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BLOW-UP TIME AND BLOW-UP RATE FOR

PSEUDO-PARABOLIC EQUATIONS WITH

WEIGHTED SOURCE

Huafei Di and Yadong Shang

Abstract. In this paper, we are concerned with the blow-up phenomena
for a class of pseudo-parabolic equations with weighted source ut−4u−
4ut = a(x)f(u) subject to Dirichlet (or Neumann) boundary conditions

in any smooth bounded domain Ω ⊂ Rn (n ≥ 1). Firstly, we obtain the
upper and lower bounds for blow-up time of solutions to these problems.

Moreover, we also give the estimates of blow-up rate of solutions under
some suitable conditions. Finally, three models are presented to illustrate

our main results. In some special cases, we can even get some exact values

of blow-up time and blow-up rate.

1. Introduction

In this paper, we deal with the blow-up time and blow-up rate estimates of
solutions to the following initial boundary value problems

ut −4u−4ut = a(x)f(u), x ∈ Ω, t > 0,(1.1)

u(x, 0) = g(x) ≥ 0, x ∈ Ω,(1.2)

subject to null Dirichlet boundary condition

u(x, t) = 0, x ∈ ∂Ω, t > 0,(1.3)

or homogeneous Neumann boundary condition

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,(1.4)

where Ω ⊂ Rn (n ≥ 1) is a smooth bounded domain, ν is the outward normal
vector, g(x) is a continuous nonnegative function and satisfies the compatible
condition. Here, the nonlinear function f satisfies
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(f1) f(s) ≥ 0 for all s ≥ 0;
And the weight function a(x) ∈ C1(Ω) ∩ C0(Ω̄) satisfies

(a1) a(x) ≥ C > 0 for some constant C on Ω̄ or
(a2) a(x) > 0 in Ω and a(x) = 0 on ∂Ω.
It is well known that the nonlinear pseudo-parabolic equations often appear

in the study of various problems of the hydrodynamics, thermodynamics and
filtration theory etc (see [1, 6, 9] and references therein). Also, Eq. (1.1) has
extensive physical background and rich theoretical connotation. This type of
equations can be regarded as the regularization of semilinear heat equations
with weighted source by adding a dispersion term 4ut. Especially, if a(x) ≡ 1,
then Eq. (1.1) reduces to the following semilinear pseudo-parabolic equations

ut −4u−4ut = f(u), x ∈ Ω, t > 0,(1.5)

which also can be considered as Sobolev type equations [24]. In the past
decades, much effort in mathematics have been devoted to the study of semi-
linear pseudo-parabolic equations about the existence and uniqueness [1,3,23],
asymptotic behavior [3, 12, 28], blow-up phenomena [3, 4, 13, 20, 28], maximum
principle [5] and homogenization [21] and so on. More works on this type of
Eq. (1.5) can be found in the monograph [1] and references therein.

In the absence of dispersion term 4ut, and weight function a(x) ≡ 1,
Eq. (1.1) becomes the semilinear heat equations

ut −4u = f(u), x ∈ Ω, t > 0.(1.6)

About this model, many results for the blow-up phenomenon of solutions have
been obtained, we can refer to [11, 16–19, 25, 27] and references therein. In
[18, 19], Payne and Schaefer obtained the lower bound on blow-up time of so-
lutions to Eq. (1.6) under null Dirichlet boundary condition and homogeneous
Neumann boundary condition, respectively. Later, Payne et al. [16, 17] stud-
ied the blow-up phenomenon of solutions for Eq. (1.6) with nonlinear boundary
conditions. When the nonlinear source term f(u) =

∫
Ω
uqdx−kus, Song [25] ob-

tained the lower bounds for blow-up time of solutions with either homogeneous
Dirichlet or homogeneous Neumann boundary conditions in three dimensional
space. Afterwards, Liu [11] studied the lower bounds for blow-up time under
nonlinear boundary conditions in three dimensional space. In [27], Tang et al.
extended the results of literature [11] in higher dimensional space.

