1 |
W. A. Day, A decreasing property of solutions of parabolic equations with applications to thermoelasticity, Quart. Appl. Math. 40 (1983), no. 4, 468-475.
DOI
|
2 |
K. Deng and H. A. Levien, The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl. 243 (2000), no. 1, 85-126.
DOI
|
3 |
W. B. Deng, Global existence and finite time blow up for a degenerate reaction-diffusion system, Nonlinear Anal. 60 (2005), no. 5, 977-991.
DOI
|
4 |
W. B. Deng, Y. X. Li, and C. H. Xie, Blow-up and global existence for a nonlocal degenerate parabolic system, J. Math. Anal. Appl. 277 (2003), no. 1, 199-217.
DOI
|
5 |
J. I. Diaz and R. Kerser, On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium, J. Differential Equations 69 (1987), no. 3, 368-403.
DOI
|
6 |
E. Dibenedetto, Degenerate Parabolic Equations, Springer, New York, 1993.
|
7 |
Lili. Du, Blow-up for a degenerate reaction-diffusion system with nonlinear localized sources, J. Math. Anal. Appl. 324 (2006), no. 1, 304-320.
DOI
|
8 |
Z. W. Duan, W. B. Deng, and C. H. Xie, Uniform blow-up profile for a degenerate parabolic system with nonlocal source, Comput. Math. Appl. 47 (2004), no. 6-7, 977- 995.
DOI
|
9 |
A. Friedman, Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions, Quart. Appl. Math. 44 (1986), no. 3, 401-407.
DOI
|
10 |
A. Friedman and B. Mcleod, Blow-up of positive solutions of similinear heat equations, Indiana Univ. Math. J. 34 (1985), no. 2, 425-447.
DOI
|
11 |
H. A. Levien, The role of critical exponents in blow-up theorems, SIAM Rev 32 (1990), 262-288.
DOI
|
12 |
H. A. Levien and P. E. Sacks, Some existence and nonexistence theorems for solutions of degenerate parabolic equations, J. Differential Equations 52 (1984), 135-161.
DOI
|
13 |
F. C. Li and C. H. Xie, Global existence and blow-up for a nonlinear porous medium equation, Appl. Math. Lett. 16 (2003), 185-192.
DOI
|
14 |
F. C. Li, Existence and blow-up for a degenerate parabolic equation with nonlocal source, Nonlinear Anal. 52 (2003), 523-534.
DOI
|
15 |
H. L. Li and M. X. Wang, Blow-up behaviors for semilinear parabolic systems coupled in equations and boundary conditions, J. Math. Anal. Appl. 304 (2005), no. 1, 96-114.
DOI
|
16 |
C. V. Pao, Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions, J. Comput. Appl. Math. 88 (1998), no. 1, 225-238.
DOI
|
17 |
C. V. Pao, Numerical solutions of reaction-diffusion equations with nonlocal boundary conditions, J. Comput. Appl. Math. 136 (2001), no. 1-2, 227-243.
DOI
|
18 |
P. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29 (1998), no. 6, 1301-1334.
DOI
|
19 |
M. X. Wang, Blow-up rates for semilinear parabolic systems with nonlinear boundary conditions, Appl. Math. Lett. 16 (2003), no. 2, 169-175.
|
20 |
L. Z. Zhao and S. N. Zheng, Critical exponent and asymptotic estimates of solutions to parabolic systems with localized nonlinear sources, J. Math. Anal. Appl. 292 (2004), no. 2, 621-635.
DOI
|
21 |
S. N. Zheng and L. H. Kong, Roles of weight functions in a nonlinear nonlocal parabolic system, Nonlinear Anal. 68 (2008), no. 8, 2406-2416.
DOI
|
22 |
D. E. Carlson, Linear Thermoelasticity, Encyclopedia, Vol. Via/2, Springer Berlin 1972.
|
23 |
J. R. Anderson, Local existence and uniqueness of solutions of degenerate parabolic equations, Comm. Partial Differential Equations 16 (1991), no. 1, 105-143.
DOI
|
24 |
J. R. Anderson and K. Deng, Global existence for degenerate parabolic equations with a nonlocal forcing, Math. Methods Appl. Sci. 20 (1997), no. 13, 1069-1087.
DOI
|
25 |
D. G. Aronson, M. G. Crandall, and L. A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal. 6 (1982), no. 10, 1001-1022.
DOI
|
26 |
Y. P. Chen and C. H. Xie, Blow-up for a porous medium equation with a localized source, Appl. Math. Comput. 159 (2004), no. 1, 79-93.
DOI
|
27 |
W. A. Day, Extensions of property of heat equation to linear thermoelasticity and other theories, Quart. Appl. Math. 40 (1982), 319-330.
DOI
|