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A PARABOLIC SYSTEM WITH NONLOCAL BOUNDARY

CONDITIONS AND NONLOCAL SOURCES

Wenjie Gao and Yuzhu Han

Abstract. In this work, the authors study the blow-up properties of so-
lutions to a parabolic system with nonlocal boundary conditions and non-
local sources. Conditions for the existence of global or blow-up solutions
are given. Global blow-up property and precise blow-up rate estimates
are also obtained.

1. Introduction

In this article, we consider the positive classical solutions to the following
porous medium system with nonlocal boundary conditions and nonlocal sources

(1.1)































ut = ∆um + a
∫

Ω
vpdx, x ∈ Ω, t > 0,

vt = ∆vn + b
∫

Ω u
qdx, x ∈ Ω, t > 0,

u(x, t) =
∫

Ω
k1(x, y)u(y, t)dy, x ∈ ∂Ω, t > 0,

v(x, t) =
∫

Ω k2(x, y)v(y, t)dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

where m, n > 1, a, b, p, q > 0 are constants and Ω is a bounded domain in
R

N (N ≥ 1), with smooth boundary ∂Ω. k1(x, y), k2(x, y) 6≡ 0 are nonnegative
continuous functions defined for x ∈ ∂Ω and y ∈ Ω, while u0(x), v0(x) are
positive continuous functions and satisfy the compatibility conditions u0(x) =
∫

Ω k1(x, y)u0(y)dy and v0(x) =
∫

Ω k2(x, y)v0(y)dy for x ∈ ∂Ω.
A vector valued function (u(x, t), v(x, t)) is called a classical solution to

Problem (1.1) if (u, v) ∈ [C1,2(Ω × (0, T )) ∩ C(Ω × [0, T ))]2 for some T, 0 <
T ≤ +∞ and satisfies (1.1). If T = +∞, (u, v) is called a global solution.

In the past few decades, many physical phenomena have been formulated
into nonlocal parabolic equations, see [14, 21]. It has also been suggested that
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nonlocal growth terms present more realistic model in physics for compressible
reactive gases; see [2].

There have been many articles which investigate the properties of solutions
to partial differential equations with local boundary conditions. However, there
are also some important phenomena formulated into parabolic equations cou-
pled with nonlocal boundary conditions in mathematical modelling such as
thermoelasticity theory (see [4, 7, 8]). In this case, the solution u(x, t) de-
scribes entropy per volume of material.

The parabolic problem with nonlocal boundary condition of the following
type

(1.2)











ut = ∆u+ g(x, u), x ∈ Ω, t > 0,

u(x, t) =
∫

Ω k(x, y)u(y, t)dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

was studied by Friedman [12]. He established the global existence of solu-
tion, and showed that the unique solution tends to 0 monotonically and ex-
ponentially as t → +∞ in the case of g(x, u) = c(x)u with c(x) ≤ 0 and
∫

Ω
|k(x, y)|dy < 1 for all x ∈ ∂Ω. In 1992, Deng [9] gave the comparison prin-

ciple and local existence of classical solution to (1.2) with general g(x, u). For
the case g(x, u) = c(x)u, he showed that the solution exists globally and may
increase at most exponentially with t under some weaker assumptions than
those in [13]. Blow-up results of Problem (1.2) are due to Seo [19]. He in-
vestigated Problem (1.2) with g(x, u) = g(u) and gave the blow-up condition
of the positive solutions by using supersolution and subsolution method. The
blow-up rate estimates for the special case g(u) = up and g(u) = eu were also
derived.

As for more general discussions on dynamics of parabolic problem with non-
local boundary conditions, we refer the reader to [16, 17] by Pao, where the
following problem

(1.3)











ut = Lu+ g(x, u), x ∈ Ω, t > 0,

Bu =
∫

Ω
k(x, y)u(y, t)dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω

with uniformly elliptic operator

L =

n
∑

i,j=1

aij(x)
∂2

∂xixj
+

n
∑

i=1

bi(x)
∂

∂xi
+ c(x)

and

Bu = α0
∂u

∂n
+ u

was studied. Later Pao gave the numerical solution to this problem in [18].
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Semilinear parabolic equations and systems with both nonlocal reaction
terms and nonlocal boundary conditions have also been studied. For exam-
ple, the scalar problem

(1.4)











ut −∆u =
∫

Ω g(u)dx, (x, t) ∈ Ω× (0, T ),

u(x, t) =
∫

Ω
ϕ(x, y)u(y, t)dy, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω

was studied by Lin and Liu [15], and parabolic system of the following type
(1.5)


















ut −∆u = um(x, t)
∫

Ω
vn(y, t)dy, (x, t) ∈ Ω× (0, T ),

vt −∆v = vq(x, t)
∫

Ω u
p(y, t)dy, (x, t) ∈ Ω× (0, T ),

u =
∫

Ω
ϕ(x, y)u(y, t)dy, v =

∫

Ω
ψ(x, y)v(y, t)dy, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω

was investigated by Zheng and Kong [26]. Local existence, global existence
and nonexistence of classical solutions were established and blow-up properties
were discussed in their work, respectively.

