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A NOTE ON BOUNDARY BLOW-UP PROBLEM OF ∆u = up

Seick Kim

Abstract. Assume that Ω is a bounded domain in Rn with n ≥ 2. We

study positive solutions to the problem, ∆u = up in Ω, u(x) → ∞ as
x → ∂Ω, where p > 1. Such solutions are called boundary blow-up

solutions of ∆u = up. We show that a boundary blow-up solution exists

in any bounded domain if 1 < p < n
n−2

. In particular, when n = 2,

there exists a boundary blow-up solution to ∆u = up for all p ∈ (1,∞).

We also prove the uniqueness under the additional assumption that the

domain satisfies the condition ∂Ω = ∂Ω.

1. Introduction

Let Ω be a bounded domain of Rn with n ≥ 2 and let ∂Ω denote its boundary.
In this article we study the problem

∆u(x) = f(u(x)) for x ∈ Ω,(1)

u(x)→ +∞ as d(x) := dist(x, ∂Ω)→ 0,(2)

where f(t) = tp+ := {max(t, 0)}p with p > 1. Solutions to the problem (1), (2)
are called boundary blow-up solutions.

In 1957, Keller [5] and Osserman [11] proved existence of solutions to prob-
lem (1), (2) for a rather general class of functions f ; i.e., f : R → [0,∞)
is a locally Lipschitz continuous function which is increasing and satisfies the
following growth condition called Keller-Osserman condition:∫ ∞

t0

{∫ t

0

f(s) ds

}−1/2

dt < +∞ for all t0 > 0.(3)

It is easy to check that f(t) = tp+ with p > 1 satisfies (3). They showed that
(3) is a necessary condition for the existence of blow-up solutions. Indeed, if
the domain Ω is regular enough, say Lipschitz, then the existence of a classical
solution to the problem (1), (2) is established by the method of supersolutions
and subsolutions together with the uniform estimates of Keller [5]. We will
briefly review existence results in the next section.
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The case f(t) = tp+ with p > 1 is of special interest, and in this article only
this case will be treated. Loewner and Nirenberg [7] studied the case when
p = n+2

n−2 with n > 2, which is related to a problem in differential geometry.

The problem (1), (2) is also related to probability theory. The equation ∆u =
up+, 1 < p ≤ 2, appears in the analytical theory of a Markov process called
superdiffusion; see [2]. By means of a probabilistic representation, a uniqueness
result in domains with non-smooth boundary was established by Le Gall [6] in
the case when p = 2. Later, Marcus and Véron [8,9] extended the uniqueness in
very general domains for all p > 1, using purely analytical method; they proved
uniqueness in a domain whose boundary is locally represented as a graph of
a continuous function. However, it is not clear whether a boundary blow-up
solution exists or not in such a general domain. In [10], Matero constructed a
boundary blow-up solution of ∆u = up+ with 1 < p <∞, in a two-dimensional
domain with fractal boundary called the von Koch snowflake domain. His
approach is based on the comparison with boundary blow-up solutions in a
cut-off open cone.

We treat a special case when p ∈ (1, n
n−2 ) for n ≥ 3 and p ∈ (1,∞) for

n = 2. Some interesting results are obtained in that case. We will prove that a
boundary blow-up solution exists in every bounded domain. As a consequence,
it will imply a result of Matero [10] mentioned above. We will also show the
uniqueness if the domain satisfies an additional assumption, ∂Ω = ∂Ω. For
example, if ∂Ω can be locally represented as a graph of a continuous function,
then it satisfies the above condition. In this case, uniqueness was earlier proved
by Marcus and Véron [8, 9].

2. Preliminaries

In this section, we briefly discuss the existence results of Keller [5], Loewner
and Nirenberg [7]. We also introduce some terminology which will be used in
the later parts of the paper. We begin with a simple lemma.

Lemma 2.1 (Comparison principle). Let Ω ⊂ Rn be a bounded domain. As-
sume that f is increasing. Let u, v ∈ C2(Ω) be solutions of ∆u ≥ f(u) and
∆v ≤ f(v) respectively. If lim infx→∂Ω(v − u)(x) ≥ 0, then v ≥ u in Ω.

