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GLOBAL EXISTENCE AND BLOW-UP FOR A

DEGENERATE REACTION-DIFFUSION SYSTEM WITH

NONLINEAR LOCALIZED SOURCES AND NONLOCAL

BOUNDARY CONDITIONS

Fei Liang

Abstract. This paper deals with a degenerate parabolic system with
coupled nonlinear localized sources subject to weighted nonlocal Dirich-
let boundary conditions. We obtain the conditions for global and blow-up
solutions. It is interesting to observe that the weight functions for the
nonlocal Dirichlet boundary conditions play substantial roles in determin-
ing not only whether the solutions are global or blow-up, but also whether
the blowing up occurs for any positive initial data or just for large ones.
Moreover, we establish the precise blow-up rate.

1. Introduction

In this paper we study the following degenerate parabolic system with cou-
pled nonlinear localized sources subject to weighted nonlocal Dirichlet bound-
ary conditions:






ut = ∆um + aup1vq1(x0, t), vt = ∆vn + bvp2uq2(x0, t), (x, t) ∈ Ω× (0, T ),

u =
∫
Ω
f(x, y)u(y, t)dy, v =

∫
Ω
g(x, y)v(y, t)dy, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

where Ω ∈ R
N is a bounded domain with smooth boundary ∂Ω, x0 ∈ Ω is a

fixed point. m,n > 1, a, b, q1, q2 > 0, p1, p2 ≥ 0 which ensure that equations
in (1.1) are completely coupled with nonlinear localized reaction terms, while
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the weight functions f(x, y), g(x, y) in the boundary conditions are continu-
ous, nonnegative on ∂Ω × Ω, and

∫
Ω
f(x, y)dy,

∫
Ω
g(x, y)dy > 0 on ∂Ω. The

initial values u0(x), v0(x) ∈ C2+α(Ω) ∩ C(Ω) with 0 < α < 1 are nontrivial
nonnegative and satisfy the compatibility conditions.

In the past several decades, there have been many articles deal with prop-
erties of solutions to porous medium equations or degenerate parabolic system
with a localized source subject to homogeneous Dirichlet boundary condition
and to a system of heat equations with nonlinear boundary condition (see
[5, 9, 11, 13, 21, 25, 26] and references therein). However, there are some im-
portant phenomena formulated as parabolic equations which are coupled with
nonlocal boundary conditions in mathematical modelling such as thermoelas-
ticity theory (see [4, 6, 7]). In this case, the solution describes entropy per
volume of the material. The problem of nonlocal boundary conditions for lin-
ear parabolic equations of the form






ut −Au = 0, (x, t) ∈ Ω× (0, T ),

u(x, t) =
∫
Ω ϕ(x, y)u(y, t)dy, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(1.2)

with uniformly elliptic operator

A =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑

i=1

bi(x)
∂

∂xi
+ c(x)

and c(x)) ≤ 0 was studied by Friedman [15]. It was proved that the unique
solution of (1.2) tends to 0 monotonically and exponentially as t→ ∞ provided

∫

Ω

| ϕ(x, y) | dy ≤ ρ < 1, x ∈ ∂Ω.

As for more general discussions on the dynamics of parabolic problem with
nonlocal boundary conditions, one can see, e.g. [22] by Pao, where the following
problem:






ut − Lu = 0, (x, t) ∈ Ω× (0, T ),

Bu(x, t) =
∫
ΩK(x, y)u(y, t)dy, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(1.3)

was considered with

Lu =

n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑

i=1

bi(x)
∂u

∂xi
, Bu = α0

∂u

∂ν
+ u

and recently Pao [23] gave the numerical solutions for diffusion equations with
nonlocal boundary conditions.

In [13], Du Lili studied the following degenerate reaction-diffusion system
with coupled nonlinear localized sources subject to null Dirichlet boundary
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conditions:






ut = ∆um + up1vq1(x0, t), vt = ∆vn + vp2uq2(x0, t), (x, t) ∈ Ω× (0, T ),

u = 0, v = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.4)

They investigate the influence of localized sources and local terms on global
existence and blow-up for this system. Moreover, they establish the precise
blow-up rate estimates. In [27], Zheng et al. established global existence and
blow-up conditions for solutions to the following semilinear parabolic system
with weighted nonlocal Dirichlet boundary conditions:






ut = ∆u+ um
∫
Ω v

n(y, t)dy, vt = ∆v + vp
∫
Ω u

q(y, t)dy, (x, t) ∈ Ω×(0, T ),

u =
∫
Ω
ϕ(x, y)u(y, t)dy, v =

∫
Ω
ψ(x, y)v(y, t)dy, (x, t) ∈ ∂Ω×(0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.5)

The global solutions and blow-up problems for the degenerate parabolic sys-
tem with local nonlinearities, localized nonlinearities and nonlinear boundary
conditions had also been studied extensively, see [1, 2, 3, 8, 10, 12, 14, 17, 18,
19, 20] and the references therein.

The present work is partially motivated by the above works, especially [13,
27]. We will get blow-up criteria for (1.1) with nonlocal Dirichlet boundary
conditions, quite different from situations with the null Dirichlet boundary
conditions [13]. We will show that the weigh functions f(x, y) and g(x, y) in
the nonlocal boundary conditions of (1.1) play substantial roles in determining
not only whether the solutions are global or blow-up, but also whether the
blowing up occurs for any positive initial data or just for large ones. Moreover,
we establish the precise blow-up rate estimates for all the blowup solutions.
Our main results read as follows.

Theorem 1.1. If m > p1, n > p2 and q1q2 < (m − p1)(n − p2), then the

nonnegative solution of (1.1) is global.

Theorem 1.2. Assume
∫
Ω
f(x, y)dy < 1 and

∫
Ω
g(x, t)dy < 1 for all x ∈ ∂Ω.