Recently, Cui and Yang [6] studied the following porous medium problem
with nonlocal boundary condition and nonlocal reaction term

(1.6)











ut = ∆um + auq
∫

Ω
up(y, t)dy, x ∈ Ω, t > 0,

u(x, t) =
∫

Ω k(x, y)u(y, t)dy, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where m > 1, a, p > 0, q ≥ 0 are constants and u0(x) and k(x, y) satisfy the
same assumptions as given in Problem (1.1). They proved that if p+q > 1 and
∫

Ω k(x, y)dy ≥ 1 for x ∈ ∂Ω, the solution to Problem (1.6) blows up in finite

time, while if
∫

Ω
k(x, y)dy < 1, there exist both global and blow-up solutions

to Problem (1.6) depending on the initial datum and the constants m, p and
q. Moreover, they obtained the blow-up rate estimates under some conditions.
For more related works, we refer the readers to [3, 20, 22, 24, 25] and references
therein.

The above studies show that the growth and decay properties of solution
to Problem (1.2)-(1.6) depend on the growth of g(x, u), which is similar to
general semilinear equation with homogeneous boundary condition. On the
other hand, due to the appearance of the nonlocal boundary, the properties of
solution heavily depend on the weight function k(x, y) as well.

The present work is partially motivated by [6, 15, 26]. It is known that the
problem

(1.7) ut = ∆um + aup

and the nonlocal one

(1.8) ut = ∆um + a

∫

Ω

up(y, t)dy
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with homogeneous Dirichlet boundary condition share the same blow-up cri-
teria and blow-up rate. But there do exist some essential differences from the
two problems. For example, the blow-up set of Problem (1.7) consists of a
single point under some conditions for initial datum (such as symmetry and
monotonicity of u0(x)), while Problem (1.8) has global blow-up property (see
[21]). The main purpose of this paper is to study the blow-up properties of
Problem (1.1). Moreover, since the reaction terms are nonlocal, we obtain that
the blow-up set is the whole domain whenever blow-up occurs.

This paper is organized as follows. Section 2 establishes the comparison
principle for Problem (1.1) and Section 3 is devoted to the global existence and
blow-up results of classical solutions. In Section 4, we give the blow-up rate
estimates.

2. Comparison principle

In this section, we establish the comparison principle for Problem (1.1). Let
QT = Ω × (0, T ) and ΓT = ∂Ω × (0, T ) ∪ Ω × {t = 0}. We begin with the
definition of subsolutions and supersolutions to Problem (1.1).

Definition 2.1. A vector valued function (u(x, t), v(x, t)) is called a subsolu-
tion to Problem (1.1) in QT , if (u, v) ∈ [C2,1(QT ) ∩C(QT ∪ ΓT )]

2 satisfies

(2.1)































ut ≤ ∆um + a
∫

Ω
vpdx, (x, t) ∈ QT ,

vt ≤ ∆vn + b
∫

Ω u
qdx, (x, t) ∈ QT ,

u(x, t) ≤
∫

Ω
k1(x, y)u(y, t)dy, (x, t) ∈ ∂Ω× (0, T ),

v(x, t) ≤
∫

Ω k2(x, y)v(y, t)dy, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) ≤ u0(x), v(x, 0) ≤ v0(x), x ∈ Ω.

A supersolution is defined in a similar way with each inequality reversed.

Theorem 2.1. Let (u, v) and (u, v) be a nonnegative subsolution and a su-

persolution to (1.1), respectively, with (u(x, 0), v(x, 0)) ≤ (u(x, 0), v(x, 0)) for

x ∈ Ω. Then (u, v) ≤ (u, v) in QT if either (u, v) ≥ (ǫ, ǫ) > (0, 0) or

(u, v) ≥ (ǫ, ǫ) > (0, 0) holds.

Proof. The technique for proving the comparison principle is quite standard.
For example, see [1]. We shall sketch the argument for the convenience of the
readers.

Let ϕi(x, t) ∈ C2,1(QT ) (i = 1, 2) be nonnegative functions with ϕi |∂Ω×(0,T )

= 0. Multiplying the first inequality in (2.1) by ϕ1(x, t) and then integrating
on Qt for 0 < t < T , we get

∫

Ω

uϕ1dx

≤

∫

Ω

u(x, 0)ϕ1(x, 0)dx+

∫∫

Qt

(uϕ1τ + um∆ϕ1 + aϕ1

∫

Ω

vpdx)dxdτ
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−

∫ t

0

∫

∂Ω

∂ϕ1

∂n
(

∫

Ω

k1(x, y)u(y, τ)dy)
mdSdτ,

where n is the unit outward normal vector on ∂Ω. On the other hand, the
supersolution u satisfies the reversed inequality

∫

Ω

uϕ1dx

≥

∫

Ω

u(x, 0)ϕ1(x, 0)dx+

∫∫

Qt

(uϕ1τ + um∆ϕ1 + aϕ1

∫

Ω

vpdx)dxdτ

−

∫ t

0

∫

∂Ω

∂ϕ1

∂n
(

∫

Ω

k1(x, y)u(y, τ)dy)
mdSdτ.

