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BLOW UP OF SOLUTIONS TO A SEMILINEAR PARABOLIC
SYSTEM WITH NONLOCAL SOURCE AND NONLOCAL
BOUNDARY

CONGMING PENG AND ZUODONG YANG*

ABSTRACT. In this paper we investigate the blow up properties of the
positive solutions to a semilinear parabolic system with coupled nonlocal
sources ur = Au-tk fQ u®(y, )P (y, t)dy, ve = Avtke fQ uwl(y, )P (y, t)dy
with nonlocal Dirichlet boundary conditions. We establish the conditions
for global and non-global solutions respectively and obtain its blow up set..
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1. Introduction

In this paper, we consider the following semilinear parabolic system with
nonlinear nonlocal sources subject to nonlocal Dirichlet boundary conditions

ug = Au+ k1 Jo u®(y, t)oP(y, t)dy, (z,t) € Q x (0,T),

vy = Av + ky [ ul(y, )0 (y, t)dy, (z,t) € Q x (0,T),

u(e,) = [ f@ oyl dy, (@0 conx(0.1), (1
oo t) = gyl Ody,  (5.f) € 60 x (0.1),

u(x,0) = up(z), v(z,0) = vo(x), €,

where ki, ko are positive constants, and Q C R™ is a bounded domain with
smooth boundary 9. The two equations in (1.1) are completely coupled via
the nonlocal nonlinear sources with positive constants «, 3, p, ¢, while the func-
tions f(x,y), g(z,y) in the boundary conditions are continuous, nonnegative on
90 xQ, and [, f(z,y)dy, Jo 9(2,y)dy > 0 on 99. The initial data ug(x), vo(z) €
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C?**t(Q) with 0 < v < 1, ug, vy > 0,%# 0, and satisfy the compatibility condi-
tions.

The global solutions and blow-up problems for the single parabolic equation
with nonlocal nonlinearities had been studied extensively, see [9-14][16],[17],[22-
25] and the references therein. The local existence of classical solution of problem
(1.1) can be obtained by a simple modification of arguments given in [12], and
the uniqueness results can be obtained by similar arguments as [2]. Particularly,
in the paper [25], the authors established the critical Fujita exponent for the
Cauchy problem

ut:Aum+(fRNK(y)uq(y,t)dy) Tt Lze RN t>0,
u(z,0) = uo(x), x € RN,

where parameters m,p > 1,q > 0,7 > 0, the initial data ug(x) is a bounded
nonnegative function, and the kernel function K is nonnegative and measurable.
In the paper [7], Li, Huang and Xie studied the following problem

ug = Au+ [, u™(z, t)o"(x, t)de, (x,t) € Q2 x (0,T),
vy = Av+ [, uP(z, )z, t)dz, (2,t) € Qx(0,T),
u(z,t) = v(z,t) =0, (z,t) € 00 x (0,17,
u(z,0) = up(x), v(z,0) = vo(z), =z €,

and they get the following result.

Theorem A. The system (1.1) with null Dirichlet boundary conditions admits
a unique global solution for any nonnegative initial data ug,vo > 0,# 0, if

a<l,p<l,and pg<(1—a)(l—p0).

There have been many articles which deal with properties of solutions to
partial differential equations with local boundary conditions(see [4],[5],[6],[8],[15]
and [18] ). However, there are some important phenomena formulated into
parabolic equations which are coupled with nonlocal boundary conditions in
mathematical modelling such as thermoelasticity theory (see [1],{2],|3],[20] and
[21] ). In this case, the solution (u(z,t),v(z,t)) describes entropy per volume of
the material.

The problem of nonlocal boundary conditions for linear scalar parabolic equa-
tions of the form

uy — A(u) = 0, (z,t) € 2 x(0,T),
)= Jo (@ y)u(y,t)dy, (z,t) €2 x (0,T), (1.2)
u(z,0) = up(z), z€Q,

with uniform elliptic

n n )
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and ¢(z) < 0 was studied by Friedman [4]. 1t was proved that the unique solution
of {1.2) tends to 0 monotonically and exponentially as ¢t — +oo provided

/ lo(z, Yldy <p <1, x €.
JQ

In {2], Deng obtained the uniqueness and existence of local solutions to the
semilinear scalar parabolic equations subject to nonlocal boundary conditions

up - Au = gla, u), (z,t) € 2 x (0,1),
t) = Jo (@, y)uly, t)dy, (z,t) € 02 x (0,T), (1.3)
u(z,0) = up(x). x € £,

