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EXISTENCE OF SOLUTIONS FOR BOUNDARY BLOW-UP
QUASILINEAR ELLIPTIC SYSTEMS'
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ABSTRACT. In this paper, we are concerned with the quasilinear elliptic
systems with boundary blow-up conditions in a smooth bounded domain.
Using the method of lower and upper solutions, we prove the sufficient con-
ditions for the existence of the positive solution. Our main results are new
and extend the results in [Mingxin Wang, Lei Wei, Existence and boundary
blow-up rates of solutions for boundary blow-up elliptic systems, Nonlinear
Analysis(In Press)].
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1. Introduction

This paper is concerned with the study of positive boundary blow-up
solutions to a quasilinear elliptic systems

—Apu = uP (a1 (z)u™ — by (x)u™ P2 — [;07), xz e Q,
—Agv = v9 N ag(z)vh — bo(z)vt9+2 — [Hu®), z € Q, (1.1)
U =71 =00, T € 89,

where Q is a smooth bounded domain of RY and A, = div(|Vul[P~2Vu),
p>1, Ay = div(|Vw|972Vv), ¢ > 1. Functions a1, a; € C7(), the weight
functions by, by € C"(Q2) are positive and singular on the boundary 912,
0<n< 1l Constantsm >m; >p—2,t>t; >q—2,n,s >0and l;,l3 >

0. The boundary condition is assumed in the sense u(z),v(z) — +oo
when d(x) — 0%, where d(z) stands for the distance function dist(z, 99).
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Systems of the above form are mathematical models occuring in stud-
ies of the p-Laplace system, generalized reaction-diffusion theory, non-
Newtonian fluid theory[1,26], non-Newtonian filtration[27] and the turbu-
lent flow of a gas in porous medium. In the non-Newtonian fluid theory,
the quantity p is characteristic of the medium. Media with p > 2 are
called dilatant fluids and those with p < 2 are called pseudoplastics. If
p = 2, they are Newtonian fluids. When p # 2; the problem becomes
more complicated since certain nice properties in herent to the case p = 2
seem to be lost or at least difficult to verify. The main differences between
p =2 and p # 2 can be founded in [16,18].

There is a huge amount of works dealing with boundary blow-up prob-
lems with the semilinear case,

{ —Au = f(z,u), € Q,

where € is a bounded domain in RV , see [2-5,8,10-13,21-25,29-30].
In [11], the authors considered positive solutions of the form

—Nu=au—u?+buv, z€ 9,
~Av = agv —v: +bouv, z€ Q,
U=0v=00, x € 0.

In [12], the authors studied the existence and uniqueness of positive
solutions of the form

Av=u"v’, ze€

Au =uPvi, xe€ Q,
u=v=o00, x€ .

In [29], the authors studied the following problem

Au = u(au™ + by(z)u™ + 6v"), T € Q,
Av = v(aguPt + ba(x)vP 4 dul), x € €,
u=v=00, x € 0.

Recently, in [30], the authors considered the following problem

—Au = u(ag(z)u™ — by (z)u™ — c1v™), z € Q,

—Av = v(ag(x)vP! — by(x)vP — coud), x € 1,

U=v=00, x € 0.
The quasilinear elliptic problem

Ap=f(u) z€ Q,
U= 00 z € N,
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for general nonlinearities f(u) seems to have been first considered in [6].
The reader can also refer to papers [17,19,20].
In recent years, the "logistic” type equation has been studied, see [7-9].
In [9], the author considered the existence and uniqueness of the fol-
lowing equation

—Opu = a(z)|ulP?u — b(z)ul? 'y, e RY (N >2).
In [31], the authors studied the problem

Dpu=m(@)f(u), ve 9,
u = o0, x € 0f.

In [14], the author considered the uniqueness and boundary behavior
for equations involving the p-Laplacian and singular weights

Npu = a(z)ul, z€ {1,
U = 00, x € 0f.