Set w(x, t) = u(x, t)− u(x, t), z(x, t) = v(x, t) − v(x, t), we have
∫

Ω

w(x, t)ϕ1(x, t)dx −

∫

Ω

w(x, 0)ϕ1(x, 0)dx

≤

∫∫

Qt

(ϕ1τ +Φ1(x, τ)∆ϕ1)wdxdτ +

∫∫

Qt

ϕ1(

∫

Ω

Φ2(x, τ)z(x, τ)dx)dxdτ

−

∫ t

0

∫

∂Ω

∂ϕ1

∂n
mξm−1(

∫

Ω

k1(x, y)w(y, τ)dy)dSdτ,

where

Φ1(x, τ) =

∫ 1

0

m(θu(x, τ) + (1− θ)u(x, τ))m−1dθ,

Φ2(x, τ) = a

∫ 1

0

p(θv(x, τ) + (1 − θ)v(x, τ))p−1dθ,

and ξ is a function between
∫

Ω
k1(x, y)u(y, τ)dy and

∫

Ω
k1(x, y)u(y, τ)dy. Notic-

ing that (u, v) and (u, v) are bounded functions, it follows from m > 1, p ≥ 1
that Φ1, Φ2 are bounded nonnegative functions. Now if 0 < p < 1, we have
Φ2 ≤ aǫp−1 by using the assumption that v ≥ ǫ or v ≥ ǫ. Thus an appropriate
ϕ1(x, t) may be chosen exactly as in [1, pp. 118–123] to obtain

∫

Ω

w+dx

≤ C1

∫

Ω

w(x, 0)+dx+ C2

∫∫

Qt

w(x, τ)+dxdτ+ C3

∫∫

Qt

z(x, τ)+dxdτ

≤ C2

∫∫

Qt

w(x, τ)+dxdτ + C3

∫∫

Qt

z(x, τ)+dxdτ,

where w+ = max{w, 0} and Ci > 0. Similarly, we can prove
∫

Ω

z+dx ≤ C4

∫∫

Qt

w(x, τ)+dxdτ + C5

∫∫

Qt

z(x, τ)+dxdτ.

Now, the above two inequalities combined with Gronwall’s inequality show that
(w, z) ≤ (0, 0). This completes the proof. �
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Remark 2.1. From the above proof, it is easy to see that the comparison prin-
ciple still holds without the assumption (u, v) or (u, v) ≥ (ǫ, ǫ) in the case of
p, q ≥ 1.

To obtain the blow-up rate estimates, we need the following positivity lemma,
whose proof is much the same as that of [9].

Lemma 2.1. Suppose that w(x, t), z(x, t) ∈ C(QT ∪ ΓT ) ∩ C
2,1(QT ) satisfy



















wt − d1(x, t)∆w ≥ c1(x, t)w(x, t) + c2(x, t)
∫

Ω c7(x, t)z(x, t)dx, (x, t) ∈ QT ,

zt − d2(x, t)∆z ≥ c3(x, t)z(x, t) + c4(x, t)
∫

Ω
c8(x, t)w(x, t)dx, (x, t) ∈ QT ,

w(x, t) ≥
∫

Ω c5(x, y)w(y, t)dy, (x, t) ∈ ∂Ω× (0, T ),

z(x, t) ≥
∫

Ω
c6(x, y)z(y, t)dy, (x, t) ∈ ∂Ω× (0, T ),

where di(x, t) > 0 (i = 1, 2) in QT , ci (i = 1, . . . , 8) are bounded functions

in their respective domains, c2, c4, c7, c8 ≥ 0 in QT , c5(x, y), c6(x, y) ≥ 0 for

x ∈ ∂Ω, y ∈ Ω and are not identically zero. Then (w(x, 0), z(x, 0)) > (0, 0) for
x ∈ Ω implies (w(x, t), z(x, t)) > (0, 0) in QT . Moreover, if c5(x, y), c6(x, y) ≡
0 or if c5(x, y), c6(x, y) ≥ 0 and

∫

Ω
c5(x, y)dy ≤ 1,

∫

Ω
c6(x, y)dy ≤ 1 x ∈ ∂Ω,

then (w(x, 0), z(x, 0)) ≥ (0, 0) implies (w(x, t), z(z, t)) ≥ (0, 0) in QT .

Local (in time) existence of positive classical solutions to Problem (1.1) can
be obtained by using fixed point theorem (see [9, 24]). By the above comparison
principle and Remark 2.1, we can get the uniqueness of classical solution to
Problem (1.1) in the case of p, q ≥ 1.

3. Global existence and blow-up

Compared with the homogeneous Dirichlet boundary conditions, the weight
functions ki(x, y) (i = 1, 2) play important roles in the global existence or
blow-up results for Problem (1.1).