Proof. Suppose, to the contrary, that there exists x0 ∈ Ω such that u(x0) >
v(x0). Then for sufficiently small ε > 0, Ωε := {u− v > ε} 6= ∅ and Ωε ⊂ Ω.
Let w := u− v − ε. Then w = 0 on ∂Ωε. Since f is increasing,

Lw ≥ f(u)− f(v) ≥ f(u)− f(v + ε) ≥ 0 in Ωε.

Then the maximum principle implies w ≤ 0 in Ωε. This contradiction proves
the lemma. �

Remark 2.2. Let Ω1,Ω2 ⊂ Rn be bounded domains such that Ω1 b Ω2, i.e.,
Ω1 ⊂ Ω2. Suppose ui (i = 1, 2) are solutions to (1), (2) in Ωi. Then, it follows
from Lemma 2.1 that u1 ≥ u2 in Ω1.
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The next theorem is quoted from [5]; see also [11].

Theorem 2.3 (Keller [5, pp. 505–507]). Let u be a solution of (1) in a bounded
domain Ω. There exists a continuous, decreasing function g : (0,∞) → R
determined by f such that limt→0 g(t) = +∞ and

u(x) ≤ g(d(x)), where d(x) := dist(x, ∂Ω).(4)

Using the above estimate (4), Keller proved the existence of a boundary
blow-up solution. Although he claimed the existence in arbitrary domains, his
argument seems to require certain smoothness assumption on Ω. Let Ω be a
regular domain, say a Lipschitz domain. By the method of supersolutions and
subsolutions (see e.g. [3, pp. 507–511]), one can show that, for each m ≥ 1, there
exists a unique solution um ∈ C0(Ω)∩C2(Ω) of (1) such that um = αm on ∂Ω,
where αm < αm+1 and αm →∞ as m→∞. Then by the comparison principle,
{um}∞m=1 is an increasing sequence of functions. By (4), um(x) ≤ g(d(x))
uniformly for m ≥ 1. Denote by u(x) the pointwise limit of {um(x)}∞m=1. Then
by the standard elliptic theory (see e.g. [4]), u ∈ C2(Ω) and u is a solution of
(1). As x approaches ∂Ω, u(x) increases indefinitely since um = αm becomes
infinite on ∂Ω; thus u is a solution of the problem (1), (2).

The solution u constructed above is called a minimal boundary blow-up so-
lution. Indeed, if v is a boundary blow-up solution, then by the comparison
principle, um ≤ v in Ω for all m ≥ 1 and thus, u = limm→∞ um ≤ v follows.

Loewner and Nirenberg [7] introduced another important solution of (1)
called a maximal solution which is not necessarily a blow-up solution but can
be constructed in any bounded domain Ω. Let {Ωm}∞m=1 be an exhausting
sequence of smooth subdomains of Ω; i.e., Ωm b Ωm+1 b Ω and

⋃∞
m=1 Ωm = Ω.

Let um be the minimal blow-up solution in Ωm for each m ≥ 1, and let v be the
minimal blow-up solution in a ball containing Ω. By Remark 2.2, {um}∞m=1 is
decreasing and bounded below by v. Hence, the limit function u exists and by
the standard elliptic theory, it is a solution to (1). This solution u is maximal
since if v is a solution of (1) in Ω, then by the comparison principle, we see
um ≥ v for all m ≥ 1. In next section, we will provide an example of maximal
solution which is not a boundary blow-up solution; see Remark 3.3 below.

3. Main results

We consider the problem (1), (2) with f(t) = tp+. Note that in this case, a
solution to the problem (1), (2) must be positive, which is a simple consequence
of the maximum principle. Indeed, more generally, let t0 := sup {t : f(t) = 0}.
If t0 6= −∞, then by continuity, f(t0) = 0 and thus, u ≡ t0 is a solution to (1).
By Lemma 2.1, we find that any blow-up solution of (1) is bounded below by
t0.