In addition, the exponential decay for the global solutions of (1.3) was proved
under the assumption

/Q (z,y)dy < |Q| x € o,

As for more general discussions on the dynamics of parabolic problem with
nonlocal boundary conditions, one can see, e.g. [5] by Pao, where the following
problem

up — L(u) = f(:r u), (z,t) € Q% (0,T),
Bu(z,t) = [, K(z,p)u(y, t)dy, (z,t) € 90 x (0,T), (1.4)
u(z,0) = ’“0(90) z €,

was considered with

n n y
ou
Lu = 421 @5 (l)uz,m, + Z b; (Jj)uzn By = CYOB; + .
ui=

The scalar problems with both nonlocal sources and nonlocal boundary condi-
tions have been studied as well. For example, the problem of the form

Au—fgg dy7 (x,t}'GQX (O,T),
= foelz, vuly,ydy, (z,t) € 99 x (0,T), (1.5)
u(x,()) = up{z), z e,

was studied by Lin and Liu [6], where and in the sequel denote fﬂ gu)dy =
Jo 9(u(y, £))dy.
In [8], S.N.Zheng and L.H.Kong investigate the following problem

u, = Au+ um{y, ) fo v™(y, Ody, (z,t) € @ x(0,T),
= Dot vl) o POl <O X OT),
= Jo 90 iy Dy, (ot) € 02 x (0,7), (1.6)
v(z f) = Jovlz, y)u( y,t)dy, (z,t) € 0Q x (0,T),
u(z,0) = u(,(f) 1J(m 0) =wvo(x), =€l
They investigated the roles of weight functions in nonlocal boundary conditions

to the blow up of the solutions. Interestedly, they found that the solutions would
blow up with any positive initial data under some conditions.
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In this paper we discuss the reaction-diffusion system (1.1). We assume that
uo(z), vo(z) satisfy

(H) Aug(z) + [ u(@)b(z)de > 0, Avo(z) + [y ud(z)vf (x)dz >0, € Q.

The present work is partially motivated by [7],[8],[12] and [17]. The main
purpose of this paper is to discuss global existence and global nonexistence (finite
time blowing up) of the solution. We use some ideas developed by Souplet [16]
and Wang [14] and extend them to nonlocal parabolic systems. Also we will
obtain the similar results with [8] and obtain the blow up set of (1.1).

This paper is organized as follows. Section 2 deals with the maximum prin-
ciple and comparison principle used for the model. Theorems 1 and 2 on global
solutions and the blow-up conditions for large initial data (Theorem 3) and any
positive initial data (Theorems 4 and 5) respectively will be proved in Section
3. Finally, we discuss in the last section the blow up set of (1.1) and we obtain
the blow up set of (1.1) is whole domain to contrast the local problems.

2. Comparison principle

Let Qr = 2 x (0,T), Sy = 90 x (0,T) and Qp = Q x (0,T). We begin with
the definition of subsolution and supersolution of (1.1).

Definition 2.1. A pair of functions u, v € C>1(Qr) () C(Qr) is called a subso-
lution of (1.1) if

e S Aut o ut(y, u(y, Dy, (z,4) € Qr,
'ut<Av+fQuq y, )P (y, )dy, (z,t) € Qr,
u(z,t) < [, fz, y)uly, t)dy, (z,t) € S7, (2.1)
v(z,t) < ng Z, Z/ Ju(y, t)dy, (z,1) € S,
u(z,0) < uo(x),y(x,O) <wplx), €.

A supersolution is defined in similar way with each inequality reversed.

Using an argument as that [8] we have the maximum principle and comparison
principle.

Lemma 2.1. Suppose that w(z,t), z(z,t) € C*>H(Qr) (N C(Qr) satisfies

—Aw > [, (bi(y, thw(y, t) + 1y, t)z(y, t))dy, (x,t) € @ x (0,T),
z— Az > fQ(bQ(y7 t)w(y7 t) + CQ(ya t)z(yv t))dyv (l‘,t) € x (07T)7

w(z,t) < [, flz, y)w(y, t)dy, (z,t) € 00 x (0,T),
z(z,t) < fQ 9(z,y)2(y, t)dy, (z,1) € 02 x (0,T),
w(z,0) > 0, 2(z,0) > 0, z €,

(2.2)

where b, c; > 0,i=1,2, on Qp and f(z,y),9(z,y) > 0 on O2xQ, [, f(z,y)dy >
0, Jo 9(z, y)dy >0 on 9, then w > 0,2 >0 on Qp.

