FINITE TIME BLOW-UP SOLUTION FOR A CLASS OF NONLINEAR HYPERBOLIC EQUATIONS

FARAMARZ TAHAMTANI* AND SOMAYYEH MOHAMMADI

ABSTRACT. In this work, We consider an initial boundary value problem for a class of nonlinear hyperbolic equations. We establish a blow-up result for certain solutions with a dissipative term.

AMS Mathematics Subject Classification: 34B45; 35K55

Key words and phrases: Nonlinear hyperbolic equations, blow-up solutions, lifespan of solution

1. Introduction

Let Ω be a bounded domain of \mathbb{R}^n with a sufficiently smooth boundary $\partial\Omega$. We consider the following initial boundary value problem

$$u_{tt} - \Delta u_t - div(|\nabla u|^{\alpha - 2} \nabla u) = h(u), \quad x \in \Omega, \quad t \ge 0, \tag{1}$$

$$u|_{\partial\Omega} = 0, \quad x \in \partial\Omega, \quad t > 0,$$
 (2)

$$u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x), \quad x \in \Omega,$$
 (3)

where $\alpha \geq 2$, and h is a continuous function.

Research of global nonexistence and finite time blow-up solutions for non-linear evolution equations has attracted a great deal of people. The obtained results show that global existence and nonexistence depends on the degree of nonlinearity of source term, the dimension n and the size of initial data's. There are many results that have been considered by many authors; see [1-10]. Levine has a survey article [5] with many relevant references. In [2] Levine studied the initial value problem for the following abstract wave equation with dissipation

$$Pu_{tt} + Au_t + Bu = G(u)$$

in a Hilbert space, where P, A and B are positive linear operators defined on some dense subspace of the Hilbert space and G is a gradient operator. He introduced convexity method and showed, if the energy is initially negative then the

Received October 27, 2008. Accepted October 6, 2009. *Corresponding authors.

^{© 2010} Korean SIGCAM and KSCAM.

solution can not be global. Later Kalantarov and Ladyzhenskaya [6] improved this method to accommodate more general cases.

In our study, we establish a blow-up result for solutions with negative initial energy. The proof of our technique is similar to the one in [7]. Moreover we find the lifespan for the solution. Let us begin by the following lemma in [6, Lemma 2.1] that we will use in the proof of our main result.

Lemma 1. If a function $\psi(t) \in C^2$ which is positive and satisfy the inequality

$$\psi''(t)\psi(t) - (1+\gamma)(\psi'(t))^2 \ge -2C_1\psi(t)\psi'(t) - C_2(\psi(t))^2 \tag{4}$$

for some real numbers $\gamma > 0$, $C_1, C_2 \ge 0$ then the following hold:

i) Ij

$$\psi(0) > 0, \ \psi'(0) > -\gamma_1 \gamma^{-1} \psi(0), \ C_1 + C_2 > 0$$
 (5)

where

$$\gamma_1 = -C_1 + \sqrt{C_1^2 + \gamma C_2}, \quad \gamma_2 = -C_1 - \sqrt{C_1^2 + \gamma C_2}.$$
(6)

Then for the real number.

$$t_{2} = \frac{1}{2\sqrt{C_{1}^{2} + C_{2}^{2}}} ln \frac{\gamma_{1}\psi(0) + \gamma\psi'(0)}{\gamma_{2}\psi(0) + \gamma\psi'(0)}$$
(7)

there exist a positive real number $t_1 < t_2$ such that as $t \to t_1$, $\psi(t) \to +\infty$.

ii) If $\psi(0) > 0$, $\psi'(0) > 0$ and $C_1 = C_2 = 0$ then for all real number

$$t_2 = \frac{\psi(0)}{\gamma \psi'(0)},\tag{8}$$

there exists a positive real number $t_1 \leq t_2$ such that as $t \to t_1, \ \psi(t) \to +\infty$.

2. Finite time blow-up

The source term h(u) in (1) with primitive $H(u)=\int_0^u h(\xi)d\xi$ satisfy $uh(u)\geq 2(2\rho+1)H(u) \tag{9}$

for some real numbers $\rho \geq 0$, and for all $u \in \mathbb{R}$. We define the energy functional associated with a solution u(x,t) of (1)-(3) by

$$E(t) = \frac{1}{2} \|u_t\|_2^2 + \frac{1}{\alpha} \|\nabla u\|_{\alpha}^{\alpha} - \int_{\Omega} H(u) dx.$$
 (10)

Furthermore, by means of the divergence theorem, it is easily seen that the following holds.