In [15], the author extended the results in [12] and considered the pos-
itive boundary blow-up solutions to a quasilinear elliptic system of com-
petitive type

Dpu = u?® e Q,
{ Apv=uv® T € Q,
u=v=00 z€ O
Our motivation comes from [30], where problem (1.1) was analyzed in
the semilinear case p = ¢ = 2. The main purpose of the present paper is
to investigate the existence of positive solutions to the system (1.1). Our
result do not depend on the exponents m; and ¢;.
We will use the following assumptions on the growth rates of b;(z) and

ba(z) near the boundary 92
Dyd(z)™ < bi(z) < Did(z)™, ze€ Q, - (1.3)

Kad(z)™ " < by(z) < Kid(z) ™™, z€ Q, (1.4)
where D;, K; > 0, 0 < v, < p, 0 <9 < q are constants.

Theorem 1. Assume that s(p—=1) < g(m—p+2), n(g—72) < p(t—q+2),
and the assumptions (1.8) and (1.4) are satisfied. Then there exists A > 0
such that when 0 < lj,lg < A, the problem (1.1) has at least one positive
solution.

This work is organized as follows. In section 2, we consider some pre-
liminaries on single equation which are instrumental in our proofs. In
section 3, the main result for problem (1.1) will be proved.
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2. Preliminaries

Before giving the definition of upper and lower solutions, we state some
well-known results.
From the proof of Theorem 3.7 in [7], we have

Lemma 1. Assume that a(z) € C(Q2), b(z) € C"(Q) (0 < n < 1) and
there exist constants C1,Cy > 0, 0 < v < p such that Cid(z)™" < b(x) <
Cod(z)™7 in Q. Then the following problem

~Npu = a(z)uP~l = b(z)u™, z € Q,
u = 00, x € 01,

have a positive solution u. Moreover, there exist positive constants My
and My, such that

Mgd(m)_rggﬂz? <u(z) < Mld(:c)_T:l2 in 2.

From [14], we have

Lemma 2. Let ¢ >p—1 and vy € [0, p), the problem

Apu=d Tul in Q,
U = 00 on 0f1,

admits a unique positive solution denoted by Uy ., where d(x) = dist(x, 0S).
Moreover,

Upoy ~ ((p = 1o (a + 1)) 751 d(z) ™,

as d(z) — 0, where o = 21

qg—p+1-

From [15], we have

Lemma 3. Letu € C."(Q) for somen € (0,1) verify Apu > Cd(x) " Tu"+
1

in  with u = oo on 0Q. Thenu < C —r+2U, , in §}, where U, denotes

the unique positive solution of the problem

Apu=d(z) ", ze Q,
u = 00, x € 0.
Similarly, if Npu < Cd(z)"u™ in Q with u = co on 9N. Then u >
1
C r-rt2lU,, in Q.
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Definition 1. Two pairs of functions (@, ?), (u,v) € C1(Q) are called u-
pper and lower solutions of (1.1) if they satisfy

—-Apﬁ > ﬂp_l(al (.’lt)ﬂml — b (:C)ﬁm—p+2 — llgn), z € ,
—Agv < v ag(z)u!t — ba(z)v!~1T2 — Luf), T € (],

—Apu < wP Hay(z)u™ — by (z)u" P - 117"), ze Q,
— A0 > 07 ag(z) Tt — bo(2)D 12 — Iouf), z € .

Proposition 1. Assume that (u,v) and (u,T) are the positive upper and
lower solutions of (1.1), andT =u=T=v =00 on0Q, u<TW, v <7T
in Q. Then the problem (1.1) has at least a weak solution (u,v) with
u<u<u,v<v<Tin and u=v =00 on Ofl.

Proof. Let k > 0, denote Q = {z € Q : d(x) > £}, consider the problem

~Agv = v (ag(z)v" — bo(z)v' 792 — luf), T € Q, (2.1)

{ —Apu = uP(ay (2)u™ — by(x)u™ P2 — 1), T € Q,
u=u, v=71, z € 0.

