• 제목/요약/키워드: annihilator

검색결과 69건 처리시간 0.021초

ON INJECTIVITY AND P-INJECTIVITY, IV

  • Chi Ming, Roger Yue
    • 대한수학회보
    • /
    • 제40권2호
    • /
    • pp.223-234
    • /
    • 2003
  • This note contains the following results for a ring A : (1) A is simple Artinian if and only if A is a prime right YJ-injective, right and left V-ring with a maximal right annihilator ; (2) if A is a left quasi-duo ring with Jacobson radical J such that $_{A}$A/J is p-injective, then the ring A/J is strongly regular ; (3) A is von Neumann regular with non-zero socle if and only if A is a left p.p.ring containing a finitely generated p-injective maximal left ideal satisfying the following condition : if e is an idempotent in A, then eA is a minimal right ideal if and only if Ae is a minimal left ideal ; (4) If A is left non-singular, left YJ-injective such that each maximal left ideal of A is either injective or a two-sided ideal of A, then A is either left self-injective regular or strongly regular : (5) A is left continuous regular if and only if A is right p-injective such that for every cyclic left A-module M, $_{A}$M/Z(M) is projective. ((5) remains valid if 《continuous》 is replaced by 《self-injective》 and 《cyclic》 is replaced by 《finitely generated》. Finally, we have the following two equivalent properties for A to be von Neumann regula. : (a) A is left non-singular such that every finitely generated left ideal is the left annihilator of an element of A and every principal right ideal of A is the right annihilator of an element of A ; (b) Change 《left non-singular》 into 《right non-singular》in (a).(a).

ON QB-IDEALS OF EXCHANGE RINGS

  • Chen, Huanyin
    • 대한수학회보
    • /
    • 제46권5호
    • /
    • pp.873-884
    • /
    • 2009
  • We characterize QB-ideals of exchange rings by means of quasi-invertible elements and annihilators. Further, we prove that every $2\times2$ matrix over such ideals of a regular ring admits a diagonal reduction by quasi-inverse matrices. Prime exchange QB-rings are studied as well.

ANNIHILATORS OF SUBTRACTION ALGEBRAS

  • JUN, YOUNG BAE
    • 호남수학학술지
    • /
    • 제27권3호
    • /
    • pp.333-341
    • /
    • 2005
  • A characterization of prime ideals is discussed. A relation between prime ideals and ideals of the form $A_w^{\wedge}$ is given. The prime ideal theorem is established. The notion of annihilators is introduced, and basic properties are investigated.

  • PDF

INJECTIVE PROPERTY RELATIVE TO NONSINGULAR EXACT SEQUENCES

  • Arabi-Kakavand, Marzieh;Asgari, Shadi;Tolooei, Yaser
    • 대한수학회보
    • /
    • 제54권2호
    • /
    • pp.559-571
    • /
    • 2017
  • We investigate modules M having the injective property relative to nonsingular modules. Such modules are called "$\mathcal{N}$-injective modules". It is shown that M is an $\mathcal{N}$-injective R-module if and only if the annihilator of $Z_2(R_R)$ in M is equal to the annihilator of $Z_2(R_R)$ in E(M). Every $\mathcal{N}$-injective R-module is injective precisely when R is a right nonsingular ring. We prove that the endomorphism ring of an $\mathcal{N}$-injective module has a von Neumann regular factor ring. Every (finitely generated, cyclic, free) R-module is $\mathcal{N}$-injective, if and only if $R^{(\mathbb{N})}$ is $\mathcal{N}$-injective, if and only if R is right t-semisimple. The $\mathcal{N}$-injective property is characterized for right extending rings, semilocal rings and rings of finite reduced rank. Using the $\mathcal{N}$-injective property, we determine the rings whose all nonsingular cyclic modules are injective.

SPECIAL WEAK PROPERTIES OF GENERALIZED POWER SERIES RINGS

  • Ouyang, Lunqun
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.687-701
    • /
    • 2012
  • Let $R$ be a ring and $nil(R)$ the set of all nilpotent elements of $R$. For a subset $X$ of a ring $R$, we define $N_R(X)=\{a{\in}R{\mid}xa{\in}nil(R)$ for all $x{\in}X$}, which is called a weak annihilator of $X$ in $R$. $A$ ring $R$ is called weak zip provided that for any subset $X$ of $R$, if $N_R(Y){\subseteq}nil(R)$, then there exists a finite subset $Y{\subseteq}X$ such that $N_R(Y){\subseteq}nil(R)$, and a ring $R$ is called weak symmetric if $abc{\in}nil(R){\Rightarrow}acb{\in}nil(R)$ for all a, b, $c{\in}R$. It is shown that a generalized power series ring $[[R^{S,{\leq}}]]$ is weak zip (resp. weak symmetric) if and only if $R$ is weak zip (resp. weak symmetric) under some additional conditions. Also we describe all weak associated primes of the generalized power series ring $[[R^{S,{\leq}}]]$ in terms of all weak associated primes of $R$ in a very straightforward way.

RINGS IN WHICH SUMS OF d-IDEALS ARE d-IDEALS

  • Dube, Themba
    • 대한수학회지
    • /
    • 제56권2호
    • /
    • pp.539-558
    • /
    • 2019
  • An ideal of a commutative ring is called a d-ideal if it contains the annihilator of the annihilator of each of its elements. Denote by DId(A) the lattice of d-ideals of a ring A. We prove that, as in the case of f-rings, DId(A) is an algebraic frame. Call a ring homomorphism "compatible" if it maps equally annihilated elements in its domain to equally annihilated elements in the codomain. Denote by $SdRng_c$ the category whose objects are rings in which the sum of two d-ideals is a d-ideal, and whose morphisms are compatible ring homomorphisms. We show that $DId:\;SdRng_c{\rightarrow}CohFrm$ is a functor (CohFrm is the category of coherent frames with coherent maps), and we construct a natural transformation $RId{\rightarrow}DId$, in a most natural way, where RId is the functor that sends a ring to its frame of radical ideals. We prove that a ring A is a Baer ring if and only if it belongs to the category $SdRng_c$ and DId(A) is isomorphic to the frame of ideals of the Boolean algebra of idempotents of A. We end by showing that the category $SdRng_c$ has finite products.

NOTES ON ${\overline{WN_{n,0,0_{[2]}}}$ I

  • CHOI, SEUL HEE
    • 호남수학학술지
    • /
    • 제27권4호
    • /
    • pp.571-581
    • /
    • 2005
  • The Weyl-type non-associative algebra ${\overline{WN_{g_n,m,s_r}}$ and its subalgebra ${\overline{WN_{n,m,s_r}}$ are defined and studied in the papers [8], [9], [10], [12]. We will prove that the Weyl-type non-associative algebra ${\overline{WN_{n,0,0_{[2]}}}$ and its corresponding semi-Lie algebra are simple. We find the non-associative algebra automorphism group $Aut_{non}({\overline{WN_{1,0,0_{[2]}}})$.

  • PDF

NOTES ON ${\overline{WN_{n,0,0_{[2]}}}$ II

  • CHOI, SEUL HEE
    • 호남수학학술지
    • /
    • 제27권4호
    • /
    • pp.583-593
    • /
    • 2005
  • The Weyl-type non-associative algebra ${\overline{WN_{g_n,m,s_r}}$ and its subalgebra ${\overline{WN_{n,m,s_r}}$ are defined and studied in the papers [2], [3], [9], [11], [12]. We find the derivation group $Der_{non}({\overline{WN_{1,0,0_{[2]}}})$ the non-associative simple algebra ${\overline{WN_{1,0,0_{[2]}}}$.

  • PDF