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ON QB-IDEALS OF EXCHANGE RINGS

Huanyin Chen

Abstract. We characterize QB-ideals of exchange rings by means of
quasi-invertible elements and annihilators. Further, we prove that every
2×2 matrix over such ideals of a regular ring admits a diagonal reduction
by quasi-inverse matrices. Prime exchange QB-rings are studied as well.

1. Introduction

In [1], Ara et al. discovered a new class of rings, the QB-rings, so as to
study directly infinite rings. A ring R is a QB-ring if aR + bR = R with
a, b ∈ R implies that a + by ∈ R−1

q for a y ∈ R, where R−1
q = {u ∈ R | ∃v ∈

R such that (1 − uv) ⊥ (1 − vu)}. Further, they extended QB-rings to rings
without unit. An ideal I of a ring R is a QB-ideal in case xa− x− a+ b = 0
with x, a, b ∈ I implies that there exists y ∈ I such that 1− (a− yb) ∈ R−1

q (cf.
[3-6]).

A ring R is an exchange ring if for every right R-module A and any two
decompositions A = M ⊕ N =

⊕
i∈I Ai, where MR

∼= R and the index set I
is finite, then there exist submodules A′i ⊆ Ai such that A = M ⊕ (

⊕
i∈I A

′
i).

Many authors have investigated exchange rings with some kind of weak stable
range conditions so as to study problems related partial cancellation properties
of modules. For general theory of exchange rings, we refer the reader to [9].

We establish, in this article, several equivalent conditions for an ideal of an
exchange ring to be a QB-ideal. We show that an ideal I of an exchange ring
R is a QB-ideal if and only if for any x ∈ 1 + I, x = xyx implies that there
exists a u ∈ R−1

q such that x = xyu = uyx if and only if for any x ∈ 1 + I,
x = xyx implies that there exists a u ∈ R−1

q such that xyu = uyx. These
extend the corresponding results on weakly stable rings (cf. [10]). Further, we
characterize such ideals by means of annihilators for regular rings. The m×m
matrix A = (aij), 1 ≤ i, j ≤ n, is said to be diagonal if aij = 0 for all i 6= j.
The m×m matrix A admits diagonal reduction if there exist P,Q ∈Mn(R)−1

q

such that PAQ is a diagonal matrix. We will prove that every 2×2 matrix over
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QB-ideal of regular rings admits diagonal reduction. Prime exchange QB-rings
are studied as well.

Throughout, all rings are associative with identity. An element x ∈ R is
regular provided that x = xyx for a y ∈ R. GL2(R) denotes the 2-dimensional
general linear groups of a ring R. The notation u ⊥ v means that uRv = 0 =
vRu.

2. Element-wise characterizations

By the symmetry of QB-ideals, we see that I is a QB-ideal of R if and only
if aR+ bR = R with a ∈ 1 + I, b ∈ R implies that there exists y ∈ R such that
a + by ∈ R−1

q if and only if Ra + Rb = R with a ∈ 1 + I, b ∈ R implies that
there exists z ∈ R such that a+ zb ∈ R−1

q . We begin with a simple fact.

Lemma 2.1. Let I be an ideal of a ring R. Then the following are equivalent:
(1) I is a QB-ideal.
(2) Whenever aR + bR = R with a ∈ 1 + I, b ∈ I, there exists y ∈ R such

that a+ by ∈ R−1
q .

(3) Whenever Ra+ Rb = R with a ∈ 1 + I, b ∈ I, there exists z ∈ R such
that a+ zb ∈ R−1

q .

Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (1) Suppose that ax + b = 1 with a ∈ 1 + I, x, b ∈ R. Then a(x +

b) + (1 − a)b = 1; hence, aR + (1 − a)bR = R. So we have y ∈ R such that
a+(1−a)by ∈ R−1

q . As is known, we have z ∈ R such that x+
(
1+z(1−a)) =

x+ b+ z(1− a)b ∈ R−1
q . Therefore I is a QB-ideal of R.