By Theorem A.1 [15], the problem (2.1) has at least a solution (u, vk)
satisfying u < ux < @, v < vx < T in Q. This inequalities give bounds
for the solutions (ug, vk ), from the interior regularity estimate, we obtain

bounds in C}(;Z(Q) Then for a sequence k — oo, ur — u, we obtain that

v — v in C}(;Z(Q) So, (u,v) is a weak solution of the problem (1.1)

verifying u <u <4, v <v <7in . In particular,u =v =00 on 92. O

Proposition 2. Assume that constants m > m; > p—2, A > 0, the
function by € C"(Q) and satisfies (1.3). Then the following problem

{ —Dpu = —AuPt™ =1 _ by ()™t e Q, (2.2
u = OO, T e 89, ' )

has a positive solution u, and there exist constants C1,Cy > 0, such that
Cod(z) 777 < u(z) < Crd(z) =72, ze QO (2.3)

Proof. When m; = 0, the conclusion holds by Lemma, 1. In the following
we consider only the case m; > 0. Let U denote the positive solution of
the problem

Apu=by(z)u™, ze Q,

u = 00, x € 0.
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Set w = U, u = €U, where the constant ¢ > 0 is to be determined. Let
Q) = {z € Q:d(z) > }. Consider the following problem

{ —Dpu = =A™t — i (z)u™t, e Q,

u = u, x € 0. (24)

Clearly,
ApT = by(z)a™ < AwPt™ L Loby ()@ in Q.
Taking into account v; > 0 and by(z) > Dad(z)™ ", we have by =
info b1(x) > 0. From the definition of U, oy = infqU(z) > 0. If we
take € to be sufficient small such that e™ 72 < 1 it follows from m > m;
that
Um+1 Ae™ Up+m1 -1
>
2 = bo ’
Aem yptmi—l1
Um+1 > + €m~p+2Um+17
bi(z)
It is easy to see that

bi(z)U™L > Aemyptmi=t L P2y () UL 2 e .
Therefore,
Apu = oy (2)U™T > A(eU)PT™ ™! 4 by (2)(eU)™, z€ O

By the upper and lower solutions argument, the problem (2.4) has at least
one solution uy satisfy u < up, < W. From the interior regularity estimate
[28], we obtain that for a sequence k — 0o, ux — ug in C},.(Q). So ug
is a positive solution of (2.2) and satisfies eU < ug < U. From Lemma,
1 and Lemma 3, it follows that there exist positive constants C; and Cy
such that

x € Qp,

x € Q.

Cod(z) 777 < ug(z) < Crd(z) ™72, z€ Q.
O

Now, we give a byproduct of Proposition 2 which will be useful to
understand the boundary blow-up problem.

Proposition 3. Assume a; € C(Q), m > my > p —2, by € C"(), then
the problem
{ —Apu = ay(z)uPT™ =1 — b ()u™H,  ze Q,

has at least one positive solution u. Moreover, there exist two positive
constants Cy1 and Cy such that (2.3) holds.
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Proof. Denote A1 = sup,cq |a1(x)|, by Proposition 2, the following prob-
lem

{ —Apu = —ApPtm-l b ()™t e Q, (2.6)

U = 00, x € 01,
has a positive solution, denoted by u. Moreover, if U is the positive
solution of the problem

—Apu = —by(z)u™, ze Q,
U = 00, x € 09,

and U satisfies (2.3), by the proof of Proposition 2, u satisfies u < U.
Now we consider the existence of positive solution of the problem
{ —Apu = AjuPt™ T — by ()™t z e Q,

u = 00, x € OfD. (2.7)

It is clear that U is a lower solution of (2.7). In view of Lemma 1, the
problem
—Apu = APt — by (z)u™, e Q,
{ U = 00, xr € Ol
has a positive solution Uy and Uy satisfies (2.3), since infzcqbi(z) > 0
and infycq Up(x) > 0, we can choose a large constant £ > 0 such that

( km—p+2 _ 1)
k™
which implies that

AlkmlU(;nl - bl(x)km_p+2U6n_p+2 S Al - bl(l‘)U(;n_p-i-Q.