Hereafter, we always assume p ∈ (1,∞) when n = 2, and p ∈ (1, n
n−2 ) when

n ≥ 3. We will show that in that case, a boundary blow-up solution exists
in any bounded domain, which obviously include the domain considered by
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Matero in [10]. Also, by using Safonov’s iteration technique in [12], we prove
uniqueness provided that Ω satisfies the condition ∂Ω = ∂Ω. For example,
if ∂Ω can be locally represented as a graph of a continuous function, then it
satisfies the above condition.

3.1. Construction of a barrier in Rn \ {0}

We will construct a solution of ∆u = up+ in Rn \ {0} which blows up at the

origin. We look for a solution of the form v(x) = cp |x|−γ , where cp, γ > 0.
Since v is positive and radially symmetric, v(r) = cpr

−γ , where r = |x|, must
solve the following ODE:

v′′(r) +
n− 1

r
v′(r) = vp(r) in (0,∞).(5)

Hence, the unknown constants cp, γ should satisfy

cpγ(γ + 2− n)r−γ−2 = cppr
−γp.(6)

Set γ = 2/(p − 1) so that γ + 2 = γp. The assumption cp > 0 requires a
restriction on p, namely 2/(p − 1) > n − 2. It is satisfied for all p > 1 when
n = 2 and for p ∈ (1, n

n−2 ) when n ≥ 3. If we choose

cp = {γ(γ + 2− n)}γ/2 =

{
2n− 2(n− 2)p

(p− 1)2

}1/(p−1)

,(7)

it follows cpp = cpγ(γ + 2− n).

Then, v(x) = cp |x|−γ is a solution of ∆v = vp+ on Rn \ {0} such that
v(x)→ +∞ as |x| → 0. We summarize the above result as a lemma.

Lemma 3.1. Let p > 1 when n = 2, and let p ∈ (1, n
n−2 ) when n ≥ 3. Then,

v(x) := cp |x|−γ is a solution of ∆v = vp+ in Rn \ {0} such that v(x)→ +∞ as

|x| → 0. Here, γ = 2/(p− 1) and cp =
{

2n−2(n−2)p
(p−1)2

}1/(p−1)

.

3.2. Existence and uniqueness of boundary blow-up solution

Theorem 3.2. Let Ω ⊂ Rn be a bounded domain. Then, there exists a solution
u to the problem (1), (2).

Proof. Let {Ωm}∞m=1 be an exhausting sequence of smooth subdomains of Ω,
and let um be the minimal blow-up solution of (1) in Ωm. Then, the limit
u := limm→∞ um is a maximal solution; see Section 2.

We need to show that u is indeed a boundary blow-up solution. For any y ∈
Ω, choose a point y0 ∈ ∂Ω such that d(y) = |y − y0|. Let v(x) := cp |x− y0|−γ
with cp, γ defined as in Lemma 3.1. Since y0 /∈ Ωm for each m ≥ 1, wee find
v(x) < +∞ for all x ∈ Ωm. Hence, we conclude by Lemma 2.1 that

um(y) ≥ v(y) = cpd
−γ(y)(8)

provided m is large enough so that y ∈ Ωm.
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Therefore, by passing to the limit, we find u(y) ≥ cpd
−γ(y) for any y ∈ Ω.

Clearly, u(y)→ +∞ as d(y)→ 0, and thus, u is a desired solution. �

Remark 3.3. In Theorem 3.2, the restriction that p < n
n−2 when n > 2 is

essential. Let Ω := {x ∈ Rn : 0 < |x| < 1}, where n > 2. Brézis and Véron [1]
showed that if p ≥ n

n−2 , then any positive solution u of ∆u = up in Ω satisfies

limx→0 u(x) < +∞. Consequently, there is no solution of the problem (1), (2)
in Ω. This also shows that in general, a maximal solution is not necessarily a
boundary blow-up solution.

Theorem 3.4. In addition, assume that Ω satisfies ∂Ω = ∂Ω. Then, the
solution of the problem (1), (2) is unique.

