developed in cases of shale specimen. On the other hand, the relationship between the fracturing fluids and the breakdown pressure shows opposite tendency in the tests of mortar and shale specimens.

액체 이산화탄소 파쇄법은 기존 수압 파쇄법에서 물 사용으로 발생하는 환경 문제를 완화시키기 위한 차세대 해결책으로 제안되어 왔으며, 액체 이산화탄소의 낮은 점성도를 이용하여 암석 공극 내 유체 주입을 수월하게 할 수 있다. 본 연구에서는 액체 이산화탄소의 공극 내 주입이 파쇄 과정 중에 발생하는 파쇄 압력, 음향 방출, 균열 형상에 어떻게 영향을 미치는지에 대해 초점을 맞추었다. 이를 위해 점성도가 다른 액체 이산화탄소, 물, 오일을 파쇄 유체로 사용하여 주입 속도를 다르게 하며 인공적으로 제작한 다공성 모르타르 시편을 대상으로 실내실험을 수행하였다. 또한 기존 수압 파쇄법의 주 대상 암종인 셰일 시편의 실험에서 액체 이산화탄소 파쇄법에 의한 셰일의 파괴 특징들을 분석하였다. 실험 결과 이산화탄소 주입 시 균열이 더 비틀린 물결 형상을 띄었으며 특히, 셰일 시편에서는 그 균열 부피가 물 주입에 비해 더 발달하였다. 반면, 파쇄 유체와 파쇄 압력의 관계는 두 시편의 실험에서 반대의 경향을 보였다.

Keywords

OBGHBQ_2019_v29n3_157_f0001.png 이미지

Fig. 1. Schematic illustration of the fracturing experiment system

OBGHBQ_2019_v29n3_157_f0002.png 이미지

Fig. 2. Evolution of borehole pressure, accumulative AE count, permeated volume during (a) LCO2, (b) water, and (c) oil injections at a pressurization rate of 0.2 MPa/sec (Ha et al., 2018)

OBGHBQ_2019_v29n3_157_f0003.png 이미지

Fig. 4. Breakdown pressure with permeated volume normalized by pore volume (Ha et al., 2018)

OBGHBQ_2019_v29n3_157_f0004.png 이미지

Fig. 5. Evolution of borehole pressure and AE count rate during LCO2, water, and oil injections

OBGHBQ_2019_v29n3_157_f0005.png 이미지

Fig. 6. Total AE count emitted during crack extension period at different pressurization rates (Ha et al., 2018)

OBGHBQ_2019_v29n3_157_f0006.png 이미지

Fig. 7. The difference between the breakdown pressure (Pb) and the fracture initiation pressure (Pi) and the ratio of Pi to Pb at different pressurization rates (Ha et al., 2018)

OBGHBQ_2019_v29n3_157_f0007.png 이미지

Fig. 8. 16-bit gray scaled image in 2D and reconstructed fracture in 3D for mortar specimens fractured by (a) LCO2, (b) water, and (c) oil injections (Ha et al., 2018)

OBGHBQ_2019_v29n3_157_f0008.png 이미지

Fig. 9. 16-bit gray scaled image in 2D and reconstructed fracture in 3D for fractured shale specimens of 4 cases (a) SL1, (b) SL2, (c) SW1, and (d) SW2. The specimens of SL1 and SL2 are fractured by LCO2 injection and other specimens of SW1 and SW2 are fractured by water injection

OBGHBQ_2019_v29n3_157_f0009.png 이미지

Fig. 10. Breakdown pressure and Fracture volume in the tests using mortar and shale specimens

OBGHBQ_2019_v29n3_157_f0010.png 이미지

Fig. 11. Fluid efficiency (fracture volume / injected fluid volume) of each fracturing fluid in the tests using mortar and shale specimens

OBGHBQ_2019_v29n3_157_f0011.png 이미지

Fig. 3. (a) Breakdown pressure and (b) permeated volume normalized by pore volume at different pressurization rates (Ha et al., 2018)

Table 1. Properties of mortar and shale specimen

OBGHBQ_2019_v29n3_157_t0001.png 이미지

Table 2. Breakdown pressure and Injected volume measured in fracturing tests using shale specimens