Lemma 2.2. Suppose that w(x,t), z(z,t) € C>H(Qr) (N C(Qr) satisfies
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—Aw > [ (bi(y, hw(y, t) + ey, 2y, £)dy, (2,1) € @ x (0,T),
= Az > [ (bay, Ywly, t) + caly, )2(y, t))dy, (z,1) € 2 x(0,T),
)
)

w(z,t) < [q fl@,y)w(y,t)dy, (x,t) € 00 x (0,T),
z(z,t) < [, 9z, y)2(y, t)dy, (z,t) € 002 x (0,T),
w{z,0) > 0,2(z,0) >0, 2z €0,

(2.3)

where by, ¢;,i = 1,2 are nonnegative and bounded functions in Qr, f{x,y), g(z,y)
>0 on 9 x Q, fﬂf(f y)dy >0, [, gz, y)dy > 0 on 0, then w > 0,2 >0 on
Qr-

Remark 2.1. The nonnegativity of f(z,y), g{z,y) plays an important role, see
Remark 2.2 of [18]. The following counter example shows that the nonnegativity
of by, ¢;(i = 1,2) are also necessary. Let

Q= (*17 1)? f(xy) = Q(Z’,y) =5

wlx,t) = z(z, ) = 2% —t,by = by = —5,c1 = ¢» = —4.
It is clear that
—Weg = —3 > fl (b1 (y, Yw(y, t) + 1 (y, 1) 2(y, 1))dy, || < 1,0 <t < g,
2 Zgm = —3 > r bZ y, )w<Ja )+(Z(§7 ) (Ua ))dya IJ| <L0<t< %’

w(a:,t)zl—t>jﬁ1fz,y) w(y, t)dy, lz] =1,0<t < 2,
2z, ) =1—t> fi1 glz, y)z(y, t)dy, |z} =1,0<t < &,
w(x,0) 20, z(z,0) = 0, lz) < 1.

(2.4)

But w(0,t) = —t < 0,2(0,t) = —t < 0 for 0 <t < £. If the nonlocal reactions

/z(b] (y, hw(y, t) + ea(y, 1)2(y, t))dy  and /(bz(yq tywly,t) + ca(y, t)2(y, t))dy
Js
is replaced by the local reactions

by (e, thw(z, t) + ez, Oz(x, t) and bolz, thw(z, t) + colx, t)z(x, t),

the nonnegativity of b;, ¢;(i = 1, 2) is not necessary, see Theorem 2.1 in [18].
Based on the above Lemmas, we obtain the following cormaparison principle of

(1.1).
Lelgma 2.3. Let (u,v) and (T, 7) be sub- and supersolutions of problem (1.1)
on Qp respectively. Then (4,7) > (u,v) on Q.
3. Global existence and blow up in finite time
We give the following Lemina without proof for our global result of (1.1).

Lemma 3.1. [See Lemma 3.1 in {8]] Let ¢(z,y) and wo(zx) be continuous, non-
negative functions on 0 x Q2 and U, respectively, and the nonnegative constants
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01,...,04 satisfy 0 < 0, + 05 < 1,0 < 05+ 60, < 1, and ky, ko are positive
constants. Then the solutions of the nonlocal problem

wy — Aw = kw? [ wdy + kaw® [ wldy,z € 0,1 >0,

w(z,t) = [, ez, y)w(y, t)dy, z €0t >0, (3.1)
U](.’E,O)Z’wo(m), er,
are global.

By a modification of the method given in [8], we obtain the following results.

Theorem 3.1. Suppose that the condition (1.6) holds, then all solutions of
problem (1.1) exist globally.
Proof. Using the condition (1.6) and p > 0,¢ > 0, there exist m,! > 1 such that
1-— l1-a 1-og J_ ’ 1-— ,6 >
p m q
Denote k = =+7. Let ®(z,y) > max{f(z,y), g(z,y)} be a continuous functions
defined for (z,y) € 8Q x Q, with

~|S

(3.2)

11

o) = ([ $(ai)dn)' 7 b4a) = ([ da)in)'T, = o0

Suppose z solves
— Az = kkyz! ™™ [, 2P dy + kko2' T [, 2P dy, x € Q8 > 0,
z(z,t) = (a(z) + b(x)) fQ o(z,y)2(y, t)dy, x € ON,t >0,
2(z,0) = 1—|—u0%(x)+v07(x), xz €8,
(3.3)
Notice that (3.2) implies0 <1 -~m+ma+Ip<1,0<1—-l4+mg+I3<1. In
view of Lemma 3.1, we know that z is global. Moreover, z > 1 in Q x [0, 00) by
the maximum principle. Set (%, 7) = (2™, 2!). A simple computations shows
Ty = mz2™ Lz > me™ Az + kki2t ™ [, 20T dy)
=mz™ 1Az + kkym [, 2™ Pdy,