Theorem 3.1. Assume that
∫

Ω k1(x, y)dy,
∫

Ω k2(x, y)dy ≥ 1 for all x ∈ ∂Ω.
Then every solution to (1.1) blows up in finite time if pq > 1.

Proof. Let (f, g) be the unique solution to the following ODE

(3.1)

{

f ′(t) = a|Ω|gp, g′(t) = b|Ω|f q,

f(0) = f0 > 0, g(0) = g0 > 0,

where |Ω| denotes the Lebesgue measure of Ω. It can be seen from [23] that for
any positive initial datum (f0, g0), (f, g) exists globally if and only if pq ≤ 1. If
we choose (f0, g0) ≤ (u0, v0), then it is easy to see that (f, g) is a subsolution
to (1.1) since

∫

Ω k1(x, y)dy,
∫

Ω k2(x, y)dy ≥ 1 for all x ∈ ∂Ω. Noticing that
(f, g) ≥ (f0, g0) > (0, 0), by using the comparison principle, we know that
(f, g) ≤ (u, v). Since (f, g) blows up in finite time when pq > 1, so does (u, v).
The proof is complete. �

Theorem 3.2. Assume that
∫

Ω k1(x, y)dy =
∫

Ω k2(x, y)dy = 1 for all x ∈ ∂Ω.
Then (u, v) exists globally provided that pq ≤ 1.
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Proof. It is easy to verify that the solution to (3.1) is a supersolution to (1.1)
if (f0, g0) is chosen to satisfy (f0, g0) ≥ (u0, v0). Since (f, g) ≥ (f0, g0) > (0, 0),
the comparison principle implies that (f, g) ≥ (u, v). Thus (u, v) exists globally
if pq ≤ 1. The proof is complete. �

Theorem 3.3. Assume that
∫

Ω k1(x, y)dy,
∫

Ω k2(x, y)dy < 1 for all x ∈ ∂Ω.
(i) If pq < mn, then every solution to (1.1) exists globally.

(ii) If pq = mn, then every solution to (1.1) exists globally if (a, b) is suffi-

ciently small.

(iii) If p, q > 1 with pq > mn, then the unique solution to (1.1) exists globally
provided that (u0, v0) or (a, b) is small, while it blows up in finite time if (u0, v0)
is large enough.

Proof. Let ψ(x) be the unique positive classical solution to the linear elliptic
problem

(3.2)

{

−∆ψ = ǫ0, x ∈ Ω,

ψ(x) = k(x), x ∈ ∂Ω,

where k(x) satisfying max{
∫

Ω
k1(x, y)dy,

∫

Ω
k2(x, y)dy} ≤ k(x) < 1 is a smooth

function. Choose a positive constant ǫ0 such that 0 < ψ(x) < 1 for all x ∈ Ω
(such ǫ0 exists since 0 < k(x) < 1). Let K = maxx∈Ω ψ(x), K = minx∈Ω ψ(x).

Define a vector valued function (w(x), z(x)) as follows:

(3.3) w(x) =M l1ψ
1
m (x), z(x) =M l2ψ

1
n (x),

where M, l1, l2 are positive constants to be determined later. Then, we have

w |∂Ω ≥M l1(

∫

Ω

k1(x, y)dy)
1
m ≥M l1

∫

Ω

k1(x, y)dy

≥M l1

∫

Ω

k1(x, y)ψ
1
m (y)dy =

∫

Ω

k1(x, y)w(y)dy,

z |∂Ω ≥M l2(

∫

Ω

k2(x, y)dy)
1
n ≥M l2

∫

Ω

k2(x, y)dy

≥M l2

∫

Ω

k2(x, y)ψ
1
n (y)dy =

∫

Ω

k2(x, y)z(y)dy.(3.4)

Here we use the assumptions
∫

Ω ki(x, y)dy < 1 for all x ∈ ∂Ω and 0 < ψ(x) < 1.
On the other hand, we have

wt −∆wm − a

∫

Ω

zpdx =Mml1ǫ0 − aMpl2

∫

Ω

ψ
p
n dx

≥Mml1ǫ0 − a|Ω|Mpl2K
p

n ,

zt −∆zn − b

∫

Ω

wqdx =Mnl2ǫ0 − bM ql1

∫

Ω

ψ
q

m dx

≥Mnl2ǫ0 − b|Ω|M ql1K
q

m .(3.5)
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(i) In the case of pq < mn, we can choose l1, l2 > 0 such that m
p > l2

l1
> q

n .