Through direct calculation, we arrive that —A,(kUp) > A; (kUp)PT™ —1 —
by(x)(kUp)™*! So, kUy is an upper solution of the problem (2.7). Simi-
larly to Proposition 1, the problem (2.7) has at least one positive solution
u. Moreover, U satisfies U < u < kUj and (2.3). |

From the above argument, we obtain that w and u are an ordered upper
and lower solutions of (2.5) and @ = u = oo on 9€). Therefore, the problem
(2.5) has at least one positive solution v and w satisfies u < u < @.
Moreover, u satisfies (2.3). O

A < b (z)Ug ™ P2 kU > U, Yz € Q,

3. Proof of main result

Proof. We will divide the proof into three cases.
Case 1. m; = t; = 0. Since bi(x) and bs(z) satisfy (1.3) and (1.4)
respectively, in view of Lemma 1, we know that the following problems
—Apu = ay ()Pt = by (z)u™t, z e Q,
U = 00, x € 012,
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and
— A = ag(z)vI™t - bo(z)0'tt, z e Q,
{ v = 00, x € 01,
have positive solutions, denoted by U and V respectively. Moreover, U
and V satisfy

Cyd(z) 7=+ < U(z) < Crd(z) 72, z€ Q
_a-72 _a="2
Cod(z) etz < V(z) < Chd(z) +a+2, z € Q,
for some positive constants C; and Cs.
Note that s(p — 1) < g(m —p+2), n(g — 72) < p(t — g+ 2), we have

i { S K i, CCT
1 =

n(g—72)
1?2f d(z)m=pF2 79 5 igf d(x) i—ats —p} > 0.

In order to show that the problem (1.1) has at least one positive so-
lutions when [1,lo < A;. We employ the method of upper and lower
solutions.

Take € > 0, to be such that max{e™ P+% ~9t2} < 2. Let (w,v) =
(U,eV) and (u,7) = (eU, V). It is not hard to see that

~NG = a(z)UPT — by (z)U™H
UP~Hay(z) — by(z)U™ P2 — |1 (eV)")

@ Hay(2) = bi(2)a™ P — i), z€ Q.

Vv

ag(z) VI — by(z) Vi

VI Y ag(x) — ba(z)VE T2 — 1))

77 Y ag(x) — ba(z)T 92 — lu®), z € Q.
When l; < A{, we have

CI"Cy PH2Dy | na=vg) _

—AT

Vv

[ < 5 d(z)t-a+2 P,
S0,
D m—p+2  nlg=2)
——?—022—d(x)—1’ > LCMd(z) R, ze Q
since |
m—p+2 m—p+2 —p n(q=v2)
WU BeGy Oy < page) HRE, e @

We obtain 2@&U"™ > 1 yn e Q. Then

b1 (CE)Um_p+2 > bl(x)em_p+2Um—p+2 + LV =b (x)gm_p+2 + 117",
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we conclude that
SASSTINES e ay (z)UP™ — by (2)U™)
e~ UP ™ ag (2) — ba(z)U™PH?)
wP a1 (z) — by(z)u™ P2 — 11g"), z €.

When [ < A1, we have

IA

- t—q+2 s(p—n
Iy < Cy 8022 KQd x)’n(%)‘_q
S0,
t—g+2 s(p—71)
52%__dur@zb@w@Y#¥g, ze
Since
t—q42 t—qg+2 —q s{p—71)
bg(x)‘; > K2102 5 d(l‘) . Us< C’fd(x)—mz)—p‘f?, x € Q.
We obtain —
—-q
b2(x) : > leS? z e (.
Then |

bz(l?)vt_Q+2 > b2($)€t_q+2vt—q+2 + ZQUS, = Q,
we conclude that
AW

1 (ap(z) VIt — by(z) V' HY)
= Wi N ay(x) — bo(z)VETIH2)
< v HNag(z) — by(z)0! ™92 — 1,T®), =z € Q.

By Proposition 1, the problem (1.1) has at least one positive solution (u, v)
and satisfiesu <u <7, v <v < 7.

