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ANNIHILATORS OF SUBTRACTION ALGEBRAS

YounG BAE Jun

Abstract. A characterization of prime ideals is discussed. A rela-

tion between prime ideals and ideals of the form A} is given. The

prime ideal theorem is established. The notion of annihilators is

introduced, and basic properties are investigated.

1. Introduction

B. M. Schein [6] considered systems of the form (®;0,\), where ® is a
set of functions closed under the composition “o” of functions (and hence
(®; o) is a function semigroup) and the set theoretic subtraction “\” (and
hence (®;\) is a subtraction algebra in the sense of [1]). He proved that
every subtraction semigroup is isomorphic to a difference semigroup of
invertible functions. B. Zelinka [7] discussed a problem proposed by B.
M. Schein concerning the structure of multiplication in a subtraction
semigroup. He solved the problem for subtraction algebras of a special
type, called the atomic subtraction algebras. Y. H. Kim and H. S. Kim
[5] showed that a subtraction algebra is equivalent to an implicative
BCK-algebra, and a subtraction semigroup is a special case of a BCI-
semigroup (or, IS-algebra as a new name) which is a generalization of a
ring. Y. B. Jun et al. [3] introduced the notion of ideals in subtraction
algebras and discussed characterization of ideals. In [2], Y. B. Jun and
H. S. Kim established the ideal generated by a set, and discussed related
results. Y. B. Jun and K. H. Kim [4] introduced the notion of prime and
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irreducible ideals of a subtraction algebra, and gave a characterization
of a prime ideal. They also provided a condition for an ideal to be a
prime/irreducible ideal. In this paper, we give other characterization of
prime ideals. We discuss a relation between prime ideals and ideals of
the form A}). We construct prime ideal theorem. We also introduce the

notion of annihilators, and investigate basic properties.

2. Preliminaries

By a subtraction algebra we mean an algebra (X;—) with a single

53

binary operation “—” that satisfies the following identities: for any

z,y,2 € X,

(S) z—(y—z) ==z

(52) 2 - (z-y) =y - (y—=);

(83) (z—y)-z=(z—2)~v.

The last identity permits us to omit parentheses in expressions of the
form (z — y) — 2. The subtraction determines an order relation on X:
a<b < a—b=0, where 0 = a —a is an element that does not depend
on the choice of a € X. The ordered set (X; <) is a semi-Boolean algebra
in the sense of 1], that is, it is a meet semilattice with zero 0 in which
every interval [0,a| is a Boolean algebra with respect to the induced
order. Here a Ab = a — (a — b); the complement of an element b € [0, a]
is a — b; and if b, ¢ € [0, a], then

bve = (UAd) =a-({a=b)A(a—2c))
= a—((a=b)=((a-b) —(a-0))
In a subtraction algebra, the following are true (see [3, 4]):

(al) (z-y)—y=z-y.

(a2) z— 0=z and 0 —z = 0.
(a3) (z—y)—z=0.
(a4) z — (z —y) < y.
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)
)
) (z-y)-(z-y) <z -2

a8) x <y if and only if z = y — w for some w € X.

a9) r<yimpliesz —z<y—zandz—y<z—zforall z € X.
(al0) z,y < z implies z —y =z A (2 — ¥).

(all) (xAy)—(zAz) <z A(y—2)

3. Prime ideals and Annihilators

In what follows let X denote a subtraction algebra unless otherwise

specified.
Definition 3.1. (Jun et al. [3]) A nonempty subset A of X is called
an ideal of X if it satisfies

(I1) 0 A
(I2) ye Aandz—y € Aimplyz € Aforall z,y € X.

Note that an ideal A of X has the following property: If <y and
y € A, then z € A (see [4, Lemma 3.2]). For any subset A of X the

minimal ideal of X containing A is called the ideal generated by A, and
denoted by (A). Then by [2, Theorem 3.2], we have

(A)={r e X |(((=a)—a) =) =a=0

for some ay,az, - ,an € A}

For any nonnegative integer n we define z—n(y) recursively as follows:
z-0y) =z z—1(y) =z -y, and z — (n+1)(y) = (z —n(y)) —y for
all z,y € X.