Very recently, the study on the blow-up phenomenon had some new develop-
ment, where more attention was paid on the parabolic equations with weighted
source. These models can be used to illustrate the processes of heat trans-
fer arising in physical and engineering applications, such as a model of phase
separation in binary alloys [2, 22]. The existence and nonexistence of global
solutions, bounds for blow-up time, blow-up rate, blow-up sets and asymptotic
behavior for this type of equations were investigated by many authors. We
refer the reader to see [8, 14, 15, 26] and papers cited therein. For example,
Song and Lv [14,26] studied the following semilinear parabolic equations with
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weighted source

ut −4u = a(x)f(u), x ∈ Ω, t > 0.(1.7)

The initial boundary value problem for above equations with nonlinear Neu-
mann boundary condition were considered in [14], where they derived the upper
and lower bounds for blow-up time in three dimensional space. In [26], they
further investigated the estimates of blow-up rate and bounds for blow-up time
of solutions with homogeneous Dirichlet or Neumann boundary conditions in
higher dimensional space. Ma and Fang [15] changed the diffusion term 4u
into nonlinear divergence form reaction-diffusion term

∑N
i,j=1

(
ai,j(x)uxi

)
xj

of

Eq. (1.7), where the upper and lower bounds for blow-up time were derived
under appropriate measure in higher dimensional space. In [8], a blow-up anal-
ysis for nonlinear divergence form of parabolic equation with time-dependent
coefficients was given under nonlinear boundary flux.

Motivated by the above researches, in the present work we main study the
blow-up phenomena for pseudo-parabolic equations with weighted nonlinear
source. As far as we known, there is litter infirmation on the blow-up results of
solutions for problem (1.1)-(1.2) with either null Dirichlet boundary condition
(1.3) or homogeneous Neumann boundary condition (1.4). Obviously, the exis-
tence and uniqueness of local solutions for these problems can be obtained by
Faedo-Galerkin methods and Contraction Mapping Principle. The interested
reader is referred to [1, 7, 10] for details. Naturally, we would like to study the
estimates of blow-up rate and bounds for blow-up time of solutions to Eq. (1.1)
in any smooth bounded domain Ω ⊂ Rn (n ≥ 1). Especially, we can even give
the exact estimates about the blow-up rate and blow-up time of solutions to
Eq. (1.1) with some types of nonlinearities.

In detail, this paper is organized as follows: In Section 2, the upper bounds
of blow-up time and blow-up rate will be established for problem (1.1)-(1.2)
under boundary condition (1.3) or (1.4). In Section 3, we will use two methods
to give the lower bounds for blow-up time and blow-up rate to problem (1.1)-
(1.2) with boundary condition (1.3) or (1.4). In Section 4, three models and
some remarks will be given to illustrate the results of Sections 2 and 3.

2. Upper estimates for blow-up time and blow-up rate

In this section, we will establish some estimates about the upper bounds
for blow-up time and blow-up rate of solutions to problem (1.1)-(1.2) under
Dirichlet boundary condition or Neumann boundary condition, respectively.

2.1. Under Dirichlet boundary condition (1.3)

To obtain the results of this subsection, we first assume that
(f2) there exists a positive constant C1 > 2 such that∫

Ω

a(x)s(x)f(s(x))dx ≥ C1

∫
Ω

a(x)F (s(x))dx,
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for any function s(x) ≥ 0, where F (s(x)) =
∫ s(x)

0
f(θ)dθ;

(g1) the initial data g(x) satisfies∫
Ω

|∇g|2dx < 2

∫
Ω

a(x)F (g)dx.

Then, we further define the following auxiliary function

ϕ(t) =

∫
Ω

u2dx+

∫
Ω

|∇u|2dx.(2.1)

Theorem 2.1. Assume that the conditions (f1), (f2), (g1), (a1), (a2) hold, and
u is a nonnegative solution of problem (1.1)-(1.2) subject to Dirichlet boundary
condition (1.3). Then, we conclude that the solutions u become unbounded in
H1-norm at t = t∗. Moreover, an upper bound for blow-up time t∗ is given by

t∗ ≤ 2ϕ(0)

(C1 − 2)φ1(0)
,

and the upper estimate of blow-up rate can be given by

‖u‖H1 ≤
(

(C1 − 2)φ1(0)

2

)− 1
C1−2

[ϕ(0)]
C1

2(C1−2) (t∗ − t)−
1

C1−2 ,

where ϕ(0) = ‖g‖2H1 and φ1(0) = −C1

∫
Ω
|∇g|2dx+ 2C1

∫
Ω
a(x)F (g)dx.