Combining (3.4) with (3.5), we know that if we take

M = max{(a|Ω|K
p

n ǫ−1
0 )

1
ml1−pl2 , (b|Ω|K

q

m ǫ−1
0 )

1
nl2−ql1 ,

(K−
1
m max

Ω
u0(x))

1/l1 , (K−
1
n max

Ω
v0(x))

1/l2},

then (w, z) defined as in (3.3) is a supersolution to Problem (1.1) and (w, z) ≥

(M l1K
1
m ,M l2K

1
n ). The comparison principle guarantees that (u, v) ≤ (w, z),

and hence (u, v) exists globally.
(ii) In the case of pq = mn, we can choose l1, l2 > 0 such that m

p =
l2
l1

= q
n . Then for any given (u0, v0), we first choose M > 0 suitable large

such that (u0, v0) ≤ (M l1ψ
1
m (x),M l2ψ

1
n (x)). Set a0 = ǫ0|Ω|

−1K
−

p

n , b0 =

ǫ0|Ω|
−1K

−
q

m , then it is easy to verify that (w, z) is a supersolution to Problem
(1.1) provided a ≤ a0, b ≤ b0. Thus we know that (u, v) exists globally by
using the comparison principle again.

(iii) In the case of pq > mn, there exist both global and blow-up solutions
depending on the initial data (u0, v0) and the coefficients (a, b). For the global
existence part, the proof is similar to that of (i) and (ii). First, choose l1, l2 > 0
such that m

p < l2
l1
< q

n . For any given a, b > 0, if we take

M = min{(ǫ0a
−1|Ω|−1K

−
p
n )

1
pl2−ml1 , (ǫ0b

−1|Ω|−1K
−

q
m )

1
ql1−nl2 },

then (w, z) is a supersolution to (1.1) provided that

(3.6) (u0, v0) ≤ (M l1ψ
1
m (x), M l2ψ

1
n (x)).

By the comparison principle, we know that (u, v) exists globally provided that
(u0, v0) satisfies (3.6).

On the other hand, for any given initial datum (u0, v0), there exists a suitable

large constant M > 0 such that (u0, v0) ≤ (M l1ψ
1
m (x),M l2ψ

1
n (x)). For such

a fixed M , set a0 = ǫ0|Ω|
−1K

−
p
nMml1−pl2 , b0 = ǫ0|Ω|

−1K
−

q
mMnl2−ql1 . Then

we know that (w, z) is a supersolution to (1.1) if (a, b) ≤ (a0, b0). Again by
using the comparison principle, we obtain the global existence of (u, v).

To prove the blow-up result, we consider the following porous medium prob-
lem



















ut = ∆um + a
∫

Ω
vpdx, x ∈ Ω, t > 0,

vt = ∆vn + b
∫

Ω u
qdx, x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≤ u0(x), v(x, 0) = v0(x) ≤ v0(x), x ∈ Ω.

(3.7)

Let (u, v) be the unique solution to Problem (3.7). It is obvious that (u, v) is
a subsolution to Problem (1.1). It can be seen from [11] that (u, v) blows up
in finite time if (u0(x), v0(x)) is large enough. Thus, the unique solution to



A PARABOLIC SYSTEM 637

(1.1) blows up in finite time if (u0, v0) is large enough by using the comparison
principle. The proof is complete. �

At the end of this section, we shall point out that the blow-up is global
whenever blow-up occurs.

Definition 3.1. Suppose that (u, v) blows up in a finite time T . We say that
x∗ is a blow-up point of (u, v) if lim supt→T−(u(x∗, t) + v(x∗, t)) = +∞.

We say that the blow-up is global if every point in Ω is a blow-up point. To
prove the global blow-up property, we need the following lemma first.

Lemma 3.1. Assume that the solution (u, v) to Problem (1.1) blows up in a

finite time T . Let

h1(t) = a

∫

Ω

vpdx, H1(t) =

∫ t

0

h1(s)ds,

h2(t) = b

∫

Ω

uqdx, H2(t) =

∫ t

0

h2(s)ds.

Then we have

lim sup
t→T−

hi(t) = +∞, lim
t→T−

Hi(t) = +∞, i = 1, 2.

Proof. Let U(t) = maxx∈Ω u(x, t), V (t) = maxx∈Ω v(x, t). Then U(t) and V (t)
are Lipschitz continuous and satisfy (see [13], Theorem 4.5)

(3.8) U ′(t) ≤ h1(t), V ′(t) ≤ h2(t) a.e. t ∈ (0, T ).

Integrating the inequalities in (3.8) over (0, t), we get

(3.9) U(t) ≤ U(0) +H1(t), V (t) ≤ V (0) +H2(t), t ∈ (0, T ).

Since (u, v) blows up in a finite time T , it can be deduced that

U(t) → +∞ or V (t) → +∞ as t→ T−.

Without loss of generality, we may assume that U(t) → +∞ as t→ T−. Then
we see from the first inequality in (3.9) that limt→T− H1(t) = +∞, which in
turn implies lim supt→T− h1(t) = +∞. By the definition of h1(t), we have
lim supt→T− V (t) = +∞. Applying the second inequality in (3.9), we obtain
limt→T− H2(t) = +∞ and lim supt→T− h2(t) = +∞. The proof is complete.

�

Theorem 3.4. If the solution (u, v) to (1.1) blows up in a finite time T , then
(u, v) blows up globally.