Case 2. m; > 0, ¢t; > 0. Since bj(x) and by(z) satisfy (1.3) and
(1.4) respectively, in view of Proposition 2, we know that the following
problems ‘

—Apu = —AyuPt™-l _p(2)u™t, z e Q,
u = 00, ' z € 09,
and
—Agv = —AvIThl _ho(z)vttl z e Q,
v = 00, x € 01,
have positive solutions, denoted by U and V respectively, where A; =
SUP$EQ|(],1($)‘, Ay = SUPzen 10'2(3:)‘ Let (ﬂ,y) = (MU’ GV),‘ (@a§> =
(eU, MV), where € and M are positive constants, max{e”P+2 -9+2} <
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%. Since m > my, infyeqbi(x) > 0 and inf eq U(z) > 0, we can take M
large enough satisfying A/™ P*2 > 2 such that

Mm-p-%—?
A1 +a; (CE).Z‘Im1 S '——2——61 (:I})Um_m1 —p+2.

Then we have
Ap + ar(z)M™ < by (z) M™PH2gmmmPR2 _ (g e,
ar(z) M™U™ — by () MM PTEUMPEE < A U™ — by (2)U™PF,

we conclude that

—Apy@ = MPH—AUPT™MTL by () U™
> @ Hay () M™U™ — by(z) M™PH2UMoPH2)
> @ ay(z)a™ - bi(z)a™ P —110"), z €.

Similarly, when M is large enough, M*~9t2 > 2 the following holds

— AT > T Hag(z)T — ba(2)7 71T — puf), z € Q.

Denote
—syt—qg+2 s(P—v1) —n ym—p+2 nld—a)
Az := min { i C;ﬂ/fs Ko igf d(z) m=rrr G C;Mn D> igf d(x)t—fq—Z%--?} > 0.

We shall prove that the problem (1.1) has at least one positive solution
when ll, l2 S )\2.
When [; < A2, we have

b (x)Um—p+2V-n
2M™
by €79+2 < 1, we have
Zanvn < bl(:v)Um-erz _ bl(m)em—p+2Um—p+2.
Furthermore, in view of —A; U™ < a1(z)U™e™ | it follows that

—A U™ —by () U™ P2 <y (2) U™ €™ —by (z)emPH2U™PH2_ |, MV,

by (:L‘) [Jm—p+2
_ 5 )

L < , le. LM"V"<L

It is not hard to get _

~Dpu = A UPT™M T by (2) U™
wPH(—AU™ = bi(z)U™PHE)
W Hay(z)u™ — by (z)u™ P — 1T"), T E€Q.
Similarly, we obtain

—Agv < gq_l(az(m)gtl — by(z)'It? — lgﬂs); x € (.

Case 3. m; >0 and t; =0, or m; =0 and t; > 0.

IA
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We only give the proof for the case m; > 0 and ¢; = 0. We consider
the following problems

—Dpu = —AjuPt™ =l ()™t z e Q,
U = 00, T € 01,

and

—Agv = ax(z)v? ! —be(z)0tt, z € Q,
v = 00, » T C 893

have positive solutions, denoted by U and V respectively, where A; =
supycq lai(z)|. Let (T,v) = (MU,€eV), (u,7) = (eU, V), where € and M
are suitable positive constants. It is clear that

— A0 = ag(x) VI by (z) V' > 707 (ag(2) —bo(2)7 "2 —lou®), =€ Q.
Similarly to case 2, if M is large enough, we can obtain that
—Apa > @ ay(x) — by (2)T™ P2 — 110"), z€ Q.
Denote

—st—q+2 s(p=71) —nom-p+2 n(g—v2)
A3 := min { % 62‘3\/15 Ko igfd(w) Mo is 1 G 022 De igf d(x) S “p} >0,

with the same method in Case 1 and Case 2, we prove that when [y, [ <
A3, the following hold

—Apu < Py (z)u™ — by(x)u™ P2 - 1Y), z € Q,
—Agv < w97 Y ag(z) — ba(z)o! "1+ — Lue), z e Q.

Thanks to Proposition 1, the problem (1.1) has at least one positive
solution. O

Remark. According to Proposition 2 and Lemma 1, the positive solu-
tion (u,v) of the problem (1.1) obtained in Theorem 1 satisfies

B e _ = '
Cod(z) ™2 <wy(x) < Cid(xz) ™»r+2, z € Q,

ng(:l:)_tq—_q122 <w(z) < Cld(a:)nq—qg, x € €1,

for some positive constants C; and Cs.
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