Proof. Firstly, differentiating (2.1) with respect to t and using Eq. (1.1), then
we have

ϕ′(t) = 2

∫
Ω

uutdx+ 2

∫
Ω

∇u · ∇utdx

= −2

∫
Ω

|∇u|2dx+ 2

∫
Ω

a(x)uf(u)dx.(2.2)

By the combination of (2.2) and condition (f2), we obtain

ϕ′(t) ≥ −2

∫
Ω

|∇u|2dx+ 2C1

∫
Ω

a(x)F (u)dx ≥ φ1(t),(2.3)

where

φ1(t) = −C1

∫
Ω

|∇u|2dx+ 2C1

∫
Ω

a(x)F (u)dx.(2.4)

On the other hand, a simple computation yields

φ′1(t) = −2C1

∫
Ω

∇u · ∇utdx+ 2C1

∫
Ω

a(x)utf(u)dx

= 2C1

∫
Ω

ut
[
4u+ a(x)f(u)

]
dx

= 2C1

∫
Ω

ut
[
ut −4ut

]
dx

= 2C1

∫
Ω

u2
tdx+ 2C1

∫
Ω

|∇ut|2dx.(2.5)
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Here, we have used the fact that u(x, t) = 0 on ∂Ω implies that ut(x, t) = 0 on
∂Ω. Multiplying ϕ(t) by φ′1(t), then we have

ϕ(t)φ′1(t) = 2C1

∫
Ω

[
u2
t + |∇ut|2

]
dx

∫
Ω

[
u2 + |∇u|2

]
dx.(2.6)

Using Schwarz’s inequality and Young’s inequality, we get(∫
Ω

uutdx

)2

≤
∫

Ω

u2dx

∫
Ω

u2
tdx,(2.7)

(∫
Ω

∇u · ∇utdx
)2

≤
∫

Ω

|∇u2|dx
∫

Ω

|∇ut|2dx,(2.8)

and

2

∫
Ω

uutdx

∫
Ω

∇u · ∇utdx≤
∫

Ω

u2dx

∫
Ω

|∇ut|2dx+

∫
Ω

|∇u|2dx
∫

Ω

u2
tdx.(2.9)

Inserting (2.7)-(2.9) into (2.6), we have from (2.2) and (2.3) that

ϕ(t)φ′1(t) ≥ 2C1

(∫
Ω

uutdx+

∫
Ω

∇u · ∇utdx
)2

=
C1

2
[ϕ′(t)]

2 ≥ C1

2
ϕ′(t)φ1(t).(2.10)

Thus, the above inequality implies that(
φ1(t) [ϕ(t)]

−C1
2

)′
= [ϕ(t)]

−C1+2
2

{
ϕ(t)φ′1(t)− C1

2
ϕ′(t)φ1(t)

}
≥ 0.(2.11)

Under the assumption (g1) and using (2.1) and (2.5), we know that

ϕ(0) = ‖g‖2H1 > 0,(2.12)

and

φ1(t) ≥ φ1(0) = −C1

∫
Ω

|∇g|2dx+ 2C1

∫
Ω

a(x)F (g)dx > 0.(2.13)

Integrating (2.11) from 0 to t, we obtain

φ1(t) [ϕ(t)]
−C1

2 ≥ φ1(0) [ϕ(0)]
−C1

2 = M > 0.(2.14)

By (2.3) and (2.14), we get

1

C1(2− C1)

(
[ϕ(t)]

2−C1
2

)′
=

1

2C1
ϕ′(t) [ϕ(t)]

−C1
2

≥ 1

2C1
φ1(t) [ϕ(t)]

−C1
2 ≥ 1

2C1
M.(2.15)

Integrating (2.15) from 0 to t, we have

[ϕ(t)]
2−C1

2 ≤ [ϕ(0)]
2−C1

2 − C1 − 2

2
Mt,(2.16)
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which implies that

ϕ(t) ≥ 1[
(ϕ(0))

2−C1
2 − C1−2

2 Mt
] 2

C1−2

.(2.17)

Clearly, the above inequality cannot hold for all t > 0. Consequently, u blow
up at some finite time t∗ and

t∗ ≤ 2ϕ(0)