Proof. The method used in our paper to prove the global blow-up property
is similar to that of [5]. For any given x1 ∈ Ω, set R1 = dist(x1, ∂Ω), Ω1 =
{x; |x−x1| < R1} and r = |x−x1|. Choose two functions w0(r) and z0(r) such
that

w0(r), z0(r) > 0 for 0 ≤ r < R1, w0(R1) = z0(R1) = 0,
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w0(r) ≤ u0(x), z0(r) ≤ v0(x), w′

0(r), z
′

0(r) ≤ 0 for 0 ≤ r ≤ R1.

Consider the following problem

(3.10)



















wt = ∆wm + h1(t), x ∈ Ω1, t > 0,

zt = ∆zn + h2(t), x ∈ Ω1, t > 0,

w(x, t) = z(x, t) = 0, x ∈ ∂Ω1, t > 0,

w(x, 0) = w0(r), z(x, 0) = z0(r), x ∈ Ω1.

Then by a similar method used in [13] one sees that w(x, t) = w(r, t), z(x, t) =
z(r, t) and wr(r, t), zr(r, t) ≤ 0 for 0 ≤ r ≤ R1 and t ≥ 0. By the classical
comparison principle for porous medium system, we know that

(3.11) w(x, t) ≤ u(x, t), z(x, t) ≤ v(x, t), x ∈ Ω1, 0 ≤ t < T.

Denote by λ1 > 0 and φ(x) > 0 (x ∈ Ω1) the first eigenvalue and the corre-
sponding eigenfunction of the eigenvalue problem

−∆φ = λφ, x ∈ Ω1, φ(x) = 0, x ∈ ∂Ω1.

Normalizing:
∫

Ω1
φ(x)dx = 1.

Multiplying both sides of the first equation in (3.10) by φ(x) and integrating

the resulting equality over Q1t , Ω1 × (0, t), we get
∫

Ω1

w(x, t)φ(x)dx =

∫

Ω1

w0(x)φ(x)dx − λ1

∫∫

Q1t

wmφdxds +H1(t)

−

∫ t

0

∫

∂Ω1

wm ∂φ

∂ν
dσds

=

∫

Ω1

w0(x)φ(x)dx − λ1

∫∫

Q1t

wmφdxds +H1(t).(3.12)

From (3.12) and the fact that wr ≤ 0, one obtains

(3.13) w(x1, t) ≥

∫

Ω1

w0(x)φ(x)dx − λ1

∫∫

Q1t

wmφdxds +H1(t).

Letting t → T− and applying Lemma 3.1 we know that if
∫ T

0

∫

Ω1
wmφdxds <

+∞, then

lim sup
t→T−

w(x1, t) = +∞.

It is obvious that if
∫ T

0

∫

Ω1
wmφdxds = +∞, then lim supt→T− w(x1, t) = +∞.

Using (3.11) and the arbitrariness of x1, we see that u(x, t) blows up globally.
Applying similar arguments to the second equation in (3.10), we can deduce
that v(x, t) also blows up globally. Thus we complete the proof. �

Remark 3.1. From Theorem 3.4, we know that the blow-up set of porous
medium system with nonlocal boundary conditions is the same as that of the
homogeneous Dirichlet boundary conditions when the sources are nonlocal.
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4. Blow-up rate estimates

In this section, we will show the blow-up rate of the solution to Problem
(1.1) in the case of p, q > 1 and

∫

Ω ki(x, y)dy ≤ 1 (i = 1, 2) for x ∈ ∂Ω. To
achieve this, we need an additional assumption on the initial datum (u0, v0):

(H) u0, v0 ∈ C2+α(Ω) for some 0 < α < 1 and there exists a constant
δ > δ0 > 0 such that

∆um0 + a

∫

Ω

vp0dx ≥ δumk1+1
0 , ∆vn0 + b

∫

Ω

uq0dx ≥ δvnk2+1
0 ,

where δ0, k1, k2 will be given later. The main result of this section is the
following theorem on the blow-up rate.

Theorem 4.1. Suppose that (u0, v0) satisfies the assumption (H), p, q > 1 and
∫

Ω ki(x, y)dy ≤ 1 (i = 1, 2). If (u, v) is the classical solution to (1.1) and blows

up in a finite time T , then there exist four positive constants C1, C2, C3, C4

such that

C1 ≤ max
x∈Ω

u(x, t)(T − t)
p+1
pq−1 ≤ C2,

C3 ≤ max
x∈Ω

v(x, t)(T − t)
q+1
pq−1 ≤ C4.

In order to get the blow-up rate estimates, we firstly introduce some trans-
formations. Let um = U(x, t), vn = V (x, t). Then (1.1) becomes

(4.1)































Ut = mU r1(∆U + a
∫

Ω
V p1dx), x ∈ Ω, t > 0,

Vt = nV r2(∆V + b
∫

Ω U
q1dx), x ∈ Ω, t > 0,

U(x, t) = (
∫

Ω
k1(x, y)U

1
m (y, t)dy)m, x ∈ ∂Ω, t > 0,

V (x, t) = (
∫

Ω k2(x, y)V
1
n (y, t)dy)n, x ∈ ∂Ω, t > 0,

U(x, 0) = U0(x) = um0 (x), V (x, 0) = V0(x) = vn0 (x), x ∈ Ω,

where 0 < r1 = (m − 1)/m < 1, 0 < r2 = (n − 1)/n < 1, p1 = p/n and
q1 = q/m.