Lemma 2. For the problem (1)-(3), the energy functional E(t) is a non-increasing function on (0,t) and

$$E(t) = E(0) - \int_0^t \|\nabla u_\tau\|_2^2 d\tau \le E(0). \tag{11}$$

Proof. Multiplying the equation (1) by u_t and integrating over the domain Ω . Then by divergence theorem and using (2)-(3), we obtain

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}u_{t}^{2}dx+\int_{\Omega}|\nabla u_{t}|^{2}dx+\frac{1}{\alpha}\frac{d}{dt}\int_{\Omega}|\nabla u|^{\alpha}dx=\int_{\Omega}(\frac{d}{dt}\int_{0}^{u}h(\xi)d\xi)dx$$

and by using the definition of primitive function H(u) we find

$$\frac{d}{dt}(\frac{1}{2}\|u_t\|_2^2 + \frac{1}{\alpha}\|\nabla u\|_\alpha^\alpha - \int_{\Omega} H(u)dx) = -\|\nabla u_t\|_2^2.$$
 (12)

Utilizing (10) in (12) gives $E'(t) = -\|\nabla u_t\|_2^2$ and the integration on [0, t) carry out the inequality (11).

The main result reads as follows.

Theorem 1. Let u be the solution of problem (1)-(3). Assume that the following conditions are valid:

$$u_0(x) \in W_0^{1,\alpha}(\Omega), \quad u_1(x) \in L_2(\Omega)$$

$$E(0) = \frac{1}{2} \|u_1\|_2^2 + \frac{1}{\alpha} \|\nabla u_0\|_2^2 - \int_{\Omega} H(u_0) dx < 0$$
(13)

and

$$2\int_{\Omega} u_0 u_1 dx + \|\nabla u_0\|_2^2 \ge 2\rho^{-1} (1+\rho) (\|u_0\|_2^2 + \|\nabla u_0\|_2^2)$$
 (14)

where $\rho > 0$. Then the solution blows up in finite time and the lifespan T of the solution can be bounded above as

$$T \le \frac{\|u_0\|_2^2 + \|\nabla u_0\|_2^2}{\rho(2\int_{\Omega} u_0 u_1 dx + \|\nabla u_0\|_2^2)}.$$

Proof. To prove, it suffices to show the function

$$F(t) = \|u\|_{2}^{2} + \int_{0}^{t} \|\nabla u\|_{2}^{2} d\tau + \|\nabla u_{0}\|_{2}^{2}$$
(15)

satisfies the hypotheses of the Lemma 1. To get this purpose, let us compute $F^{'}(t)$ and $F^{''}(t)$. We observe that

$$\|\nabla u\|_{2}^{2} = \int_{0}^{t} \frac{d}{d\tau} \|\nabla u\|_{2}^{2} d\tau + \|\nabla u_{0}\|_{2}^{2}$$

$$= 2 \int_{0}^{t} \int_{\Omega} \nabla u \nabla u_{\tau} dx d\tau + \|\nabla u_{0}\|_{2}^{2}.$$
(16)

Utilizing (16) in (15) one obtain

$$F'(t) = 2 \int_{\Omega} u u_t dx + 2 \int_0^t \int_{\Omega} \nabla u \nabla u_{\tau} dx d\tau + \|\nabla u_0\|_2^2$$
 (17)

and

$$F''(t) = 2\|u_t\|_2^2 + 2\int_{\Omega} u u_{tt} dx + 2\int_{\Omega} \nabla u \nabla u_t dx.$$
 (18)

Consequently, due to the equation (1),

$$\int_{\Omega} u u_{tt} dx = \int_{\Omega} u \Delta u_t dx + \int_{\Omega} u div(|\nabla u|^{\alpha - 2} \nabla u) dx + \int_{\Omega} u h(u) dx.$$
 (19)