(C1 − 2)φ1(0)
.(2.18)

Furthermore, from (2.3) and (2.14) again, we have

ϕ′(t) ≥ φ1(t) ≥ φ1(0) [ϕ(0)]
−C1

2 [ϕ(t)]
C1
2 .(2.19)

Integrating (2.19) from t to t∗, we obtain

ϕ(t) ≤

(
2ϕ(0)

C1
2

(C1 − 2)φ1(0)

) 2
C1−2

(t∗ − t)−
2

C1−2 ,(2.20)

which means that the upper estimate of blow-up rate is given by

‖u‖H1 ≤

(
2ϕ(0)

C1
2

(C1 − 2)φ1(0)

) 1
C1−2

(t∗ − t)−
1

C1−2 .(2.21)
�

2.2. Under Neumann boundary condition (1.4)

To obtain the results of this subsection, we first assume that
(f3) there exists a positive function G(θ) such that∫

Ω

a(x)f(s(x))dx ≥ G
[∫

Ω

s(x)dx

]
with

∫ +∞

0

dθ

G(θ)
< +∞

for any function s(x) ≥ 0. Then, we define the following auxiliary function

φ2(t) =

∫
Ω

udx.(2.22)

Theorem 2.2. Assume that the conditions (f1), (f3), (a1), (a2) hold, and u
is a nonnegative solution of problem (1.1)-(1.2) subject to Neumann boundary
condition (1.4). Then, we conclude that the solutions u become unbounded in
L1-norm at t = t∗. Moreover, an upper bound for blow-up time t∗ is given by

t∗ ≤
∫ +∞

0

dθ

G(θ)
< +∞,

and the upper estimate of the blow-up rate can be given by

‖u‖L1 ≤ Y −1
1 (t∗ − t),

where the function Y1(s) :=
∫ +∞
s

dθ
G(θ) for any s ≥ 0.
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Proof. Integrating Eq. (1.1) by parts, from condition (f3) and (2.22) we have∫
Ω

utdx =

∫
Ω

a(x)f(u)dx ≥ G
[∫

Ω

udx

]
,(2.23)

which means that

dφ2(t)

dt
≥ G [φ2(t)] > 0.(2.24)

Here, we have used the fact that ∂u
∂ν = 0 and ∂ut

∂ν = 0 on ∂Ω. It then follows
from (2.24) that φ2(t) is an increasing function, so we have

φ2(t) > φ2(0) =

∫
Ω

g(x)dx ≥ 0.(2.25)

Integrating (2.24) from 0 to t and using (2.25), (f3), we discover

t ≤
∫ φ2(t)

φ2(0)

dθ

G(θ)
≤
∫ +∞

0

dθ

G(θ)
< +∞.(2.26)

Obviously, (2.26) cannot hold for all time t. Consequently, we can derive an
upper bound t∗ such that

t∗ ≤
∫ +∞

0

dθ

G(θ)
< +∞,(2.27)

and

lim
t→t∗

φ2(t) = +∞,(2.28)

where (0, t∗) is the interval of existence of solutions u in L1-norm. In fact, if
the equality (2.28) doesn’t hold, then there exists a time t1 > t∗ such that
φ2(t∗) < φ2(t1) < +∞ and t1 satisfies the inequalities (2.26), (2.27), which
contradict the maximum existence of t∗.

Furthermore, integrating (2.24) from t to t∗, it follows that

t∗ − t ≤
∫ +∞

φ2(t)

dθ

G(θ)
:= Y1(φ2(t)).(2.29)

We note that Y1 is a decreasing function, which means its inverse function Y −1
1

exists and is also a decreasing function. Therefore, we have

φ2(t) ≤ Y −1
1 (t∗ − t),(2.30)

that is

‖u‖L1 ≤ Y −1
1 (t∗ − t).(2.31) �

Remark 2.3. This result can be generalized to the case of problem (1.1)-(1.2)
subject to ∂u

∂ν = b(x, t), where b(x, t) is a nonnegative increasing function of
time t, on x ∈ ∂Ω. In this case, we can also obtain the inequalities (2.27) and
(2.31).
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3. Lower estimates for blow-up time and blow-up rate

In this section, we will give two methods to establish the lower bounds
for blow-up time and blow-up rate of solutions to problem (1.1)-(1.2) under
Dirichlet (or Neumann) boundary condition.