OBGHBQ_2019_v29n3_157_t0002.png 이미지

References

  1. Beckwith R., 2010, Hydraulic fracturing: the fuss, the facts, the future, J. Petrol. Technol. 62, 34-40. https://doi.org/10.2118/1210-0034-JPT
  2. Bennour Z., T. Ishida, Y. Nagaya, Y. Chen, Y.Nara , Q. Chen, K. Sekine, Y. Nagano, 2015, Crack extension in hydraulic fracturing of shale cores using viscous oil, water, and liquid carbon dioxide, Rock Mech. Rock Eng. 48.4, 1463-1473. https://doi.org/10.1007/s00603-015-0774-2
  3. Brenne S., M. Molenda, F. Stoockhert , M. Alber, 2013, Hydraulic and sleeve fracturing laboratory experiments on 6 rock types, Proc. Effective and Sustainable Hydraulic fracturing, 20-22 May, Austrailia.
  4. Chen H. and K.E. Carter, 2016, Water usage for natural gas production through hydraulic fracturing in the United States from 2008 to 2014, J. Environ. Manage. 170, 152-159. https://doi.org/10.1016/j.jenvman.2016.01.023
  5. Chen Y., Y. Nagaya, T. Ishida, 2015, Observations of fractures induced by hydraulic fracturing in anisotropic granite, Rock Mech. Rock Eng. 48, 1455-1461. https://doi.org/10.1007/s00603-015-0727-9
  6. Gallegos T.J., B.A. Varela, S.S. Haines, M.A. Engle, 2015, Hydraulic fracturing water use variability in the United States and potential environmental implications, Water. Resour. Res. 51, 5839-5845. https://doi.org/10.1002/2015WR017278
  7. Gan Q., D. Elsworth, J. Alpern, C. Marone, P. Connolly, 2015, Breakdown pressures due to infiltration and exclusion in finite length boreholes, J. Petrol. Sci. Eng. 127, 329-337. https://doi.org/10.1016/j.petrol.2015.01.011
  8. Gandossi L., 2013, An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production, Eur. Commisison Jt. Res. Cent. Tech. Reports.
  9. Gregory K.B., R.D. Vidic, D.A. Dzombak, 2011, Water management challenges associated with the production of shale gas by hydraulic fracturing, Elements 7, 181-186. https://doi.org/10.2113/gselements.7.3.181
  10. Guo F., N. Morgenstern, J. Scott, 1993, Interpretation of hydraulic fracturing breakdown pressure, Int. J. Rock. Mech. Min. 30, 617-626. https://doi.org/10.1016/0148-9062(93)91221-4
  11. Guo T., S. Zhang, Z. Qu, T. Zhou, Y. Xiao, J. Gao, 2014, Experimental study of hydraulic fracturing for shale by stimulated reservoir volume, Fuel 128, 373-380. https://doi.org/10.1016/j.fuel.2014.03.029
  12. Ha S.J., J. Choo, T.S. Yun, 2018, Liquid CO2 Fracturing: effect of fluid permeation on the breakdown pressure and cracking behavior. rock mechanics and rock engineering, Rock Mech. Rock Eng. 51, 3407-3420. https://doi.org/10.1007/s00603-018-1542-x
  13. He J., L.O. Afolagboye, C. Lin, X. Wan, 2018, An experimental investigation of hydraulic fracturing in shale considering anisotropy and using freshwater and supercritical CO2, Energies 11, 557. https://doi.org/10.3390/en11030557
  14. Ishida T., Y. Chen, Z. Bennour, H. Yamashita, S. Inui, Y. Nagaya, M. Naoi, Q. Chen, Y. Nakayama, Y. Nagano, 2016, Features of CO2 fracturing deduced from acoustic emission and microscopy in laboratory experiments, J. Geophys. Res.-Sol. Ea. 121, 8080-8098. https://doi.org/10.1002/2016JB013365
  15. Kohshou I. O., R. Barati, M.C. Yorro, T. Leshchyshyn, A.T. Adejumo, U. Ahmed, I. Kugler, M. Reynolds, J. McAndrew, 2017, Economic assessment and review of waterless fracturing technologies in shale resource development: A case study, J. Earth. Sci.-China 28, 933-948. https://doi.org/10.1007/s12583-017-0781-1
  16. Li X, Z. Feng, G. Han, D. Elsworth, C. Marone, D. Saffer, D.S. Cheon, 2016, Breakdown pressure and fracture surface morphology of hydraulic fracturing in shale with H2O, CO2 and N2, Geomech. Geophys. Geo-energ. Geo-resour. 2, 63-76. https://doi.org/10.1007/s40948-016-0022-6