AT =mz™ Az +m(m — 1)2™ 3| V2] < me™ Az,
and thus
— AT > kkym [, zmadey > ky fo 2P dy
- kl fQ Y, ) (ya t)dy
When (z,t) € 99 x (0, 00), in VleW of Holder’s inequality,
7 > (a(z))™{ [, ®(z,y)2( y,t)dy}m
= {Jo ®(z,y)dy}'~™{ [, ®(z, y)z(y,t)dy}’"
> {Jq f(z, y Jdy} m{fg (y, t)dy}™
> Jo fz,y)2™(y, t)dy = fQ f(:c y)a(y, t)dy.
Similarly, we have also for v that

— AT > kz/ zm”wdy = kg/ u(y, t)i’g(y, tdy, z€Q, t>0,
Q Q
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5> / 9(z,)(y, )y, © € 09, t>0.
Q

Noticing uo(z) < w(z,0),ve(x) < o(x,0) in 2, we have by Lemma 2.3 that
(T, 7) is a global supersolution of (1.1). O

Theorem 3.2. Suppose that the condition (1.6) fails with at least one of the
following

@ a>1, () B>1, () pa>(1-a)l-p).
If [ fle,y)dy, [o9(z,y)dy < 1 for all 2 € 8Q, then the solution of (1.1) are
global for small initial data.

Proof. (i) Denote

max{max [ fCpdymax [ gpdsh=doe 0.0 (34
N Jo 0 Jo
Let w be the unique solution of the elliptic problem:
~Aw=1 in Qw=Cy on 9.

Then Cy < w < Cy + M for some M > 0 independent of Cy. Let Cq be large
that
14 Ch
. 3.5
T+Co+ M~ (3:5)
Due to a > 1,3 > 0, it is easy to verify that for fixed positive constants Co, M
and b, there exists a > 0 small such that

a2 ka1 + Cy + M)a+pt5h2|, b> k‘g(}ﬁbq(l +Cy + ﬁ'ﬁ'{)ﬂ‘i Q. (3.6)
Set w(x,t) = a(l+w(x)),v(x,t) = b(1 + w(z)). We know
U — AT = —aAw(z)=a
> k1a®b? (1 + Co + M)>*P|Q)]
> k1 Jo o™ (14 w(y)) 0P (1 +w(y))Pdy
= kl fQ Ea (y7 t)ﬁp(yv t)dy
in 2% (0, 00). Similarly, we have U, — AT > ko fQ @ (y, Y0P (y, t)dy, in Qx (0, o).
Moreover, we have on the boundary that
= (1(1 + C()) > aé'o(l + Co + M)
> Jqado(l+ Co+ M) f(z,y)dy
And similarly, 7 > [, g(x, y)i(y, t)dy, in 92 x (0,00). By Lemma 2.3, (@,7)
is a global super solution of (1.1) provided the initial data small that ug(x) <
a(l +w{x)), vo(x) < b(1 + wz)) for z € Q.
{ii) Due to 8 > 1, @ > 0, we can prove it by exchanging the roles of u and v
in the case (i).
(iii) For ¢ < 1,8 < 1 and pg > (1 — «)(1 — 8), the conclusion is obviously
true by the proof of Theorem 2 in [6]. 0

Now we prove the blow up conclusions with or without large initial data.
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Theorem 3.3. Suppose (1.5) fails with at least one of the following
(@) a>1; (b) B>1; () pg>(1—-a)(1—-P),
then the solutions of (1.1) blow up in finite time for large initial data.
Proof. Let X be the first eigenvalue of the eigenvalue problem
~Ap=Ap inQ; =0 ondQ,
and ¢ be the corresponding eigenfunction. We choose ¢(z) such that ¢{z) >0
in 2 and maxgeq = 1.
(i) Assume that « > 1. Since ¢ > 0, we can choose m > 1,/ > 1 such that
mg+ 18 —1>0. Set vy =min{l — m+ma+pl,1 -1+ mqg+15}, then v > L.
Let s(t) be the unique solution of the ODE problem
s'(t) = —As(t) + min{% fﬂ pmetpldy, %1 Jo ematBdrysv(t),
s(0) = sg > 0,
then s(t) blows up in finite time T'(sg) for sufficiently large data so.
Set u(z,t) = s™(t)p™(x),v(z,t) = st(t)(x), (z,t) € Q x [0,T(s0)). We
assert that (u,v) is a subsolution of problem (1.1).
A simple computation yields
Au+ ky o u®(y, t)oP (y, t)dy
= ™ () [me™ T Ap + m(m — 1) 2 [Vl?] + kis™HP(E) [ o™ Py
> ms™ ()™ [~ As(t) + (AL [, gt Phd)st et ()]
> ms™H(t)s' ()™
:_gh
in € x [0,T(s9)), and similarly,
Av + ks foul(y, )0’ (y, t)dy > v, in Q x [0, T(s0)).
On the other hand, we have clearly for {z,t) € 9 x (0,T(sp) that