3.1. The first method

This method can not only be used to deal with the problem (1.1)-(1.2) under
null Dirichlet boundary condition (1.3) but also be applied to discuss (1.1)-(1.2)
subject to homogeneous Neumann boundary condition (1.4).

Firstly, let us assume that
(f4): there exist positive constants C2, C3 such that

a(x)f(s(x)) ≤ C2 + C3s(x)l

for any function s(x) ≥ 0, where 1 < l < +∞ if n ≤ 2, 1 < l < n+2
n−2 if n ≥ 3.

And then we introduce the auxiliary function ϕ(t) =
∫

Ω
u2dx +

∫
Ω
|∇u|2dx as

(2.1).
Next, we shall state and prove the main results of this subsection as follows:

Theorem 3.1. Assume that the conditions (f1), (f4), (a1), (a2) hold, and u is
a nonnegative solution of problem (1.1)-(1.2) subject to Dirichlet (or Neumann)
boundary condition which becomes unbounded in H1-norm at t = t∗. Then, we
conclude that a lower bound for blow-up time t∗ is given by

t∗ ≥
∫ +∞

ϕ(0)

dη

k1η
1
2 + k2η

l+1
2

,

and the lower estimate of the blow-up rate is

‖u‖H1 ≥
[
k2(l − 1)

]− 1
l−1 (t∗ − t)−

1
l−1 ,

where k1 = 2C2|Ω|
1
2√

1+λ1
, k2 = 2C3B

l+1, and B is the optimal constant satisfying

the Sobolev’s inequality ‖u‖l+1 ≤ B‖u‖H1 .

Proof. Multiplying u on two sides of Eq. (1.1) and integrating by parts, we
have ∫

Ω

uutdx+

∫
Ω

∇u · ∇utdx = −
∫

Ω

|∇u|2dx+

∫
Ω

a(x)uf(u)dx.(3.1)

Differentiating (2.1) with respect to t, we have from condition (f4) and (3.1)
that

ϕ′(t) = −2

∫
Ω

|∇u|2dx+ 2

∫
Ω

a(x)uf(u)dx

≤ −2

∫
Ω

|∇u|2dx+ 2C2

∫
Ω

udx+ 2C3

∫
Ω

ul+1dx.(3.2)
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Using Schwarz’s inequality and Sobolev’s inequality, we obtain

ϕ′(t) ≤ −2

∫
Ω

|∇u|2dx+ 2C2|Ω|
1
2

(∫
Ω

u2dx

) 1
2

+ 2C3B
l+1‖u‖l+1

H1 ,(3.3)

where |Ω| denotes the volume of Ω, B is the embedding constant for spaces
H1

0 (Ω) ↪→ Ll+1(Ω).
The Poincáre’s inequality gives ‖∇u‖2 ≥ λ1‖u‖2, where λ1 is the first eigen-

value of the problem {
4w + λw = 0, in Ω,

w = 0, on ∂Ω.

Thus, we have

‖∇u‖2 =
1

1 + λ1
‖∇u‖2 +

λ1

1 + λ1
‖∇u‖2 ≥ λ1

1 + λ1
‖u‖2H1 ,(3.4)

‖u‖2 =
1

1 + λ1
‖u‖2 +

λ1

1 + λ1
‖u‖2 ≤ 1

1 + λ1
‖u‖2H1 .(3.5)

Then, (2.1), (3.3) and (3.5) imply

ϕ′(t) ≤ 2C2|Ω|
1
2

√
1 + λ1

[
ϕ(t)

] 1
2 + 2C3B

l+1
[
ϕ(t)

] l+1
2 .(3.6)

Integrating (3.6) from 0 to t, we get∫ ϕ(t)

ϕ(0)

dη

k1η
1
2 + k2η

l+1
2

≤ t,(3.7)

where k1 = 2C2|Ω|
1
2√

1+λ1
, k2 = 2C3B

l+1. If u blow up in the measure ϕ(t) as t→ t∗,

then we can obtain the lower bound

t∗ ≥
∫ +∞

ϕ(0)

dη

k1η
1
2 + k2η

l+1
2

.(3.8)