If m < p1 or n < p2 or q1q2 > (m− p1)(n− p2), then the nonnegative solution

of (1.1) is global for small initial data.

Theorem 1.3. Assume q1q2 = (m− p1)(n− p2),
∫

Ω

f(x, y)dy < 1 and

∫

Ω

g(x, t)dy < 1

for all x ∈ ∂Ω. If m− p1 = q1 and n− p2 = q2, then the nonnegative solution

of (1.1) exists globally provided that a and b are small.
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To describe blow-up conditions for solutions and to estimate the blow-up
rate of the blow-up solution, we need the following assumptions on the initial
data u0(x) and v0(x):

(H1) ∆um0 (x) + aup1

0 (x)vq1 (x0) ≥ 0, ∆vn0 (x) + bvp2

0 (x)uq2 (x0) ≥ 0 for x ∈ Ω;
(H2 there exists a constant δ ≥ δ0 > 0 such that

∆um0 (x) + aup1

0 (x)vq1 (x0)− δumk1+1
0 (x) ≥ 0,

∆vn0 (x) + bvp2

0 (x)uq2 (x0)− δvnk2+1
0 (x) ≥ 0,

where δ0, k1, k2 will be given in Section 4.

Theorem 1.4. If m < p1 or n < p2 or q1q2 > (m − p1)(n − p2), then the

solution of (1.1) blows up in finite time for large initial data.

Theorem 1.5. Assume p1 > 1 (or p2 > 1) and the condition (H1) holds. If∫
Ω
f(x, y)dy ≥ 1 (or

∫
Ω
g(x, t)dy ≥ 1) for all x ∈ ∂Ω, then the solution of (1.1)

blows up in finite time for any positive initial data.

Theorem 1.6. Assume q1q2 > (1 − p1)(1− p2) and the condition (H1) holds.
If

∫
Ω
f(x, y)dy ≥ 1 and

∫
Ω
g(x, t)dy ≥ 1 for all x ∈ ∂Ω, then the solution of

(1.1) blows up in finite time for any positive initial data.

Theorem 1.7. Assume that
∫
Ω f(x, y)dy,

∫
Ω g(x, t)dy ≤ 1 for all x ∈ ∂Ω,

q2 + 1 − p1, q1 + 1 − p2 > 0 and assumptions (H1)–(H2) hold. If the solution

(u(x, t), v(x, t)) of (1.1) blows up in finite time T ′, then there exist positive

constants Ci (i = 1, 2, 3, 4) such that

C1(T
′ − t)

−
q1−p2+1

q1q2−(1−p1)(1−p2) ≤ max
x∈Ω

u(x, t) ≤ C2(T
′ − t)

−
q1−p2+1

q1q2−(1−p1)(1−p2) ,

C3(T
′ − t)

−
q2−p1+1

q1q2−(1−p1)(1−p2) ≤ max
x∈Ω

v(x, t) ≤ C2(T
′ − t)

−
q2−p1+1

q1q2−(1−p1)(1−p2) .

This paper is organized as follows. In Section 2 deals with the maximum
principle and comparison principle used for the model. In Section 3, we consider
the global existence and nonexistence of solution of problem (1.1). Section 4 is
devoted to the estimate of the blow-up rate.

2. Comparison principle and local existence

In this section, we give the comparison principle to the problem. Let QT =
Ω× (0, T ), ST = ∂Ω× (0, T ), QT = Ω× [0, T ).

Definition 2.1. A pair of functions u, v ∈ C2,1(QT ) ∩ C(QT ) is called a sub-
solution of (1.1) if






ut ≤ ∆um + aup1vq1(x0, t), vt ≤ ∆vn + bvp2uq2(x0, t), (x, t) ∈ QT ,

u(x, t) ≤
∫
Ω
f(x, y)u(y, t)dy, v(x, t) ≤

∫
Ω
g(x, y)v(y, t)dy, (x, t) ∈ ST ,

u(x, 0) ≤ u0(x), v(x, 0) ≤ v0(x), x ∈ Ω.

Similarly, a super-solution of (1.1) is defined by the opposite inequalities.
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Lemma 2.1. Suppose that u, v ∈ C2,1(QT ) ∩ C(QT ) satisfy




ut − d1(x, t)∆u ≥ c1(x, t)u + c2(x, t)v(x0, t), (x, t) ∈ QT ,

vt − d2(x, t)∆v ≥ c3(x, t)v + c4(x, t)u(x0, t), (x, t) ∈ QT ,

u(x, t) ≥
( ∫

Ω ψ1(x, y)u
1
m (y, t)dy

)m
, (x, t) ∈ ST ,

v(x, t) ≥
( ∫

Ω
ψ2(x, y)v

1
n (y, t)dy

)n
, (x, t) ∈ ST ,

u(x, 0) ≥ u0(x) > 0, v(x, 0) ≥ v0(x) > 0, x ∈ Ω,

where m,n ≥ 1, di(x, t) > 0 in QT , cj ∈ C(QT ) and c2(x, t), c4(x, t) ≥ 0

for (x, t) ∈ QT , ψi(x, y) ≥ 0 on ∂Ω × Ω,
∫
Ω ψi(x, y)dy > 0 on ∂Ω, i = 1, 2,

j = 1, 2, 3, 4. Then u, v > 0 on QT .