Proof. Let u1, u2 be two boundary blow-up solutions in Ω. We claim that the
following estimate holds:

N1d
−γ(x) ≤ ui(x) ≤ N2d

−γ(x) for all x ∈ Ω; i = 1, 2,(9)

where N1, N2 > 0 are constants depending only on n and p.
Fix x0 ∈ Ω and denote r := d(x0). Choose z0 ∈ ∂Ω such that |x0 − z0| = r.

From the assumption that ∂Ω = ∂Ω, there exists a point y0 ∈ Br(z0)\Ω. Note

that r ≤ |x0 − y0| ≤ 2r. Let v(x) := cp |x− y0|−γ . Since Ω is bounded and

y0 /∈ Ω, we find, by see Lemma 2.1, that ui(x) ≥ v(x), where i = 1, 2. In
particular,

ui(x0) ≥ cp |x0 − y0|−γ ≥ cp2−γd−γ(x0); i = 1, 2.(10)

Also, by considering a ball Br(x0) and the minimal boundary blow-up solution
in that ball as a comparison function, it is not hard to see ui(x0) ≤ N2d(x0)−γ ,
i = 1, 2, for some constant N2 > 0 depending only on n and p; see e.g. [5].

Therefore, we conclude that the estimate (9) holds. Once we obtain the
estimate (9), u1 ≡ u2 will follow from the iteration technique of Safonov in
[12]. For the reader’s convenience, we will reproduce his technique here.

Assume, to the contrary, that u2(x1)/u1(x1) > k > 1 for some x1 ∈ Ω. Let
Ω0 := {u2 > ku1} ∩Br(x1), where r = 1

2 d(x1). Then, we find

∆(u2 − ku1) = up2 − ku
p
1 > (kp − k)up1 ≥ c1kr−γp,

where c1 = 2−γpNp
1 (kp−1 − 1). Therefore, ∆(u2 − ku1 + w) ≥ 0 in Ω0, where

w =
c1
2n

kr−γp (r2 − |x− x1|2). By the maximum principle

w(x1) < (u2 − ku1 + w) (x1) ≤ sup
∂Ω0

(u2 − ku1 + w).

Note that the maximum must be achieved on ∂Br(x1) ∩Ω0 ⊂ ∂Ω0; otherwise,

it is achieved on {u2 = ku1} ∩ Br(x1), where we have u2 − ku1 + w ≤ w(x1).
Hence, w(x1) < (u2 − ku1)(x2), where x2 ∈ ∂Br(x1) ∩ ∂Ω0 ⊂ Ω. On the other
hand, by (9), we find (recall x2 ∈ ∂Br(x1) so that d(x2) ≥ r)

w(x1) =
c1
2n

kr−γpr2 =
c1
2n

kr−γ ≥ c2ku1(x2),
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where c2 = c1
2nN2

=
Np1

2γp+1nN2
(kp−1 − 1). Therefore, we conclude u2(x2)/u1(x2)

> (1 + c2)k. By iterating the above process (both c1 and c2 are mono-
tone increasing in k), we obtain a sequence of points {xj}∞j=1 in Ω satisfying

u2(xj)/u1(xj) > (1 + c2)jk, which tends to infinity as j → ∞. On the other
hand, by (9),

u2(x)

u1(x)
<
N2d

−γ(x)

N1d−γ(x)
=
N2

N1
∀x ∈ Ω.

This contradiction proves the uniqueness. �

Remark 3.5. If Ω =
{
x ∈ R2 : 0 < |x| < 1

}
, then ∂Ω 6= ∂Ω. The uniqueness

fails in this case; see [13].
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Addendum. This paper originally appeared as IMA preprint No.1872 but it
was never published (https://www.ima.umn.edu/sites/default/files/1872.pdf).
Later, the essential part of it was included in the paper “On uniqueness of
boundary blow-up solutions of a class of nonlinear elliptic equations” by Hongjie
Dong, Seick Kim, and Mikhail Safonov. (Communications in Partial Differen-
tial Equations 33 (2008), no. 2, 177–188.)

References
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