• 제목/요약/키워드: blow-up solutions

검색결과 43건 처리시간 0.028초

EXISTENCE OF SOLUTIONS FOR BOUNDARY BLOW-UP QUASILINEAR ELLIPTIC SYSTEMS

  • Miao, Qing;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.625-637
    • /
    • 2010
  • In this paper, we are concerned with the quasilinear elliptic systems with boundary blow-up conditions in a smooth bounded domain. Using the method of lower and upper solutions, we prove the sufficient conditions for the existence of the positive solution. Our main results are new and extend the results in [Mingxin Wang, Lei Wei, Existence and boundary blow-up rates of solutions for boundary blow-up elliptic systems, Nonlinear Analysis(In Press)].

A PARABOLIC SYSTEM WITH NONLOCAL BOUNDARY CONDITIONS AND NONLOCAL SOURCES

  • Gao, Wenjie;Han, Yuzhu
    • 대한수학회논문집
    • /
    • 제27권3호
    • /
    • pp.629-644
    • /
    • 2012
  • In this work, the authors study the blow-up properties of solutions to a parabolic system with nonlocal boundary conditions and nonlocal sources. Conditions for the existence of global or blow-up solutions are given. Global blow-up property and precise blow-up rate estimates are also obtained.

BLOW UP OF SOLUTIONS TO A SEMILINEAR PARABOLIC SYSTEM WITH NONLOCAL SOURCE AND NONLOCAL BOUNDARY

  • Peng, Congming;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1435-1446
    • /
    • 2009
  • In this paper we investigate the blow up properties of the positive solutions to a semi linear parabolic system with coupled nonlocal sources $u_t={\Delta}u+k_1{\int}_{\Omega}u^{\alpha}(y,t)v^p(y,t)dy,\;v_t={\Delta}_v+k_2{\int}_{\Omega}u^q(y,t)v^{\beta}(y,t)dy$ with non local Dirichlet boundary conditions. We establish the conditions for global and non-global solutions respectively and obtain its blow up set.

  • PDF

NUMERICAL TREATMENT OF NON-MONOTONIC BLOW-PROBLEMS BASED ON SOME NON-LOCAL TRANSFORMATIONS

  • BASEM S. ATTILI
    • Journal of applied mathematics & informatics
    • /
    • 제42권2호
    • /
    • pp.321-331
    • /
    • 2024
  • We consider the numerical treatment of blow-up problems having non-monotonic singular solutions that tend to infinity at some point in the domain. The use of standard numerical methods for solving problems with blow-up solutions can lead to significant errors. The reason being that solutions of such problems have singularities whose positions are unknown in advance. To be able to integrate such non-monotonic blow-up problems, we describe and use a method of non-local transformations. To show the efficiency of the method, we present a comparison of exact and numerical solutions in addition to some comparison with the work of other authors.

BLOW-UP TIME AND BLOW-UP RATE FOR PSEUDO-PARABOLIC EQUATIONS WITH WEIGHTED SOURCE

  • Di, Huafei;Shang, Yadong
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1143-1158
    • /
    • 2020
  • In this paper, we are concerned with the blow-up phenomena for a class of pseudo-parabolic equations with weighted source ut - △u - △ut = a(x)f(u) subject to Dirichlet (or Neumann) boundary conditions in any smooth bounded domain Ω ⊂ ℝn (n ≥ 1). Firstly, we obtain the upper and lower bounds for blow-up time of solutions to these problems. Moreover, we also give the estimates of blow-up rate of solutions under some suitable conditions. Finally, three models are presented to illustrate our main results. In some special cases, we can even get some exact values of blow-up time and blow-up rate.

A NOTE ON BOUNDARY BLOW-UP PROBLEM OF 𝚫u = up

  • Kim, Seick
    • 대한수학회보
    • /
    • 제56권1호
    • /
    • pp.245-251
    • /
    • 2019
  • Assume that ${\Omega}$ is a bounded domain in ${\mathbb{R}}^n$ with $n{\geq}2$. We study positive solutions to the problem, ${\Delta}u=u^p$ in ${\Omega}$, $u(x){\rightarrow}{\infty}$ as $x{\rightarrow}{\partial}{\Omega}$, where p > 1. Such solutions are called boundary blow-up solutions of ${\Delta}u=u^p$. We show that a boundary blow-up solution exists in any bounded domain if 1 < p < ${\frac{n}{n-2}}$. In particular, when n = 2, there exists a boundary blow-up solution to ${\Delta}u=u^p$ for all $p{\in}(1,{\infty})$. We also prove the uniqueness under the additional assumption that the domain satisfies the condition ${\partial}{\Omega}={\partial}{\bar{\Omega}}$.

GLOBAL EXISTENCE AND BLOW-UP FOR A DEGENERATE REACTION-DIFFUSION SYSTEM WITH NONLINEAR LOCALIZED SOURCES AND NONLOCAL BOUNDARY CONDITIONS

  • LIANG, FEI
    • 대한수학회지
    • /
    • 제53권1호
    • /
    • pp.27-43
    • /
    • 2016
  • This paper deals with a degenerate parabolic system with coupled nonlinear localized sources subject to weighted nonlocal Dirichlet boundary conditions. We obtain the conditions for global and blow-up solutions. It is interesting to observe that the weight functions for the nonlocal Dirichlet boundary conditions play substantial roles in determining not only whether the solutions are global or blow-up, but also whether the blowing up occurs for any positive initial data or just for large ones. Moreover, we establish the precise blow-up rate.

BLOW-UP OF SOLUTIONS FOR WAVE EQUATIONS WITH STRONG DAMPING AND VARIABLE-EXPONENT NONLINEARITY

  • Park, Sun-Hye
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.633-642
    • /
    • 2021
  • In this paper we consider the following strongly damped wave equation with variable-exponent nonlinearity utt(x, t) - ∆u(x, t) - ∆ut(x, t) = |u(x, t)|p(x)-2u(x, t), where the exponent p(·) of nonlinearity is a given measurable function. We establish finite time blow-up results for the solutions with non-positive initial energy and for certain solutions with positive initial energy. We extend the previous results for strongly damped wave equations with constant exponent nonlinearity to the equations with variable-exponent nonlinearity.

SOME TYPES OF REACTION-DIFFUSION SYSTEMS WITH NONLOCAL BOUNDARY CONDITIONS

  • Han, Yuzhu;Gao, Wenjie
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.1765-1780
    • /
    • 2013
  • This paper deals with some types of semilinear parabolic systems with localized or nonlocal sources and nonlocal boundary conditions. The authors first derive some global existence and blow-up criteria. And then, for blow-up solutions, they study the global blow-up property as well as the precise blow-up rate estimates, which has been seldom studied until now.