Proof. Let M1 = supQT
| c1(x, t) | and M2 = supQT

| c3(x, t) |. Set w = e−γtu,

z = e−γtv with γ > max{M1,M2}. Then






wt − d1(x, t)∆w + (γ − c1(x, t))w ≥ c2(x, t)z(x0, t), (x, t) ∈ QT ,

zt − d2(x, t)∆z + (γ − c3(x, t))z ≥ c4(x, t)w(x0 , t), (x, t) ∈ QT ,

w ≥
( ∫

Ω
ψ1(x, y)w

1
m (y, t)dy

)m
, z ≥

( ∫
Ω
ψ2(x, y)z

1
n (y, t)dy

)n
, (x, t) ∈ ST ,

u(x, 0) ≥ u0(x) > 0, v(x, 0) ≥ v0(x) > 0, x ∈ Ω.

(2.1)

It suffices to show that w, z > 0 on QT . Since u0, v0 > 0, there exists δ > 0
such that w, z > 0 for (x, t) ∈ Ω × (0, δ). Suppose for a contradiction that
t = sup{t ∈ (0, T ) : w, z > 0 on Ω × [0, t)} < T . Then w, z ≥ 0 on Qt, and at
least one of w, z vanishes at (x, t) for some x ∈ Ω. Without loss of generality,
suppose w(x, t) = 0 = infQt

w. If (x, t) ∈ Qt, by virtue of the first inequality

of (2.1), we find that

wt − d1(x, t)∆w ≥ (c1(x, t) − γ)w, (x, t) ∈ Qt.

This leads us to conclude that w ≡ 0 in Qt by the strong maximum principle,
a contradiction. If (x, t) ∈ St, this results in a contradiction also, that

0 = w(x, t) = e−γtu(x, t) =

∫

Ω

ψ1(x, y)w(y, t)dy > 0

due to
∫
Ω ψ1(x, y)dy > 0 on ∂Ω. This proves w, z > 0, and in turn u, v > 0 on

QT . �

Lemma 2.2. Suppose that u, v ∈ C2,1(QT ) ∩ C(QT ) satisfy




ut − d1(x, t)∆u ≥ c1(x, t)u + c2(x, t)v(x0, t), (x, t) ∈ QT ,

vt − d2(x, t)∆v ≥ c3(x, t)v + c4(x, t)u(x0, t), (x, t) ∈ QT ,

u(x, t) ≥
( ∫

Ω ψ1(x, y)u
1
m (y, t)dy

)m
, (x, t) ∈ ST ,

v(x, t) ≥
( ∫

Ω
ψ2(x, y)v

1
n (y, t)dy

)n
, (x, t) ∈ ST ,

u(x, 0) ≥ u0(x) ≥ 0, v(x, 0) ≥ v0(x) ≥ 0, x ∈ Ω,
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where m,n ≥ 1, di(x, t) > 0 in QT , cj ∈ C(QT ) and c2(x, t), c4(x, t) ≥ 0

for (x, t) ∈ QT , ψi(x, y) ≥ 0 on ∂Ω × Ω,
∫
Ω
ψi(x, y)dy > 0 on ∂Ω, i = 1, 2,

j = 1, 2, 3, 4. Then u, v ≥ 0 on QT .

Proof. Let
u(x, t) = α(x)w(x, t), v(x, t) = β(x)z(x, t),

where α(x), β(x) ∈ C2(Ω) satisfy

(2.2) α(x) > 0 on Ω; α(x) = 21−m,

∫

Ω

ψ1(x, y)α
1
m (y)dy ≤

1

2
on ∂Ω,

and

(2.3) β(x) > 0 on Ω; β(x) = 21−n,

∫

Ω

ψ2(x, y)β
1
n (y)dy ≤

1

2
on ∂Ω.

A routine computation shows






wt − d1(x, t)∆w ≥
(d1(x, t)∆α

α(x)
+ c1

)
w +

c2β(x0)

α(x)
z(x0, t), (x, t) ∈ QT ,

zt − d2(x, t)∆z ≥
(d2(x, t)∆β

β(x)
+ c3

)
z +

c4α(x0)

β(x)
w(x0, t) (x, t) ∈ QT ,

w ≥ 2m−1
( ∫

Ω
ψ1(x, y)α

1
m (y)w

1
m (y, t)dy

)m
, (x, t) ∈ ST ,

z ≥ 2n−1
( ∫

Ω ψ2(x, y)β
1
n (y)z

1
n (y, t)dy

)n
, (x, t) ∈ ST ,

w(x, 0) ≥ u0(x)/α(x) ≥ 0, z(x, 0) ≥ v0(x)/β(x) ≥ 0, x ∈ Ω.

(2.4)

Define

M1 = sup
QT

|
d1(x, t)∆α

α(x)
+ c1 |, M2 = sup

QT

|
d2(x, t)∆β

β(x)
+ c3 |,

N1 = sup
QT

|
c2β(x0)

α(x)
|, N2 = sup

QT

|
c4α(x0)

β(x)
| .

Let
w̃ = w + εeγt, z̃ = z + εeγt

with
γ = max{M1 +N1,M2 +N2}, ε > 0.

Using the inequality

(k1 + k2)
m ≤ C(m)(km1 + km2 ), k1, k2 ≥ 0,

0 < m < 1, C(m) = 1; m > 1, C(m) = 2m−1,

and (2.2), for (x, t) ∈ ST we have

w̃(x, t)

(2.5)

≥ 2m−1
( ∫

Ω

ψ1(x, y)α
1
m (y)w

1
m (y, t)dy

)m
+ εeγt
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≥ 2m−1
[( ∫

Ω

ψ1(x, y)α
1
m (y)w

1
m (y, t)dy

)m
+ εeγt

( ∫

Ω

ψ1(x, y)α
1
m (y)dy

)m]

≥
( ∫

Ω

ψ1(x, y)α
1
m (y)

[
w

1
m (y, t) + (εeγt)

1
m

]
dy

)m

≥
( ∫

Ω

ψ1(x, y)α
1
m (y)w̃

1
m (y, t)dy

)m
.

