References
- J. R. Anderson and K. Deng, Global existence for degenerate parabolic equations with a non-local forcing, Math. Methods Appl. Sci. 20 (1997), no. 13, 1069-1087. https://doi.org/10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO;2-Y
- J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Springer-Verlag, New York, 1989.
- K. Bimpong-Bota, P. Ortoleva, and J. Ross, Far-from-equilibrium phenomena at local cites of reaction, J. Chem. Phys. 60 (1974), 3124-3133. https://doi.org/10.1063/1.1681498
- D. E. Carlson, Linear thermoelasticity, Encyclopedia, vol. vIa/2, Springer, Berlin, 1972.
- J. M. Chadam, A. Peirce, and H. M. Yin, The blowup property of solutions to some diffusion equations with localized nonlinear reactions, J. Math. Anal. Appl. 169 (1992), no. 2 313-328. https://doi.org/10.1016/0022-247X(92)90081-N
- Y. Chen and H. Gao, Asymptotic blow-up behavior for a nonlocal degenerate parabolic equation, J. Math. Anal. Appl. 330 (2007), no. 2, 852-863. https://doi.org/10.1016/j.jmaa.2006.08.014
- A. Friedman, Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions, Quart. Appl. Math. 44 (1986), no. 3, 401-407.
- A. Friedman and J. B. Mcleod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), no. 2, 425-447. https://doi.org/10.1512/iumj.1985.34.34025
- W. A. Day, Extensions of a property of the heat equation to linear thermoelasticity and other theories, Quart. Appl. Math. 40 (1982), no. 3, 319-330.
- W. A. Day, A decreasing property of solutions of parabolic equations with applications to thermoelasticity, Quart. Appl. Math. 40 (1983), no. 4, 468-475.
- K. Deng, Comparison principle for some nonlocal problems, Quart. Appl. Math. 50 (1992), no. 3, 517-522.
- K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. 243 (2000), no. 1, 85-126. https://doi.org/10.1006/jmaa.1999.6663
- Y. Han and W. Gao, Global existence and blow-up for a class of degenerate parabolic systems with localized source, Acta Appl. Math. 112 (2010), no. 2, 251-261. https://doi.org/10.1007/s10440-010-9563-9
- L. H. Kong and M. X. Wang, Global existence and blow-up of solutions to a parabolic system with nonlocal sources and boundaries, Sci. China Ser. A 50 (2007), no. 9, 1251-1266. https://doi.org/10.1007/s11425-007-0105-5
- H. A. Levine, The role of critical exponents in blow up theorems, SIAM Rev. 32 (1990), 262-288. https://doi.org/10.1137/1032046
- H. L. Li and M. X. Wang, Properties of blow-up solutions to a parabolic system with nonlinear localized terms, Discrete Contin. Dyn. Syst. 13 (2005), no. 3, 683-700. https://doi.org/10.3934/dcds.2005.13.683
- P. Ortoleva and J. Ross, Local structures in chemical reactions with heterogeneous catal-ysis, J. Chem. Phys. 56 (1972), 4397-4400. https://doi.org/10.1063/1.1677879
- C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, 1992.
- C. V. Pao, Dynamics of reaction-diffusion equations with nonlocal boundary conditions, Quart. Appl. Math. 50 (1995), no. 1, 173-186.
- C. V. Pao, Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions, J. Comput. Appl. Math. 88 (1998), no. 1, 225-238. https://doi.org/10.1016/S0377-0427(97)00215-X
- C. V. Pao, Numerical solutions of reaction-diffusion equations with nonlocal boundary con-ditions, J. Comput. Appl. Math. 136 (2001), no. 1-2, 227-243. https://doi.org/10.1016/S0377-0427(00)00614-2
- S. Seo, Blowup of solutions to heat equations with nonlocal boundary conditions, Kobe J. Math. 13 (1996), no. 2, 123-132.
- S. Seo, Global existence and decreasing property of boundary values of solutions to parabolic equations with nonlocal boundary conditions, Pacific J. Math. 193 (2000), no. 1, 219-226. https://doi.org/10.2140/pjm.2000.193.219
- P. Souplet, Blow up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal. 29 (1998), no. 6, 1301-1334. https://doi.org/10.1137/S0036141097318900
- P. Souplet, Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Differential Equations 153 (1999), no. 2, 374-406. https://doi.org/10.1006/jdeq.1998.3535
- Y. L. Wang, C. L. Mu, and Z. Y. Xiang, Blowup of solutions to a porous medium equation with nonlocal boundary condition, Appl. Math. Comput. 192 (2007), no. 2, 579-585. https://doi.org/10.1016/j.amc.2007.03.036
- M. X. Wang and Y. M. Wang, Properties of positive solutions for non-local reaction- diffusion problems, Math. Methods Appl. Sci. 19 (1996), no. 14, 1141-1156. https://doi.org/10.1002/(SICI)1099-1476(19960925)19:14<1141::AID-MMA811>3.0.CO;2-9
- Y. L. Wang and Z. Y. Xiang, Blowup analysis for a semilinear parabolic system with nonlocal boundary condition, Boundary Value Problems 2009 (2009), Article ID 516390, 14 pages.
- Z. Y. Xiang, X. G. Hu, and C. L. Mu, Neumann problem for reaction-diffusion systems with nonlocal nonlinear sources, Nonlinear Anal. 61 (2005), no. 7, 1209-1224. https://doi.org/10.1016/j.na.2005.01.098
- H. M. Yin, On a class of parabolic equations with nonlocal boundary conditions, J. Math. Anal. Appl. 294 (2004), no. 2, 712-728. https://doi.org/10.1016/j.jmaa.2004.03.021
- Y. F. Yin, On nonlinear parabolic equations with nonloal boundary conditions, J. Math. Anal. Appl. 185 (1994), no. 1, 161-174. https://doi.org/10.1006/jmaa.1994.1239
- S. N. Zheng and L. H. Kong, Roles of weight functions in a nonlinear nonlocal parabolic system, Nonlinear Anal. 68 (2008), no. 8, 2406-2416. https://doi.org/10.1016/j.na.2007.01.067