Theorem 3.2. Let A be an ideal of X and w € X. Then

(AU{w}) = {z € X | 2 — n(w) € A for some nonnegative integer n}.
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Proof. Denote
Q:={r € X |z —n(w) € A for some nonnegative integer n}.
Let z € (AU {w}). Then
((-({z—a1) —ag) =) —an) — k(w) =0

for some a1, as,- -+ ,a, € A and some nonnegative integer k. Using (S3)

repeatedly, we have
(@ =kw) —a) =) —an=0€ 4,

and so z — k(w) € A by (I2). This shows that z € Q so that (AU{w}) C

2. Conversely if z € Q, then there exists a nonnegative integer n such

that x — n(w) € A. Since A C (AU {w}), it follows that
(z—(n—-1(w)) —w=2z—n(w) € (AU {w})

so that x — (n — 1)(w) € (AU {w}). Repeating this process we conclude
that z = 2z — 0(w) € (AU {w}). Thus Q C (A U {w}). This completes
the proof. O

Theorem 3.3. (Jun and Kim [4, Theorem 3.4]) Let A be an ideal of
X. For any w € X, the set

Ay ={zeX|wAze A}
is an ideal of X containing A.

Definition 3.4. (Jun and Kim [4]) A prime ideal of X is defined to
be an ideal P of X such thatif z Ay € Pthenz € Porye P.

Proposition 3.5. Let P and A be ideals of X such that A C P. If
P is prime, then A, C P for allw € X \ P.

Proof. Let x € Al for all w € X \ P. Then wAz € A C P. Since
P is prime, it follows that z € P because w ¢ P. Hence A{l\) C P for all
we X\ P O
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Proposition 3.6. If P is a prime ideal of X, then X \ P is A-closed,
that is, z Ay € X \ P wheneverz € X\ P andy e X \ P.

Proof. The proof is straightforward. O

Theorem 3.7. An ideal A of X is prime if and only if A}, = A for
allwe X\ A

Proof. Suppose A is a prime ideal of X and let w € X \ A. If z € A},
then wAz € A, and so z € A. Hence A), = A. Conversely assume that
AN = Afor all w € X \ A. Let z,y € X be such that z Ay € A and
z ¢ A. Then y € A} = A, hence A is prime. O

Proposition 3.8. If A is an ideal of X, then A = A}, N (AU {w})
forallw e X \ A.

Proof. Obviously, A € AN N (AU {w}). Let z € A, N (AU {w}).
Then w Az € A and z € (AU {w}). It follows from Theorem 3.2 that

z — n(w) € A for some nonnegative integer n. Now

r—-n(w) = (x—(”—l)(w)):w (3.1)

= (z-(n-1Dw)) - (z - (n=-1)(w)) Aw).

Since z — (n — 1)(w) < z, therefore
(z—(n-Dw)Aw<zAw=wAx

and so (z— (n—1)(w))Aw € A. Applying (3.1) and (I2), we have z—(n—
1)(w) € A. Continuing this process, we get € A and, consequently,
AN (AU {w}) C A. This completes the proof. O

Theorem 3.9. (prime ideal theorem) Let A be an ideal of X and
G a AN-closed subset of X for which A and G are disjoint. Then there
exists a prime ideal P of X such that AC P and GNP = 0.

Proof. Using an application of Zorn’s lemma we know that there is
an ideal P being the maximal element of the family of all ideals that

contain A and have empty intersection with G. We now prove that P
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is prime. Suppose that P is not prime. Then, by Theorem 3.7, there
exists an element w € X \ P such that P, # P. Note that P is properly
contained in both P} and (P U {w}); therefore the maximality of P
implies that P) NG # @ and (PU{w}) NG # 0. Let z € PANG and
y € (PU{w})NG. Then z Ay € P> N (PU{w}) = P by Proposition
3.8, and z Ay € G because G is A-closed. Consequently, zAy € PNG
and so PN G # 0, a contradiction. This completes the proof. a

Definition 3.10. Let S be a nonempty subset of X. The annihilator
of S is the subset S® of X given by

S*={zeX|zAny=0foralyeS}

If § = {z}, we write 2* instead of {z}*. It is obvious that X¢ = {0}
and 0° = X.

Proposition 3.11. Let S and T be nonempty subsets of X. Then

(i) z€ S*ifandonly ift—y =z forally € S ifand only ify —z = y
forally € S.
(ii) S* is an ideal of X.
(ili) S C T implies T* C §°.
(iv) § C (5°)°.
(v) 8% = ((5%)%)".
(vi) (SUT)* = 8*nNT°
(vii) §* = (] z°
) S

€S
nse = {0}.