Similarly, from (2.3) we have

(2.6) z̃(x, t) ≥
( ∫

Ω

ψ2(x, y)β
1
n (y)z̃

1
n (y, t)dy

)n
.

Combining (2.2), (2.5) and (2.6), we can get





w̃t − d1(x, t)∆w̃ ≥
(d1(x, t)∆α

α(x)
+ c1

)
w̃ +

c2β(x0)

α(x)
z̃(x0, t), (x, t) ∈ QT ,

z̃t − d2(x, t)∆z̃ ≥
(d2(x, t)∆β

β(x)
+ c3

)
z̃ +

c4α(x0)

β(x)
w̃(x0, t) (x, t) ∈ QT ,

w̃ ≥
( ∫

Ω ψ1(x, y)α
1
m (y)w̃

1
m (y, t)dy

)m
, (x, t) ∈ ST ,

z̃ ≥
( ∫

Ω
ψ2(x, y)β

1
n (y)z̃

1
n (y, t)dy

)n
, (x, t) ∈ ST ,

w̃(x, 0) = w0(x) + ε > 0, z̃(x, 0) = z0(x) + ε > 0, x ∈ Ω.

By Lemma 2.1, we know that w̃, z̃ > 0, i.e., w + εeγt > 0, z + εeγt > 0 on QT .
It follows by ε→ 0+ that w, z ≤ 0 and hence u, v ≤ 0. �

Using the scaling transformations (see Section 4):

U(x, τ) = um(x, t), V (x, τ) = (n/m)n/(n−1)vn(x, t), τ = tm,

on the basis of the above lemmas, we obtain the following comparison principle
for (1.1).

Theorem 2.3. Let (u, v) and (u, v) be a sub-solution and super-solution of

problem (1.1) on QT , respectively. Then (u, v) ≥ (u, v) on QT .

Local in time existence of positive classical solutions of problem (1.1) be
obtained by using fixed point theorem [5, 14, 24]. Moreover, the uniqueness of
solutions holds if p1, q1, p2, q2 ≥ 1. The proof is more or less standard, so it is
omitted here. In view of Lemmas 2.1–2.2, we have the following:

Lemma 2.4. Suppose that (u0, v0) satisfies (H1). Then the solution (u, v) of

(1.1) satisfies ut, vt ≥ 0 in any compact subset of QT .

3. Global existence and blow-up

Compared with usual homogeneous Dirichlet boundary conditions, due to
the boundary functions f(x, y), g(x, y) being nonnegative, satisfying

∫

Ω

f(x, y)dy > 0 and

∫

Ω

g(x, y) > 0
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for all x ∈ ∂Ω, the proof of the global existence or global nonexistence results
for the system (1.1) would be more difficult. Denote

A =

(
m− p1 − q1
−q2 n− p2

)
, l =

(
l1
l2

)
.

Lemma 3.1 (see [9]). If m > p1, n > p2 and q1q2 < (m − p1)(n − p2), then
there exist two positive constants l1, l2, such that Al = (1, 1)T . Moreover,

A(cl) > (0, 0)T for any constant c > 0.

For convenience, we will denote

Π1(u, v) = ut −∆um − aup1vq1(x0, t), Π2(u, v) = vt −∆vn − bvp2uq2(x0, t).

Proof of Theorem 1.1. It is easy to prove that there exists a positive function
φ ∈ C2(Ω) such that

εφ(x) ≥ max{Λ1(x), Λ2(x)}, for x ∈ ∂Ω,

where

Λ1(x) = (

∫

Ω

f
m

m−1 (x, y)dy)m−1

∫

Ω

(εφ(y) + ϕ(y) + 1)dy − 1, x ∈ ∂Ω,

and

Λ2(x) = (

∫

Ω

g
n

n−1 (x, y)dy)n−1

∫

Ω

(εφ(y) + ϕ(y) + 1)dy − 1, x ∈ ∂Ω,

0 < ε ≤ maxΩ 1/(2 | ∆φ |) is a constant and ϕ is the solution of the following
elliptic problem:

−∆ϕ = 1, x ∈ Ω; ϕ(x) = 0, x ∈ ∂Ω.

Let C1 = maxx∈Ω ϕ(x), C2 = maxx∈Ω ϕ(x). We construct a super-solution
which exists global for any T > 0 as

(3.1) u = αel1t(εφ(x) + ϕ(x) + 1)1/m, v = βel2t(εφ(x) + ϕ(x) + 1)1/n,

where 0 < l1, l2 < 1 satisfy ml1, nl2 < 1 and α, β > 0 are to be chosen later.
Clearly, (u, v) is bounded for any t > 0 and u ≥ α, v ≥ β. The direct
computation gives





Π1(u, v) = αl1e
l1t(εφ(x) + ϕ(x) + 1)1/m + αmel1mt − αmel1mtε∆φ(x)

−aαp1βq1el1p1t+q1l2t(εφ(x) + ϕ(x) + 1)p1/m(εφ(x0) + ϕ(x0) + 1)q1/n,

≥ 1
2α

mel1mt − aαp1βq1el1p1t+q1l2t(εC1 + C2 + 1)p1/m+q1/n,

Π2(u, v) ≥
1
2β

nel2nt − bβp2αq2el2p2t+q2l1t(εC1 + C2 + 1)p2/n+q2/m.

If m > p1, n > p2 and q1q2 < (m − p1)(n − p2), by Lemma 3.1, there exist
positive constants l1, l2 such that

ml1 > p1l1 + q1l2, nl2 > p2l2 + q2l1, and ml1, nl2 < 1.