Furthermore, integrating the inequality (3.6) from t to t∗, we obtain

t∗ − t ≥
∫ +∞

ϕ(t)

dη

k1η
1
2 + k2η

l+1
2

:= Y2(ϕ(t)).(3.9)

We note that Y2 is a decreasing function, which means its inverse function Y −1
2

exists and is also a decreasing function. Therefore, we have

ϕ(t) ≥ Y −1
2 (t∗ − t),(3.10)

which gives the lower estimate of blow-up rate. In fact, if t closes t∗ enough

such that ϕ(t)� 1 and k2η
l+1
2 > k1η

1
2 in the inequality (3.9), then we have

t∗ − t ≥ 1

k2(l − 1)

[
ϕ(t)

]− l−1
2 ,(3.11)
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which means that

ϕ(t) ≥
[
k2(l − 1)

]− 2
l−1 (t∗ − t)−

2
l−1 ,

or

‖u‖H1 ≥
[
k2(l − 1)

]− 1
l−1 (t∗ − t)−

1
l−1 .(3.12) �

3.2. The second method

In this subsection, we will use the second method to establish the lower
bounds for blow-up time and blow-up rate of solutions to problem (1.1)-(1.2)
under null Dirichlet boundary condition (1.3) or homogeneous Neumann bound-
ary condition (1.4).

Firstly, we need the following assumption:
(f5) there exist positive constants C4, C5 and Q such that

a(x)f(s(x)) ≤ C4 + C5s(x)p
(∫

Ω

s(x)q+1dx

)Q
for any function s(x) ≥ 0.

(e1) we also assume that

1 < q < +∞ if n ≤ 2, 1 < q <
n+ 2

n− 2
if n ≥ 3,

0 ≤ p ≤ 1 and (q + 1)Q+ p > 1.

To obtain the main results, we define the auxiliary function ϕ(t) =
∫

Ω
u2dx+∫

Ω
|∇u|2dx again.
Next, we will state our results below:

Theorem 3.2. Assume that the conditions (f1), (f5), (e1), (a1), (a2) hold,
and u is a nonnegative solution of problem (1.1)-(1.2) subject to Dirichlet (or
Neumann) boundary condition which becomes unbounded in H1-norm at t = t∗.
Then, we conclude that a lower bound for blow-up time t∗ is given by

t∗ ≥
∫ +∞

ϕ(0)

dη

k3η
1
2 + k4η

(q+1)Q+p+1
2

,

and the lower estimate of the blow-up rate is

‖u‖H1 ≥
[
k4((q + 1)Q+ p− 1)

]− 1
(q+1)Q+p−1 (t∗ − t)−

1
(q+1)Q+p−1 ,

where k3 = 2C4|Ω|
1
2√

1+λ1
, k4 = 2C5B

(q+1)Q
1 |Ω|

1−p
2

(
1

1+λ1

) p+1
2

, and B1 is the optimal

constant satisfying the Sobolev’s inequality ‖u‖q+1 ≤ B1‖u‖H1 .

Proof. From condition (f5) and (3.1), we obtain

ϕ′(t) = −2

∫
Ω

|∇u|2dx+ 2

∫
Ω

a(x)uf(u)dx
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≤ −2

∫
Ω

|∇u|2dx+ 2C4

∫
Ω

udx+ 2C5

(∫
Ω

uq+1dx

)Q ∫
Ω

up+1dx.(3.13)

Using Schwarz’s inequality and Sobolev’s inequality, it follows that

ϕ′(t) ≤ − 2

∫
Ω

|∇u|2dx+ 2C4|Ω|
1
2

(∫
Ω

u2dx

) 1
2

+ 2C5B
(q+1)Q
1 |Ω|

1−p
2 ‖u‖(q+1)Q

H1

(∫
Ω

u2dx

) p+1
2

,(3.14)

where B1 is the embedding constant for spaces H1
0 (Ω) ↪→ Lq+1(Ω).