Under these transformations, the assumption (H) becomes
(H′) U0, V0 ∈ C2+α(Ω) for some 0 < α < 1 and there exists a constant

δ > δ0 > 0 such that

(4.2) ∆U0 + a

∫

Ω

V p1

0 dx ≥ δUk1+1−r1
0 , ∆V0 + b

∫

Ω

U q1
0 dx ≥ δV k2+1−r2

0 ,

where δ0, k1, k2 will be determined later.
Suppose that the solution to (4.1) blows up in a finite time T , and set

M1(t) = maxx∈ΩU(x, t), M2(t) = maxx∈Ω V (x, t), then we can get the blow-
up rate from the following lemmas.
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Lemma 4.1. Suppose that U0, V0 satisfy (H′). Then there exists a positive

constant K1 such that

(4.3) M q1−r1+1
1 (t) +Mp1−r2+1

2 (t) ≥ K1(T − t)
−

(q1−r1+1)(p1−r2+1)

p1q1−(1−r1)(1−r2) .

Proof. We can easily see that M1(t), M2(t) are Lipschitz continuous (see [13],
Theorem 4.5) and thus they are differentiable almost everywhere.

By the equations in (4.1) and ∆M1(t) ≤ 0, ∆M2(t) ≤ 0, we have
(4.4)
M ′

1(t) ≤ ma|Ω|M r1
1 (t)Mp1

2 (t), M ′

2(t) ≤ nb|Ω|M q1
1 (t)M r2

2 (t) a.e. t ∈ (0, T ).

Noticing that q1−r1+1 > 0 and p1−r2+1 > 0, we get the following inequalities
by virtue of Young’s inequality

(M q1−r1+1
1 (t) +Mp1−r2+1

2 (t))′

≤ (ma|Ω|(q1 − r1 + 1) + nb|Ω|(p1 − r2 + 1))M q1
1 Mp1

2

≤ C(M q1−r1+1
1 (t) +Mp1−r2+1

2 (t))
(q1−r1+1)p1+(p1−r2+1)q1

(q1−r1+1)(p1−r2+1) .(4.5)

Here (q1−r1+1)p1+(p1−r2+1)q1
(q1−r1+1)(p1−r2+1) > 1, since p, q > 1. Integrating (4.5) over (t, T ),

we obtain (4.3). �

Lemma 4.2. Suppose that U0, V0 satisfy (H′). Then we have

(4.6) Ut ≥ δ0U
k1+1, Vt ≥ δ0V

k2+1, (x, t) ∈ QT ,

where

k1 =
p1q1 − (1− r1)(1 − r2)

p1 + 1− r2
, k2 =

p1q1 − (1− r1)(1 − r2)

q1 + 1− r1
,

δ > δ0 = max{δ1, δ2} > 0,

δ1 =
mak1(k1 + 1)|Ω|

r1(2k1 + 1− r1)
(
k1 + 1

p1 + k2
)

p1
k2 ,

δ2 =
nbk2(k2 + 1)|Ω|

r2(2k2 + 1− r2)
(
k2 + 1

q1 + k1
)

q1
k1 .

Proof. Set J1(x, t) = Ut − δ0U
k1+1, J2(x, t) = Vt − δ0V

k2+1 for (x, t) ∈ QT ,
then by assumption (H′), we have

(4.7) J1(x, 0) > 0, J2(x, 0) > 0, x ∈ Ω.

A straightforward computation yields

J1t −mU r1∆J1 − 2r1δ0U
k1J1 −map1U

r1

∫

Ω

V p1−1J2dx

(4.8)

= r1U
−1J2 +mδ0k1(k1 + 1)U r1+k1−1|∇U |2 + r1δ

2
0U

2k1+1

+map1δ0U
r1

∫

Ω

V p1+k2dx−maδ0(1 + k1)U
k1+r1

∫

Ω

V p1dx
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≥ r1δ
2
0U

2k1+1 +map1δ0U
r1

∫

Ω

V p1+k2dx−maδ0(1 + k1)U
k1+r1

∫

Ω

V p1dx

≥ r1δ
2
0U

2k1+1 +map1δ0U
r1

∫

Ω

V p1+k2dx

−maδ0(1 + k1)|Ω|
k2/(p1+k2)Uk1+r1

(
∫

Ω

V p1+k2dx

)p1/(p1+k2)

.

Since k1/(2k1 + 1− r1) + p1/(p1 + k2) = 1, by virtue of Young’s inequality, we
have

Uk1

(
∫

Ω

V p1+k2dx

)p1/(p1+k2)

≤
k1θ

2k1+1−r1
k1

2k1 + 1− r1
U2k1+1−r1 +

p1θ
−

p1+k2
p1

p1 + k2

∫

Ω

V p1+k2dx,(4.9)

where

(4.10) θ = ((k1 + 1)/(p1 + k2))
p1/(p1+k2)|Ω|p1k2/(p1+k2)

2

.