u(z, ) =0 < /Q (@, )uly, idy, (e t) =0 < /ﬂ o y)u(y, t)dy.

By Lemma 2.3, (u,v) is a blow up subsolution of (1.1) provided the initial data
large that ug(z) > u(z,0) = s™(0)p™(z), vo(z) > v(z, 0) = s'(0)¢!(z) for x € Q.
(ii) For the case of 3 > 1, the proof is similarly.
({l)f0<a<1,0<B<1andpg>(1—a)l~fF), noticing p > 0,g >0,
there exist two positive constants m, ! > 2 such that

1— -
e L’ 1-8 _m (3.7)
p m g !
Let v = min{l — m + ma + pl,1 — | + mq + 13}, then v > 1. Set u(z,t) =
s ()™ (z), vz, t) = st (t)p!(x), where s(t), o(x) is defined in the case (i). The
left arguments are as same as those of the case (i). 0o

Theorem 3.4. Assume a > 1(or > 1). If [, f(z,y)dy > 1(or [, g(z,y)dy >
1) for all x € Q. Then the solutions of (1.1) blow up in finite time under any
positive initial data.
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Proof. Tn view of ug,vo > 0 in Q, [, f(x,y)dy, [, 9(z,y)dy >0 on dQ,and

wi) = [ fa oty (o) = [ oo sy, = com

by the compatibility conditions, we have ug,vo > 0 on 0f). Denote by 7 the
positive constant such that ug, vo > 7 on €.

The assumption (H) implies us,v; > 0 by the comparison principle and in
turn w, v > 17 on 2 x [0,T). Furthermore,u satisfies

u > Au + kﬂ?p JQ (y,t)dy, (2,1) € Qr,
U= fQ )dya (Jf t) € ST>
u(z,0) = uo(:n) z e .

Let u(x,t) = s(t) be the unique solution of the ODE problem

{ st = kP |Q]s*(t), (z,1) € Qr,
s(0) = 2 e

27
Then u blows up in a finite time since o > 1. Clearly,

= Au+ kP |Qu = Au+ km”/ u*(y, t)dy, w(z,0) < ug(z).
Q

Furthermore, the assumption fQ z,y)dy > 1 implies

u(e ) < mt/f(xydy*/fxy wly )y, (z,t) € 2% (0,T).

By Lemma 2.3, u > u as long as both «w and u exist, and thus « blows up in
finite time for any positive initial data ug.
For the case of § > 1 and [, g(z,y)dy > 1, the proof is similar. O

Theorem 3.5. Assume pg > (1—a)(1-7). Ifo z,y)dy, [o9(z,y)dy > 1 for

all x € 99, then the solutions of (1.1) blow up in finite time under any positive
initial data.

Praof. The proof is similar with the Theorem 5 of {6], so we omit it. |

4. Blow up Set

We will fix the blow up set to (1.1) if the solutions of it blow up in finite time.
To do this, we introduce a definition as preliminaries:

Definition 4.1. A point zg € Q is called a blow up point of (u, v) if there exist
a sequence {(z,,t,)}, zn € QO tn < T*, (Tn, t,) — (20, T*) as n — oo such that

i (u(@n, tn) + v(@n, ta) = o0
The blow up set is the set of all blow up points.

Set hy(t) = ki [ u®(y, t)oP (y,t)dy, ha(t) = ke [, u'(y, ty? (y,t)dy, we have
the following Theorern.



1444 Congming Peng and Zuodong Yang

Theorem 4.1. Suppose that the solution of (1.1) blows up in finite time, then
the blow up set is the whole domain.