Utilizing the Poincáre’s inequality, we have from (3.5) and (3.14) that

ϕ′(t) ≤ 2C4|Ω|
1
2

√
1 + λ1

[
ϕ(t)

] 1
2 + 2C5B

(q+1)Q
1 |Ω|

1−p
2

×
(

1

1 + λ1

) p+1
2 [

ϕ(t)
] (q+1)Q+p+1

2 .(3.15)

Integrating the above inequality from 0 to t, we get∫ ϕ(t)

ϕ(0)

dη

k3η
1
2 + k4η

(q+1)Q+p+1
2

≤ t,(3.16)

where k3 = 2C4|Ω|
1
2√

1+λ1
, k4 = 2C5B

(q+1)Q
1 |Ω|

1−p
2

(
1

1+λ1

) p+1
2

and (q + 1)Q+ p > 1.

If u blows up in the measure ϕ(t) as t → t∗, then we can obtain the lower
bound

t∗ ≥
∫ +∞

ϕ(0)

dη

k3η
1
2 + k4η

(q+1)Q+p+1
2

.(3.17)

Furthermore, integrating the inequality (3.15) from t to t∗, we obtain

t∗ − t ≥
∫ +∞

ϕ(t)

dη

k3η
1
2 + k4η

(q+1)Q+p+1
2

:= Y3(ϕ(t)).(3.18)

We note that Y3 is a decreasing function, which means its inverse function Y −1
3

exists and it is also a decreasing function. Therefore, we have

ϕ(t) ≥ Y −1
3 (t∗ − t),(3.19)

which gives the lower estimate of blow-up rate. In fact, if t closes t∗ enough

such that ϕ(t)� 1 and k4η
(q+1)Q+p+1

2 > k3η
1
2 , then we have from (3.18) that

t∗ − t ≥ 1

k4[(q + 1)Q+ p− 1]

[
ϕ(t)

]− (q+1)Q+p−1
2 ,(3.20)

which means that

ϕ(t) ≥
[
k4((q + 1)Q+ p− 1)

]− 2
(q+1)Q+p−1 (t∗ − t)−

2
(q+1)Q+p−1 ,(3.21)
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or

‖u‖H1 ≥
[
k4((q + 1)Q+ p− 1)

]− 1
(q+1)Q+p−1 (t∗ − t)−

1
(q+1)Q+p−1 .(3.22) �

4. Some related models and remarks

In this section, we will present three models of problem (1.1)-(1.2) with
homogeneous Dirichlet (or Neumann) boundary condition to illustrate the main
results which have been obtained in Sections 2, 3 and make some discussions.

Model 4.1. We consider a special model as follows:

ut −4u−4ut = a(x)ul, x ∈ Ω, t > 0,(4.1)

u(x, 0) = g(x) ≥ 0, x ∈ Ω,(4.2)

u(x, t) = 0 or
∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,(4.3)

where the parameter l satisfy 1 < l < +∞ if n ≤ 2, 1 < l < n+2
n−2 if n ≥ 3; And

the initial data g(x) satisfy (l + 1)
∫

Ω
|∇g|2dx < 2

∫
Ω
a(x)gl+1dx.

As a particular case f(u) = ul, l > 1 of problem (1.1)-(1.4), applying Theo-
rems 2.1 and 3.1, then we have:

Theorem 4.2. Assume that the conditions (a1), (a2) hold, and u is a non-
negative solution of problem (4.1)-(4.3). Then, we conclude that the solutions
u become unbounded in H1-norm at t = t∗. Moreover, the bounds for blow-up
time t∗ are given by

2ϕ(0)
1−l
2

k5(l − 1)
≤ t∗ ≤ 2

l − 1

ϕ(0)

φ3(0)
,

and the estimates of the blow-up rate can be given by[
k5(l − 1)

]− 1
l−1 (t∗ − t)−

1
l−1 ≤ ‖u‖H1

≤
(

(l − 1)φ3(0)

2

)− 1
l−1

[ϕ(0)]
l+1

2(l−1) (t∗ − t)−
1

l−1 ,

where k5 = 2 supx∈Ω̄ a(x)Bl+1, φ3(0) = −(l + 1)
∫

Ω
|∇g|2dx+ 2

∫
Ω
a(x)gl+1dx,

ϕ(0) = ‖g‖2H1 , and B is the optimal constant satisfying the Sobolev’s inequality
‖u‖l+1 ≤ B‖u‖H1 .