Therefore, we can choose α, β sufficiently large that

α ≥ max
{
2

n−p2+q1
D a

q1
D b

n−p2
D (εC1 + C2 + 1)

q1q2−p1p2+p1n+q1m

mD , max
x∈Ω

u0(x)
}
,
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β ≥ max
{
2

m−p1+q2
D a

q2
D b

m−p1
D (εC1 + C2 + 1)

q1q2−p1p2+p2m+q2n

nD , max
x∈Ω

v0(x)
}
,

where D = (m− p1)(n− p2)− q1q2, then

Π1(u, v) ≥ 0, Π2(u, v) ≥ 0, and u ≥ u0(x), v ≥ v0(x).

Also, for (x, t) ∈ ST , we have

u(x, t) = αel1t(εφ(x) + 1)1/m

≥ αel1t
( ∫

Ω

f
m

m−1 (x, y)dy
)m−1/m( ∫

Ω

(εφ(y) + ϕ(y) + 1)dy
)1/m

≥ αel1t
∫

Ω

f(x, y)(εφ(y) + ϕ(y) + 1)1/mdy =

∫

Ω

f(x, y)u(y, t)dy.

Similarly, for (x, t) ∈ ST , we have

v(x, t) ≥

∫

Ω

f(x, y)v(y, t)dy.

Now, (u, v) defined by (3.1) is a positive super-solution of (1.1). By Theorem
2.3, we conclude (u, v) ≤ (u, v), which implies (u, v) exists globally. �

Proof of Theorem 1.2. Case 1: Assume m < p1. Define

max
{
max
x∈∂Ω

∫

Ω

f(x, y)dy, max
x∈∂Ω

∫

Ω

g(x, y)dy
}
= ρ ∈ (0, 1).

Let w be the unique solution of the elliptic problem

−∆w = 1, x ∈ Ω; w(x) = C0, x ∈ ∂Ω.

The C0 ≤ w ≤ C0 +M for some M > 0 independent of C0. Let C0 be so large
such that

1 + C0

1 + C0 +M
≥ max{ρm, ρn}.

Due to m < p1 and q2 > 0, it is easy to verify that for fixed positive constants
C0, M and K2, there exists K1 > 0 small such that

(3.2) K1 ≥ aK
p1
m

1 K
q1
n

2 (1+C0+M)
p1
m

+
q1
n , K2 ≥ bK

q2
m

1 K
p2
n

2 (1+C0+M)
q2
m

+
p2
n .

Set u(x, t) =
(
K1(1 + w(x))

)1/m
, u(x, t) =

(
K2(1 + w(x))

)1/n
. We have

{
Π1(u, v) ≥ K1 − aK

p1
m

1 K
q1
n

2 (1 + C0 +M)
p1
m

+
q1
n ≥ 0,

Π2(u, v) ≥ K2 − bK
q2
m

1 K
p2
n

2 (1 + C0 +M)
q2
m

+
p2
n ≥ 0.

On the other hand, we have on the boundary that

u(x, t) =
(
K1(1 + C0)

) 1
m ≥

(
K1ρ

m(1 + C0 +M)
) 1

m

≥

∫

Ω

(
K1(1 + C0 +M)

) 1
m f(x, y)dy

≥

∫

Ω

f(x, y)u(y, t)dy, x ∈ ∂Ω, t > 0.
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Similarly,

v(x, t) ≥

∫

Ω

g(x, y)v(y, t)dy, x ∈ ∂Ω, t > 0.

By Theorem 2.3, (u, v) is a global super-solution of (1.1) provided the initial

data are so mall such that u0(x) ≤
(
K1(1 +w(x)

) 1
m , v0(x) ≤

(
K2(1 +w(x)

) 1
n

for x ∈ Ω.
Case 2: Assume n < p2. The case can be treated by exchanging the roles of

u and v in the case 1.
Case 3: Assume q1q2 > (m−p1)(n−p2). For the case, we only need to prove

the case of m ≥ p1 and n ≥ p2. We claim that (3.2) holds with sufficiently
small K1 and K2. In fact, in the special case of m = p1, the first inequality in
(3.2) is trivial with small K2 independent of K1, and then the second one in
(3.2) is true also provided K1 is small. The same argument admits n = p2. If
m > p1, n > p2 with q1q2 > (m−p1)(n−p2), then 0 < n−p2 < q1q2/(m−p1),
and hence

K
1−

p2
n

2 ≥ bK
q2
m

1 (1 + C0 +M)
p2
n

+
q2
m

≥ ba
q2

m−p1K
q1q2

n(m−p1)

2 (1 + C0 +M)
p2
n

+
q2
m

+(
p1
m

+
q1
n
)

q2
m−p1(3.3)

for K1 and K2 small enough. Clearly, (3.3) is equivalent to (3.2). Like for the
proof for the case 1, we know that the solution of (1.1) for small initial data

u0(x) ≤
(
K1(1 + w(x)

) 1
m , v0(x) ≤

(
K2(1 + w(x)

) 1
n for x ∈ Ω. �

Proof of Theorem 1.3. Denote

ρ0 = max
x∈∂Ω

{∫

Ω

f(x, y)dy,

∫

Ω

g(x, y)dy
}
< 1.

Let ψ(x) be the unique solution of the following elliptic problem:

(3.4) −∆ψ(x) = ε0, x ∈ Ω; ψ(x) = ρ0, x ∈ ∂Ω,

where ε0 is a positive constant such that 0 ≤ ψ(x) ≤ 1 (as ρ0 < 1, there exists
such ε0). Set maxx∈Ω ψ(x) = K. Let

w1(x, t) = Lψ
1
m (x), w2(x, t) = Lψ

1
n (x),

where L is a constant to be determined later. A series of computations yields
{
Π1(w1, w2) = Lmε0 − aLp1+q1ψ

p1
m ψ

q1
n (x0) ≥ Lmε0 − aLp1+q1K

p1
m

+
q1
n ,

Π2(w1, w2) = Lmε0 − bLp2+q2ψ
p2
n ψ

q2
m (x0) ≥ Lmε0 − bLp2+q2K

p2
n

+
q2
m .