Proof.(This proof uses some ideas of [17]) Let G(z, &;t, T) be the Green’s function
3

associated with the operator L = & — A along with null Dirichlet boundary
condition in Q X (0, 7*). Then for any ¢ < T™*, the solution (u,v) can be written
as
u(z,y) = fQ G(z, € t O)u0(§ d§+f() fQ x,&;t, 7)hi(T)dEdT
fo aQ (@, &8,7) [ F( , T)dydédr, (z,t) € Qr,  (4.4)
fQ z {,t 0)vo( d§+f0 fQ G(a: é,t,T)hg( Ydédr
~ Jo Jon B2 (2, &1,7) Jo 9(& v)v(y, T)dydEdr, (z,t) € Q. (4.6)
For the Green’s function G(z, £; t, 7), we have G(z, &;t,7) = 0 and 42 (z,&;¢,7) <
0 on 0Q,and we also have the estimates (see [19])

0<Glz,&t,7) < Cy(t —7)" 7 exp{— 91| - §|2} C,>0,6, >0, (4.3)
and
0 < |DeGlz, &t,7)| < Cat — ) "5 exp{~ 02| §|2} Cy>0,0; > 0. (4.4)
Therefore,
/ Gl &1, 7)dE < Cs, (4.5)
and QaG
—(z,&;t,7)dE < Cy, (4.6)

aq OV
where C3, Cy is independent of ¢. Let =’ be a blow up point of (u, v),then there
exists a sequence {(zn,tn)}, zn € Uty <T*, (xp,tn) — (2/,T%),a8 n — 00 such
that
lim (u(@n, tn) + v(Tn, ty)) = c0.

n—0o0
By (4.1)-(4.6), we obtain

tn

lim (h1(7) 4 heo(71))dT = cc. (4.7

n—x 0
For any given z( € €2, to prove 2 is a blow up point, it needs only to prove that
for any € > 0,u{z,t) is unbounded in (B(zo, €)(\2) x (0,T), where B(xo,€) is
a ball of R" centered at x¢ with the radius e. Denote Qg = B{zg,€)[]2. On
the contrary, we suppose that there exists an M > 0 such that u(x,t) < M in
Qo x (0,T). Let GO(:U &;t,7) be the Green’s function in €y associated with the

operator L = 5 — A along with the null Dirichlet boundary condition. Then we
have
w(@,y) = fo, Golz, & t, 0)uo(€)dé + N Ja, Golz, &, T)ha(7)dédT
fo Joa, B2 (z, &, )u(g, 7)dSdr, (2,1) € Qx(0.T), (4.8)

U(.’L’, y) - fQo GO fL', gﬂ t? O)UO dé- + f() IQ() GO(J;7 fa ta T)h2(7—>d§d7_
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fo meo a(’“ (z, &t m)v(€, 7)dSdr, (x,t) € Qox(0.T). (4.9)
Since Golz, & t,7) > O,uO( } > 0,v9(z) > 0, we have
ulz,y) > f; fﬂn Go(z, §'t TYha(T)dédr
/ fon S0 (2, &t Tu(€, T)dSdr, (x,t) € Qo x (0.7,
v{x,y) > fﬁ fQ( Go(z, &, 7Yho(T)dEdT
— o6 B (m, &8, m)0(€, T)dSdr, (x,t) € Qo % (0.T).
Since Gy > 0 in Qp and Gp = 0 on 9Qp, we have -‘9(%9« < 0 on 9Qp. Thus

1
- / / 950 (4, &1, rYu(€, 7)dSdr > 0,
0 /8% ov

ot
-/ 0Go ——(x, & t, Ty(€, T)dSdr > 0.
0 Jon ov

These estimates give
u(:r ty+ vz, t)
fo (ha(r)+ha(r)) fQo Golz, & t, 7)dédr, (2,t) € Qo x (8, T™). (4.10)
Choose a compact subset ' CC Qg, by use of the strong maximum principle,
we have that there exists 6 = §(Q') such that

/ Golz, &6, m)dE > 5(Q) for all (z,t) € O x [t,T%), 7>0. (4.11)
Qo
From (4.10) and (4.11) it follows that for all {x,t) € ' x [0,T%),

u(z, t) + v(z,t) > §() /t(hl(v') + ha(r))dr
0

Therefore, we have lim;_ 7+ (u(z,¢) + v{x,t)} = co. It is in contradiction with
the assumption of u(z,t),v(z,t) < M in Qg x (0, T]. Therefore x4 is a blow up
point. By the arbitrariness of zg € € we obtain that the blow up set is Q. The
proof is completed. O
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