Model 4.3. Let us consider the initial boundary value problem of a pseudo-
parabolic equations with weighted nonlocal source:

ut −4u−4ut = a(x)

(∫
Ω

urdx

) p
r

, x ∈ Ω, t > 0,(4.4)

u(x, 0) = g(x) ≥ 0, x ∈ Ω,(4.5)

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,(4.6)
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where the parameters 1 ≤ r < +∞ if n ≤ 2, 1 ≤ r < 2n
n−2 if n ≥ 3, and p > 1.

In the particular case f(u) =
(∫

Ω
urdx

) p
r , r ≥ 1 and p > 1 for problem

(1.1)-(1.4), using the analogous proof as Theorems 2.2 and 3.2, we can obtain
the following results:

Theorem 4.4. Assume that the conditions (a1), (a2) hold, and u is a non-
negative solution of problem (4.4)-(4.6). Then, we conclude that the solutions
u blow up in finite time t = t∗. Moreover, the bounds for blow-up time t∗ are
given by

2ϕ(0)
1−p
2

k7(p− 1)
≤ t∗ ≤ φ2(0)1−p

k6(p− 1)
,

and the estimates of the blow-up rate can be given by

‖u‖L1 ≤
[
k6(p− 1)

]− 1
p−1 (t∗ − t)−

1
p−1 ,(4.7)

‖u‖H1 ≥
[
k7(p− 1)

]− 1
p−1 (t∗ − t)−

1
p−1 ,(4.8)

where k6 =
∫

Ω
a(x)dx|Ω|

p(1−r)
r , k7 =

(∫
Ω
a(x)2dx

) 1
2 Bp

2√
1+λ1

, φ2(0) =
∫

Ω
g(x)dx,

ϕ(0) = ‖g‖2H1 , and B2 is the optimal constant satisfying the Sobolev’s inequality
‖u‖r ≤ B2‖u‖H1 .

Model 4.5. We will consider a related model as follows:

ut −4u−4ut = a(x)

∫
Ω

updx− uq, x ∈ Ω, t > 0,(4.9)

u(x, 0) = g(x) ≥ 0, x ∈ Ω,(4.10)

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,(4.11)

where the parameters p, q satisfy p > q and 1 < p < +∞ if n ≤ 2, 1 < p < 2n
n−2

if n ≥ 3.

Due to the present of the weighted nonlocal source a(x)
∫

Ω
updx and ab-

sorbtion term −uq in (4.9), we cannot directly apply the results which were
obtained in the sections above. However, we can use the similar arguments
with slight modification to established the following estimates for blow-up time
and blow-up rate:

Theorem 4.6. Assume that the conditions (a1), (a2) hold, and u is a non-
negative solution of problem (4.9)-(4.11). Then, we conclude that the solutions
u blow up in finite time t = t∗. Moreover, the bounds for blow-up time t∗ are
given by ∫ +∞

ϕ(0)

dη

k9η
p+1
2 − k10η

q+1
2

≤ t∗ ≤
∫ +∞

φ2(0)

dη

k8ηp − C(ε)|Ω|
,
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and the estimates of the blow-up rate can be given by

‖u‖L1 ≤ Y −1
4 (t∗ − t),(4.12)

‖u‖H1 ≥
[
k9(p− 1)

]− 1
p−1 (t∗ − t)−

1
p−1 ,(4.13)

where k8 =
(∫

Ω
a(x)dx− ε

)
|Ω|−(p−1), k9 =

(∫
Ω
a(x)2dx

) 1
2 Bp

3√
1+λ1

, k10 = |Ω|−
q−1
2(

1
1+λ1

) q+1
2

, Y4(φ2(t)) =
∫ +∞
φ2(t)

dη
k8ηp−C(ε)|Ω| and B3 is the optimal constant sat-

isfying the Sobolev’s inequality ‖u‖p ≤ B3‖u‖H1 .

Remark 4.7. The estimates on the lower bound for blow-up time and blow-up
rate of Theorem 4.4 (or Theorem 4.6) can be applied to discuss Eq. (4.4) (or
Eq. (4.9)) subject to Dirichlet boundary condition u(x, t) = 0, x ∈ ∂Ω. We can
also obtain the inequality (4.8) (or inequality (4.13)).
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