(viii

Proof. (i) If z € S*, thenz — (z —y) =z Ay =0 for all y € S and
soz <z—y. Sincez —y <z forall z,y € X, it follows that z — y = z
for all y € S. Using (S2), we conclude that y —z = y for all y € S.
Conversely, if v —y =z (or y—xz = y) for all y € S, then clearly z € 5.

(ii) Obviously 0 € S®. Let z,y € X be such that y € S® and z — y €
S¢. Using (i), wehavew —~y=wandw—(z —y) =wforallw € S. It
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follows from (a7) that
w=w—(z-y)=(w-y)~(&-y) Sw-z.

But since w — z < w, we conclude that w — z = w for all w € S, and so
z € S% by (i). Therefore S* is an ideal of X.

(iii) Assume that S C T and let z € 7% Then z Aw = 0 for all
w e T. Since S C T, it follows that z A w = 0 for all w € S, that is,
z € §°. Hence T* C S%.

(iv) Let y € S. Then y Az =2z Ay =0 for all z € 5%, which implies
that y € (§%)%. Thus S C (5%)%.

(v) Using (iii) and (iv), we get ((S“)“)a C S°. Replacing S by 5% in
(iv), we obtain S® C <(Sa)“>a. Therefore (v) is valid.

(vi) Using (iii), we have (SUT)* C §* and (SUT)* € T*. Hence
(SuT)* C §*NT* Now let = € SN T Then z € 8% and z € T°.
Let y € SUT. If y € S, then z Ay = 0 since z € 5% and if y € T then
z Ay = 0since z € T It follows that zAy =0 forally € SUT so that
z € (SUT)? Thus (vi) is valid.

(vii) Since S = |J {z}, we have S® = [] z%.

z€S z€S
(viii) Let z € SN S Then z = x Az = 0, and thus 5N 5* = {0}.
This completes the proof. O

Proposition 3.12. Let S and T be ideals of X. Then
(i) SNT = {0} if and only if S C T*.
(i) SN(SNT)* CcTe.

Proof. (i) Assume that SNT = {0} and let z € S. For any y € T},
if y = 0, then clearly z Ay = 0. If y # 0, then y ¢ S by assumption.
But z Ay <  implies z Ay € S because S is an ideal of X and z € S;
and z Ay < y implies z Ay € T because T is an ideal of X andy eT.
Hence z Ay € SNT = {0}, and so z Ay = 0. Therefore z € T* and
consequently S C T*. Conversely, if S C T* then SNT CT*NT = {0}.
Since {0} € SNT, it follows that SN T = {0}.
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(ii) Note from Proposition 3.11(viii) that
{0} =(SNT)NSNT)*=(SN(SNT)*)NT,
which is equivalent to SN (SN T)* C T* by (i). O
Theorem 3.13. If S is an ideal of X, then (S%)* = §.

Proof. Let z € X\ Sandy € S. Since (z—y) —y =z — y, it follows
from Proposition 3.11(i) that z — y € $2. Note that S N (§%)e = {0}.
Hence z —y ¢ (5%)%, because if z — y € (S%)% then z — y = 0 and thus
z € S by (I1) and (I2), a contradiction. But y € S C (5%)¢ and (S%)@
being an ideal imply that = ¢ (§%). Consequently, (8%) C S. This
completes the proof. O

Corollary 3.14. If S and T are ideals of X, then S N T* = {0} if
and only if S C T.

Theorem 3.15. If S and T are ideals of X, then (SNT)* = (S*uT?).

Proof. Since SNT C S, T, it follows from Proposition 3.11(iii) that
§¢ S (SNT)* and T° C (SNT)" s0 that (S*UT®) C (SN T)e. Note
that 5% 7% C S*UT* C (5% UT®*). Hence, by Proposition 3.11(iii)
and Theorem 3.13, we have (S U T%)¢ C ($%)* = S and (Seu Ty C
(T%)* =T, and so (S*UT*)* C SN T. Using Proposition 3.11(iii) and

Theorem 3.13 again, we conclude that
(SNT)* C ((STUTH)* = (STUT).
Consequently, (SNT)* = (S*UT?). O
Theorem 3.16. If S is a subset of X, then (S) = (S2)e.

Proof. From (ii) and (iv) of Proposition 3.11 it follows that (S) C
(8*)*. Since S C (S), by Proposition 3.11(iii) we get (S)* C S, and
so (8%)* C ((S)%)* = (S) by Proposition 3.11(iii) and Theorem 3.13.
Hence (S) = (59)2, O
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