Substituting (4.9) and (4.10) into (4.8) deduces

J1t −mU r1∆J1 − 2r1δ0U
k1J1 −map1U

r1

∫

Ω

V p1−1J2dx

≥ r1δ
2
0U

2k1+1 +map1δ0U
r1

∫

Ω

V p1+k2dx(4.11)

−
maδ0k1(k1 + 1)

2k1 + 1− r1
|Ω|k2/(p1+k2)θ

2k1+1−r1
k1 U2k1+1

−
maδ0p1(k1 + 1)

p1 + k2
|Ω|k2/(p1+k2)θ

−
p1+k2

p1 U r1

∫

Ω

V p1+k2dx

= r1δ0(δ0 − δ1)U
2k1+1

≥ 0.

Similarly, we have

(4.12) J2t − nV r2∆J2 − 2r2δ0V
k2J2 − nbq1V

r2

∫

Ω

U q1−1J1dx ≥ 0.

Fix (x, t) ∈ ∂Ω× (0, T ), we have

J1(x, t) =

(
∫

Ω

k1(x, y)u(y, t)dy

)m−1

×

(

∫

Ω

mk1(x, y)ut(y, t)dy − δ0

(
∫

Ω

k1(x, y)u(y, t)dy

)mk1+1
)

.

Since Ut(y, t) = J1(y, t) + δ0U
k1+1(y, t), we have

∫

Ω

mk1(x, y)ut(y, t)dy − δ0

(
∫

Ω

k1(x, y)u(y, t)dy

)mk1+1
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= δ0

(

∫

Ω

k1(x, y)U
1+mk1

m (y, t)dy −

(
∫

Ω

k1(x, y)U
1
m (y, t)dy

)mk1+1
)

+

∫

Ω

k1(x, y)U
1−m
m (y, t)J1(y, t)dy.

Noticing that 0 < F1(x) =
∫

Ω
k1(x, y)dy ≤ 1, x ∈ ∂Ω, we can apply Jensen’s

inequality to get
∫

Ω

k1(x, y)U
1+mk1

m (y, t)dy −

(
∫

Ω

k1(x, y)U
1
m (y, t)dy

)mk1+1

≥ F1(x)

(
∫

Ω

k1(x, y)U
1
m (y, t)

dy

F1(x)

)mk1+1

−

(
∫

Ω

k1(x, y)U
1
m (y, t)dy

)mk1+1

≥ 0.

Hence, for (x, t) ∈ ∂Ω× (0, T ), we have
(4.13)

J1(x, t) ≥

(
∫

Ω

k1(x, y)U
1
m (y, t)dy

)m−1(∫

Ω

k1(x, y)U
1−m
m (y, t)J1(y, t)dy

)

.

Similarly, we have
(4.14)

J2(x, t) ≥

(
∫

Ω

k2(x, y)V
1
n (y, t)dy

)n−1(∫

Ω

k2(x, y)V
1−n
n (y, t)J2(y, t)dy

)

.

Since U(x, t), V (x, t) are positive continuous functions for (x, t) ∈ Ω× [0, T ), it
follows from (4.7), (4.11)-(4.14) and Lemma 2.1 that J1(x, t), J2(x, t) ≥ 0 for
(x, t) ∈ Ω×[0, T ), i.e., Ut ≥ δ0U

k1+1, Vt ≥ δ0V
k2+1. The proof is complete. �

Integrating (4.6) over (t, T ), we conclude that

U(x, t) ≤ K3(T − t)−(p1+1−r2)/(p1q1−(1−r1)(1−r2)),

V (x, t) ≤ K4(T − t)−(q1+1−r1)/(p1q1−(1−r1)(1−r2)),(4.15)

where K3, K4 are positive constants independent of t. Combining (4.3) with
(4.15), we obtain the following result.

Lemma 4.3. Suppose that U0, V0 satisfy (H′). If (U, V ) is the solution to

system (4.1) and blows up in a finite time T , then there exist four positive

constants K3, K4, K5, K6 such that

K5 ≤ max
x∈Ω

U(x, t)(T − t)
p1+1−r2

p1q1−(1−r1)(1−r2) ≤ K3,

K6 ≤ max
x∈Ω

V (x, t)(T − t)
q1+1−r1

p1q1−(1−r1)(1−r2) ≤ K4.

According the transformations and Lemma 4.3, we obtain Theorem 4.1.
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Remark 4.1. From Theorem 4.1, we know that in the case of
∫

Ω ki(x, y)dy ≤ 1,
x ∈ ∂Ω, p > 1 and q > 1, the blow-up rate of porous medium system with
nonlocal boundary conditions is the same as that of porous medium system
with homogeneous Dirichlet boundary conditions when the reaction terms are
nonlocal.
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