Thus, from (18) and (19), we obtain

$$F''(t) = 2\|u_t\|_2^2 - 2\|\nabla u\|_\alpha^\alpha + 2\int_\Omega uh(u)dx \tag{20}$$

and from assumption (9),(20) reduced into

$$F''(t) \ge 2\|u_t\|_2^2 - 2\|\nabla u\|_\alpha^\alpha + 4(2\rho + 1) \int_\Omega H(u) dx. \tag{21}$$

Hence using the definition of energy functional E(t) in (10) and (11) a lower bound for F''(t) can be found:

$$F''(t) \ge 4(\rho+1)(\frac{1}{2}\|u_t\|_2^2 + \int_0^t \|\nabla u_\tau\|_2^2 d\tau) + 4\rho \int_0^t \|\nabla u_\tau\|_2^2 d\tau + (\frac{4(2\rho+1)}{\alpha} - 2)\|\nabla u\|_\alpha^\alpha - 4(2\rho+1)E(0).$$
(22)

Using Hölder's inequality

$$\|\nabla u\|_{\alpha}^{\alpha} \ge |\Omega|^{1-\frac{2}{\alpha}} (\|\nabla u\|_{2}^{2})^{\frac{\alpha}{2}}.$$

in (22), we obtain

$$F''(t) \ge 4(\rho+1)(\|u_t\|_2^2 + \int_0^t \|\nabla u_\tau\|_2^2 d\tau)$$

$$+ (\frac{4(2\rho+1)}{\alpha} - 2)|\Omega|^{1-\frac{2}{\alpha}} (\|\nabla u\|_2^2)^{\frac{\alpha}{2}} - 4(2\rho+1)E(0)$$

$$\ge 4(\rho+1)(\|u_t\|_2^2 + \int_0^t \|\nabla u_\tau\|_2^2 d\tau),$$
(23)

where assumption (13) and $\rho \geq \frac{\alpha-2}{4} \geq 0$ have been used. Hence $F^{''}(t) \geq 0$ for all $t \geq 0$, also by assumption (14) $F^{'}(0) \geq 0$. Thus $F^{'}(t) \geq 0$ for all $t \geq 0$. Whence

$$F(0) = ||u_0||_2^2 + ||\nabla u_0||_2^2 > 0.$$

Now we search for a lower bound for the functional

$$y(t) = F''(t)F(t) - (1+\rho)(F'(t))^{2}.$$
 (24)

By inserting (15), (17) and (23) in (24), we obtain

$$y(t) \geq 4(\rho+1)(\|u_t\|_2^2 + \int_0^t \|\nabla u_\tau\|_2^2 d\tau)(\|u\|_2^2 + \int_0^t \|\nabla u\|_2^2 d\tau + \|\nabla u_0\|_2^2)$$
$$-(\rho+1)(2\int_{\Omega} uu_t dx + 2\int_0^t \int_{\Omega} \nabla u \nabla u_\tau dx d\tau + \|\nabla u_0\|_2^2)^2$$
$$\geq 4(\rho+1)\{(\|u_t\|_2^2 + \int_0^t \|\nabla u_\tau\|_2^2 d\tau)(\|u\|_2^2 + \int_0^t \|\nabla u\|_2^2 d\tau + \|\nabla u_0\|_2^2)$$

$$-\left(\int_{\Omega} u u_{t} dx + \int_{0}^{t} \int_{\Omega} \nabla u \nabla u_{\tau} dx d\tau\right)^{2}$$

$$-\left(\int_{\Omega} u u_{t} dx + \int_{0}^{t} \int_{\Omega} \nabla u \nabla u_{\tau} dx d\tau\right) \|\nabla u_{0}\|_{2}^{2} - \left(\frac{1}{2} \|\nabla u_{0}\|_{2}^{2}\right)^{2} \right\}$$

$$\geq 4(\rho + 1) \left\{ (\|u_{t}\|_{2}^{2} + \int_{0}^{t} \|\nabla u_{\tau}\|_{2}^{2} d\tau) (\|u\|_{2}^{2} + \int_{0}^{t} \|\nabla u\|_{2}^{2} d\tau + \|\nabla u_{0}\|_{2}^{2}) - \left(\int_{\Omega} u u_{t} dx + \int_{0}^{t} \int_{\Omega} \nabla u \nabla u_{\tau} dx d\tau\right)^{2} - \frac{1}{2} \|\nabla u_{0}\|_{2}^{2} F'(t) \right\}. \tag{25}$$