We choose a ≤ ε0K
−p1/m−q1/n, b ≤ ε0K

−p2/n−q2/m. Then

Π1(w1, w2) ≥ 0, Π2(w1, w2) ≥ 0.

On the other hand, we have

w1(x, t) = Lρ
1
m

0 ≥ L(

∫

Ω

f(x, y)dy)
1
m ≥ L

∫

Ω

f(x, y)dy
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≥ L

∫

Ω

f(x, y)ψ
1
m dy =

∫

Ω

f(x, y)w1(y, t)dy, for x ∈ ∂Ω, t > 0,

w2(x, t) ≥

∫

Ω

g(x, y)w2(y, t)dy, for x ∈ ∂Ω, t > 0.

Here we used
∫
Ω
f(x, y)dy < 1,

∫
Ω
g(x, y)dy < 1 and 0 ≤ ψ(x) ≤ 1. Therefore,

(w1, w2) is an upper solution of (1.1). By Theorem 2.3, w1(x, t) ≥ u(x, t),
w2(x, t) ≥ v(x, t). Thus, (u, v) exists globally. �

Next prove the blow-up conclusions with or without large initial data (The-
orems 1.4–1.6).

Proof of Theorem 1.4. We consider the following well-known degenerate re-
action-diffusion system with nonlinear localized sources (see [27]):






ut = ∆um + aup1vq1(x0, t), vt = ∆vn + bvp2uq2(x0, t), (x, t) ∈ Ω× (0, T ),

u = 0, v = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(3.5)

Let (u, v) be the solution of the system. It is obviously that (u, v) is a sub-
solution of (1.1). It is known to all that the nonnegative solution of (3.5) blows
up in finite time for sufficiently large initial values provided m < p1 or n < p2
or q1q2 > (m− p1)(n− p2). By Theorem 2.3, the solution of (1.1) blows up in
finite time for sufficiently large initial values. �

Proof of Theorem 1.5. Since u0, v0 > 0 for x ∈ Ω,
∫
Ω
f(x, y)dy,

∫
Ω
g(x, y)dy >

0 for x ∈ ∂Ω, and

u0(x) =

∫

Ω

f(x, y)u0(y)dy, v0(x) =

∫

Ω

g(x, y)v0(y)dy, x ∈ ∂Ω,

by the compatibility conditions, we have u0, v0 > 0 for x ∈ ∂Ω. Denote by ǫ
the positive constant such that u0, v0 ≥ ǫ for x ∈ Ω. By Lemma 2.4, we have
u, v ≥ ǫ for (x, t) ∈ Ω× [0, T ). Furthermore, u(x, t) satisfies






ut ≥ ∆um + aǫq1up1(x, t), (x, t) ∈ Ω× (0, T ),

u =
∫
Ω
f(x, y)u(y, t)dy, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω.

Let u(x, t) ≡ s(t) be the unique solution of the ODE problem
{
s′(t) = aǫq1sp1(t),

s(0) = 1
2ǫ.

Then u(x, t) blows up in finite time since p1 > 1. Clearly,

ut = ∆um + aǫq1up1 , u(x, 0) ≤ u0(x).
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Furthermore, the assumption
∫
Ω f(x, y)dy ≥ 1 implies

u(x, t) ≤ u

∫

Ω

f(x, y)dy = s(t)

∫

Ω

f(x, y)dy =

∫

Ω

f(x, y)u(y, t)dy, (x, t) ∈ ST .

By Theorem 2.3, u(x, t) ≥ u(x, t) as long as both u(x, t) and u(x, t) exist, and
thus u(x, t) blows up in finite time for any positive initial data. �

Proof of Theorem 1.6. We know from the proof of Theorem 1.5 that u, v ≥ ǫ
for (x, t) ∈ Ω× [0, T ). Let (u(x, t), v(x, t)) ≡ (ω(t), µ(t)) be the unique solution
of the ODE problem

{
ω′(t) = aωp1(t)µq1 (t), µ′(t) = bµp2(t)ωq2(t),

ω(0) = 1
2ǫ, µ(0) = 1

2ǫ.

We know with q1q1 ≥ (1 − p1)(1 − p2) that (u(x, t), v(x, t)) blows up in finite
time (see [27]). Similarly the proof of Theorem 1.5, (u(x, t), v(x, t)) satisfies





ut = ∆um + aup1vq1(x0, t), vt = ∆vn + bvp2uq2(x0, t), (x, t) ∈ Ω× (0, T ),

u ≤
∫
Ω f(x, y)u(y, t)dy, v ≤

∫
Ω g(x, y)v(y, t)dy, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) ≤ u0(x), v(x, 0) ≤ v0(x), x ∈ Ω.

In view of Theorem 2.3, we have (u, v) ≥ (u(x, t), v(x, t)) for their common
existence time. Thus u(x, t) blows up in finite time for any positive initial
data. �

4. Blow-up rate estimates

In this section, we will show the blow-up rate of solution to problem (1.1).
We also assume that the solution (U, V ) blows up in finite time T ∗. To ob-
tain the estimate, we first introduce some transformations. Let U(x, τ) =
um(x, t), V (x, τ) = (n/m)n/(n−1)vn(x, t), τ = tm, then (1.1) becomes the
following system not in divergence form:






Uτ = U r1
(
∆U + a1U

p3V q3(x0, τ)
)
, x ∈ Ω, τ > 0,

Vτ = V r2
(
∆V + b1V

p4U q4(x0, τ)
)
, x ∈ Ω, τ > 0,

U =
( ∫

Ω f(x, y)U
1
m (y, τ)dy

)m
, x ∈ ∂Ω, τ > 0,

V =
( ∫

Ω
g(x, y)V

1
n (y, τ)dy

)n
, x ∈ ∂Ω, τ > 0,

U(x, 0) = U0(x), V (x, 0) = V0(x), x ∈ Ω,

(4.1)

where 0 < r1 = (m − 1)/m, 0 < r2 = (m − 1)/n, p3 = p1/m, q3 = q1/n,
p4 = p2/n, q4 = q2/m, a1 = a(m/n)q1/(n−1), b1 = b(m/n)(p2−n/(n−1), U0(x) =
um0 (x), V0(x) = (n/m)n/(n−1)vn0 (x). By the conditions q2 > p1 − 1 and q1 >
p2 − 1, we have q4 − p3 − r1 + 1 > 0 and q3 − p4 − r2 + 1 > 0.

Under this transformation, the assumptions (H1)–(H2) become
(H1′) ∆U0(x) + a1U

p3

0 (x)V q3(x0) ≥ 0, ∆V0(x) + b1V
p4

0 (x)U q4 (x0) ≥ 0 for
x ∈ Ω;
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(H2′) there exists a constant δ ≥ δ0 > 0 such that

∆U0(x) + a1U
p3

0 (x)V q3(x0)− δUk1+1−r1
0 (x) ≥ 0,

∆V0(x) + b1V
p4

0 (x)U q4 (x0)− δvk2+1−r2
0 (x) ≥ 0,

where δ0, k1, k2 will be given later.
Denote M1(τ) = maxx∈ΩU(x, τ), M2(τ) = maxx∈Ω V (x, τ). We can obtain

the blow-up rate from the following lemmas.

Lemma 4.1. Assume that U0(x), V0(x) satisfy (H1′)–(H2′). If q4−p3−r1+1 >
0 and q3 − p4 − r2 + 1 > 0, then there exists a positive constant C5 such that

(4.2)

M q4−p3−r1+1
1 (τ) +M q3−p4−r2+1

2 (τ) ≥ C5(T
∗ − τ)

−
(q4−p3−r1+1)(q3−p4−r2+1)

q3q4−(1−p3−r1)(1−p4−r2) .

Proof. From (4.1), we have (see [16], Theorem 4.5)

M ′
1(τ) ≤ a1M

p3+r1
1 M q3

2 , M ′
2(τ) ≤ b1M

q4
1 Mp4+r2

2 , a.e. t ∈ (0, T ∗).

Noticing that q4 − p3 − r1 + 1 > 0 and q3 − p4 − r2 + 1 > 0, hence we have
(
M q4−p3−r1+1

1 (τ) +M q3−p4−r2+1
2 (τ)

)′

≤
(
(q4 − p3 − r1 + 1)a1 + (q3 − p4 − r2 + 1)b1

)
M q4

1 (τ)M q3
2 (τ)

≤ C6

(
M q4−p3−r1+1

1 (τ) +M q3−p4−r2+1
2 (τ)

) q3(q4−p3−r1+1)+q4(q3−p4−r2+1)

(q4−p3−r1+1)(q3−p4−r2+1) ,(4.3)

by virtue of Young’s inequality. Integrating (4.3) from τ to T ∗, we draw the
conclusion. �

Lemma 4.2. Assume that U0(x), V0(x) satisfy (H1′)–(H2′),
∫

Ω

f(x, y)dy,

∫

Ω

g(x, t)dy ≤ 1

for all x ∈ ∂Ω. If q4 − p3 − r1 + 1 > 0 and q3 − p4 − r2 + 1 > 0, then
(4.4)
Uτ (x, τ)− δUk1+1(x, τ) ≥ 0, Vτ (x, τ)− δV k2+1(x, τ) ≥ 0, (x, τ) ∈ Ω× (0, T ∗),

where

k1 =
q3q4−(1− p3 − r1)(1 − p4 − r2)

q3 − p4 − r2 + 1
, k2 =

q3q4−(1− p3 − r1)(1 − p4 − r2)

q4 − p3 − r1 + 1
,

δ1 =
a1k1(1 + k1 − p3)

r1(2k1 + 1− r1 − p3)

(1 + k1 − p3
q3 + k2

) q3(2k1+1−r1−p3)

(q3+k2)k1
,

δ1 =
b1k2(1 + k2 − p4)

r2(2k2 + 1− r2 − p4)

(1 + k2 − p4
q4 + k1

) q4(2k2+1−r2−p4)

(q4+k1)k2
,

δ > δ0 = max{| δ1 |, | δ2 |}.



40 FEI LIANG

Proof. Let J1(x, τ) = Uτ−δU
k1+1, J2 = Vτ −δV

k2+1. A series of computations
yields

J1τ − U r1∆J1 −
(
2δr1U

k1 + a1p3U
r1+p3−1V q3(x0, τ)

)
J1

− a1q3U
r1+p3V q3−1(x0, τ)J2(x0, τ)

= r1U
−1J2

1 + δk1(k1 + 1)Uk1+r1−1 | ∇U |2 +r1δ
2U2k1+1

+ a1q3δU
r1+p3V q3+k2(x0, τ) − a1δ(1 + k1 − p3)U

k1+r1+p3V q3(x0, τ)

≥ r1δ
2U2k1+1 + a1q3δU

r1+p3V q3+k2(x0, τ)

− a1δ(1 + k1 − p3)U
k1+r1+p3V q3(x0, τ).