  17. Moridis G., 2017, Literature review and analysis of waterless fracturing methods, Report Number: LBNL-1007287.
  18. Osborn S.G., A. Vengosh, N.R. Warner, R.B. Jackson, 2011, Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing, P. Natl. Acad. Sci. USA 108. 8172-8176. https://doi.org/10.1073/pnas.1100682108
  19. Palmer I. and P. Heald, 1973, The application of acoustic emission measurements to fracture mechanics, Mater. Sci. Eng. 11, 181-184. https://doi.org/10.1016/0025-5416(73)90076-1
  20. Purcell W.R., 1949, Capillary pressures - Their measurement using mercury and the calculation of permeability therefrom, J. Petrol. Technol. 1, 39-48. https://doi.org/10.2118/949039-G
  21. Roberts T. and M. Talebzadeh, 2003, Acoustic emission monitoring of fatigue crack propagation, J. Constr. Steel. Res. 59, 695-712. https://doi.org/10.1016/S0143-974X(02)00064-0
  22. Sezgin M. and B. Sankur, 2004, Survey over image thresholding techniques and quantitative performance evaluation, J. Electron. Imaging 13, 146-166. https://doi.org/10.1117/1.1631315
  23. Sovacool B.K., 2014, Cornucopia or curse? Reviewing the costs and benefits of shale gas hydraulic fracturing (fracking), Renew. Sust. Energ. Rev. 37, 249-264. https://doi.org/10.1016/j.rser.2014.04.068
  24. Stanchits S., A. Surdi, P. Gathogo, E. Edelman, R. Suarez-Rivera, 2014, Onset of hydraulic fracture initiation monitored by acoustic emission and volumetric deformation measurements, Rock Mech. Rock Eng. 47, 1521-1532. https://doi.org/10.1007/s00603-014-0584-y
  25. Vengosh A., B.B. Jackson, N. Warner, T.H. Darrah, A. Kondash, 2014, A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States, Environ. Sci. Technol. 48, 8334-8348. https://doi.org/10.1021/es405118y
  26. Wan J., 2017, Report on developing a US-China joint project on CO2-based fracturing techniques, Report Number: LBNL-1007288.
  27. Wang J., D. Elsworth, Y. Wu, J. Liu, W. Zhu, Y. Liu Y, 2018, The influence of fracturing fluids on fracturing processes: a comparison between water, oil and SC-CO2, Rock Mech. Rock Eng. 51.1, 299-313. https://doi.org/10.1007/s00603-017-1326-8
  28. Wang L., B. Yao, M. Cha, N. Alqahtani, T. Patterson, T. Kneafsey, J. Miskimins, X. Yin, Y. Wu, 2016, Waterless fracturing technologies for unconventional reservoirs-opportunities for liquid nitrogen, J. Nat. Gas. Sci. Eng. 35, 160-174. https://doi.org/10.1016/j.jngse.2016.08.052
  29. Zeng F, X. Cheng, J. Guo, Z. Chen, L. Tao, X. Liu, Q. Jiang, J. Xiang, 2018, Effect of fluid penetration on tensile failure during fracturing of an open-hole wellbore, J. Geophys. Eng. 15, 952-961. https://doi.org/10.1088/1742-2140/aaa91f
  30. Zhang X., Y. Lu, J. Tang, Z. Zhou, Y. Liao, 2017, Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing, Fuel 190, 370-378. https://doi.org/10.1016/j.fuel.2016.10.120
  31. Zhao J., C. Liu, H. Yang, Y. Li, 2015, Strategic questions about China's shale gas development, Environ. Earth Sci. 73, 6059-6068. https://doi.org/10.1007/s12665-015-4092-5
  32. Zhou X., T.J. Burbey, 2014, Fluid effect on hydraulic fracture propagation behavior: a comparison between water and supercritical CO2-like fluid, Geofluids 14, 174-188. https://doi.org/10.1111/gfl.12061
  33. Zoback M., F. Rummel, R. Jung, C. Raleigh, 1977, Laboratory hydraulic fracturing experiments in intact and pre-fractured rock, Int. J. Rock Mech. Min. 14, 49-58.
  34. Zoback M.D. and D.D. Pollard, 1978, Hydraulic fracture propagation and the interpretation of pressure-time records for in-situ stress determinations, Proc. 19th US Symposium on Rock Mechanics (USRMS), 1-3 May, U.S.A.