Since from the Cauchy-Schwartz inequality we have

$$\left(\int_{\Omega} u u_{t} dx + \int_{0}^{t} \int_{\Omega} \nabla u \nabla u_{\tau} dx d\tau\right)^{2} \\
\leq \left[\|u\|_{2} \|u_{t}\|_{2} + \left(\int_{0}^{t} \|\nabla u\|_{2}^{2} d\tau\right)^{\frac{1}{2}} \left(\int_{0}^{t} \|\nabla u_{\tau}\|_{2}^{2} d\tau\right)^{\frac{1}{2}}\right]^{2} \\
\leq \left(\|u\|_{2}^{2} + \int_{0}^{t} \|\nabla u\|_{2}^{2} d\tau\right) \left(\|u_{2}\|_{2}^{2} + \int_{0}^{t} \|\nabla u_{\tau}\|_{2}^{2} d\tau\right). \tag{26}$$

Exploiting (25) and (26), we obtain

$$y(t) \geq -2(\rho+1)\|\nabla u_0\|_2^2 F'(t)$$

$$\geq -2(\rho+1)\left(\int_0^t \|\nabla u\|_2^2 d\tau + \|u\|_2^2 + \|\nabla u_0\|_2^2\right) F'(t)$$

$$= -2(\rho+1)F(t)F'(t).$$

Thus, the hypotheses of Lemma 1 are fulfilled with $C_1 = 1 + \rho$ and $C_2 = 0$. From the assumption (14) and the application of condition (8) in Lemma 1, we remark that the lifespan T is estimated by

$$0 < T \le \frac{\|u_0\|_2^2 + \|\nabla u_0\|_2^2}{\rho(2\int_{\Omega} u_0 u_1 dx + \|\nabla u_0\|_2^2)} \le \frac{1}{2(\rho + 1)}$$

which shows that F(t) becomes infinite in a finite time T, and this completes the proof.

REFERENCES

- R.T. Galssey, Blow-up theorems for nonlinear wave equations, Math. Z. 132 (1973), 188-203.
- H.A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J.Math.Anal., 5(4)(1974), 138-146.
- H.A. Levine, A note on a nonexistence theorem for nonlinear wave equations, SIAM J.Math.Anal., 5(5)(1974), 644-648.
- 4. H.A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} = -Au + F(u)$, Trans. Am.Math.Soc. 192 (1974), 1-21.
- 5. H.A. Levine, The role of critical exponents in blow-up theorems, SIAM Review, 32(2)(1974), 262-288.

- V.K. Kalantarov and O. Ladyzhenskaya, Blow-up theorems for quasi-linear parabolic and hyperbolic equations, Zap. Nacuckn, SLOMI Steklov, 69 (1977), 77-102.
- V. Byrak, M. Can and F. Aliyev, Nonexistence of global solutions of a quasi-linear hyperbolic equation, Math. Inequalities and Appl. 1(3)(1988), 45-52.
- 8. N. Polat, D. Kaya and H.I. Tutalar, Blow-up of solutions for a class of nonlinear wave equations, Dynamical systems and Applications, 5(10)(2004), 572-576.
- 9. Y. Zhou, Global nonexistence for a quasi-linear evolution equation with a generalized Lewis function, Journal of Anal. and Appl. 24(1)(2005), 179-187.
- 10. S.A Messaoudi and B.S Houari, A blow-up result for a higher-order nonlinear Kirchhoff-type hyperbolic equation, Applied Math. Letters 20 (2007), 866-871.

Faramarz Tahamtani is a member of the Mathematics Department at Shiraz University. His area of interests are Partial Differential Equations and Integral Inequalities.

Department of Mathematics, Shiraz University, SHIRAZ (71454), IRAN e-mail:tahamtani@susc.ac.ir

Somayyeh Mohammadi is doing her M.S. at Shirz University under the direction of Dr. F.Tahmtani. Her area of interest is Differential Equations.

Department of Mathematics, Shiraz University, SHIRAZ (71454), IRAN e-mail:somayyeh-truth@yahoo.com