If 1 + k1 ≤ p3, obviously we have

J1τ − U r1∆J1 −
(
2δr1U

k1 + a1p3U
r1+p3−1V q3(x0, τ)

)
J1

− a1q3U
r1+p3V q3−1(x0, τ)J2(x0, τ) ≥ 0.(4.5)

Otherwise, noticing that k1/(2k1 +1− r1 − p3) + q3/(q3 + k2) = 1, by virtue of
Young’s inequality

Uk1V q3(x0, τ) ≤
k1

2k1+1−r1−p3
(θUk1 )

2k1+1−r1−p3
k1 +

q3
q3+k2

(V q3(x0, τ)

θ

) q3+k2
q3

,

where θ = (k1+1−p3

q3+k2
)q3/(q3+k2). Thus, we have

J1τ − U r1∆J1 −
(
2δr1U

k1 + a1p3U
r1+p3−1V q3(x0, τ)

)
J1

− a1q3U
r1+p3V q3−1(x0, τ)J2(x0, τ)

≥ r1δ
2U2k1+1 + a1q3δU

r1+p3V q3+k2(x0, τ)

− a1δ(1 + k1 − p3)U
k1+r1+p3V q3(x0, τ)

≥ r1δ(δ − δ1)U
2k1+1 ≥ 0.(4.6)

Similarly, we also have

J2τ − V r2∆J2 −
(
2δr2V

k2 + b1p4V
r2+p4−1U q4(x0, τ)

)
J2

− b1q4V
r2+p4V q4−1(x0, τ)J1(x0, τ) ≥ 0.(4.7)

Fix (x, t) ∈ ∂Ω× (0, T ∗), we have

J1(x, τ) = Uτ − δUk1+1

=
( ∫

Ω

f(x, y)u(y, τ)dy
)m−1

(
m

∫

Ω

f(x, y)uτ (y, τ)dy − δ
( ∫

Ω

f(x, y)u(y, τ)dy
)k1m+1

)
.

Since Uτ (y, τ) = J1(y, τ) + δUk1+1(y, τ), we have

m

∫

Ω

f(x, y)uτ (y, τ)dy − δ
( ∫

Ω

f(x, y)u(y, τ)dy
)k1m+1
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=

∫

Ω

f(x, y)U
1−m
m (y, τ)J1(y, τ)dy

+ δ
( ∫

Ω

f(x, y)U
k1m+1

m (y, τ)dy −
( ∫

Ω

f(x, y)U
1
m (y, τ)dy

)k1m+1
)
.

Noticing that 0 < F (x) =
∫
Ω f(x, y)dy ≤ 1, x ∈ ∂Ω, we can apply Jensen’s

inequality to the last integral in the above inequality,
∫

Ω

f(x, y)U
k1m+1

m (y, τ)dy −
( ∫

Ω

f(x, y)U
1
m (y, τ)dy

)k1m+1

≥ F (x)
( ∫

Ω

f(x, y)U
1
m (y, τ)dy/F (x)

)k1m+1

−
(∫

Ω

f(x, y)U
1
m (y, τ)dy

)k1m+1

≥ 0.

Here we use mk1 + 1 > 1 and 0 < F (x) ≤ 1 in the last inequality. Hence for
(x, t) ∈ ∂Ω× (0, T ∗), we have

(4.8) J1(x, τ) ≥
(∫

Ω

f(x, y)U
1
m (y, τ)dy

)m−1
∫

Ω

f(x, y)U
1−m
m (y, τ)J1(y, τ)dy.

Similarly, we also have

(4.9) J2(x, τ) ≥
(∫

Ω

f(x, y)V
1
n (y, τ)dy

)n−1
∫

Ω

f(x, y)U
1−n
n (y, τ)J2(y, τ)dy.

On the other hand, (H1′)–(H2′) imply that

(4.10) J1(x, 0) ≥ 0, J2(x, 0) ≥ 0.

By (4.5)–(4.10), Lemma 2.2 implies that J1, J2 ≥ 0 for (x, t) ∈ Ω × (0, T ∗).
That is (4.4) holds. �

Integrating (4.4) from τ to T ∗, we conclude that
{
M1(τ) ≤ C7(T

∗ − τ)−(q3−p4−r2+1)/(q3q4−(1−p3−r1)(1−p4−r2)),

M2(τ) ≤ C8(T
∗ − τ)−(q4−p3−r1+1)/(q3q4−(1−p3−r1)(1−p4−r2)),

(4.11)

where C7, C8 are positive constants independent of τ . It follows from Lemma
4.1 and (4.11), we have the following lemma.

Lemma 4.3. Assume that U0(x), V0(x) satisfy (H1′)–(H2′),
∫

Ω

f(x, y)dy,

∫

Ω

g(x, t)dy ≤ 1

for all x ∈ ∂Ω, q4 − p3 − r1 + 1 > 0 and q3 − p4 − r2 + 1 > 0. If (U, V ) blows

up in finite time T ∗, then there exists a positive constant C′
i(i = 1, 2, 3, 4) such

that

{
C′

1 ≤ maxx∈ΩU(x, τ)(T ∗ − τ)−(q3−p4−r2+1)/(q3q4−(1−p3−r1)(1−p4−r2)) ≤ C′
2,

C′
3 ≤ maxx∈Ω V (x, τ)(T ∗ − τ)−(q4−p3−r1+1)/(q3q4−(1−p3−r1)(1−p4−r2)) ≤ C′

4.

(4.12)
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According the transform and Lemma 4.3, we can obtain Theorem 1.7 imme-
diately.

Remark 4.1. From Theorem 1.7, we know that in the case of
∫
Ω f(x, y)dy ≤ 1

and
∫
Ω g(x, t)dy ≤ 1 for all x ∈ ∂Ω, the blow-up rate of degenerate parabolic

system with coupled nonlinear localized sources subject to weighted nonlocal
Dirichlet boundary conditions is the same as that of general degenerate para-
bolic system with nonlinear localized sources subject to null Dirichlet boundary
conditions.
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