(1) ⇔ (3) is proved by symmetry. �

Lemma 2.2. Let I be an ideal of an exchange ring R. Then the following are
equivalent:

(1) I is a QB-ideal.
(2) For any regular x ∈ 1 + I, there exists u ∈ R−1

q such that x = xux.

Proof. It is an immediate consequence of [6, Lemma 2.1]. �

Theorem 2.3. Let I be an ideal of an exchange ring R. Then the following
are equivalent:

(1) I is a QB-ideal.
(2) For any regular x ∈ 1 + I, there exists u ∈ R−1

q such that ux ∈ 1 + I is
an idempotent.

(3) For any regular x ∈ 1 + I, there exists u ∈ R−1
q such that xu ∈ 1 + I is

an idempotent.

Proof. (1) ⇒ (2) Given any regular x ∈ 1 + I, by Lemma 2.2, there exists a
u ∈ R−1

q such that x = xux. Clearly, u ∈ 1 + I. Set e = ux. Then e ∈ 1 + I is
an idempotent.
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(2) ⇒ (1) Suppose that ax + b = 1 with a ∈ 1 + I, x ∈ R and b ∈ I. Since
R is an exchange ring, there exists an idempotent e ∈ R such that e = bs and
1 − e = (1 − b)t for some s, t ∈ R. Analogously to Lemma 2.2, we claim that
(1− e)a ∈ 1+ I is regular. Hence there exists u ∈ R−1

q such that u(1− e)a = f
is an idempotent of R. So fxt+ue = u, whence f(x+ue)+(1−f)ue = u. Let
g = (1− f)uev(1− f). Similarly to Lemma 2.2, we show that w(a+ by)w = w,
where y = s

(
v(1 − f) − a

)
and w =

(
1 + fuev(1 − f)

)
u ∈ R−1

q . Therefore
a+ by ∈ R−1

q . It follows from Lemma 2.1 that I is a QB-ideal of R.
(1) ⇔ (3) is symmetric. �

Theorem 2.4. Let I be an ideal of an exchange ring R. Then the following
are equivalent:

(1) I is a QB-ideal.
(2) For any x ∈ 1 + I, x = xyx implies that there exists a u ∈ R−1

q such
that x = xyu.

(3) For any x ∈ 1 + I, x = xyx implies that there exists a u ∈ R−1
q such

that x = uyx.

Proof. (1) ⇒ (2) Suppose that x = xyx with x ∈ 1+I. Since xy+(1−xy) = 1,
we have that x+(1−xy)z ∈ R−1

q for some z ∈ R. Hence x = xy
(
x+(1−xy)z) =

xyu, where u := x+ (1− xy)z ∈ R−1
q .

(2) ⇒ (1) Suppose that x = xyx with x ∈ 1 + I. Then there exists a
u ∈ R−1

q such that x = xyu. This implies that there exist two ideals I and J
of R such that IJ = 0 = JI and u ∈ R/I is right invertible and u ∈ R/J is left
invertible. Let e = xy. Then e ∈ R is an idempotent. Since xy + (1− xy) = 1,
we have that euy + (1 − xy) = 1, and so euy(1 − e) + (1 − xy)(1 − e) =
1 − e. Hence, e + (1 − xy)(1 − e) = 1 − euy(1 − e) ∈ U(R). Thus, we get
x+ (1− xy)(1− e)u =

(
1− euy(1− e)

)
u ∈ R/I is right invertible. Likewise,

x+ (1− xy)(1− e)u ∈ R/J is left invertible. Thus, x+(1−xy)(1−e)u ∈ R−1
q .

This implies that we have an element z ∈ R such that w := y+z(1−xy) ∈ R−1
q .

Therefore x = x
(
y + z(1− xy)

)
x = xwx, and that I is a QB-ideal.

(1) ⇔ (3) Applying (1) ⇔ (2) to the opposite ring Rop, we complete the
proof. �

Corollary 2.5. Let I be an ideal of an exchange ring R. Then the following
are equivalent:

(1) I is a QB-ideal.
(2) For every regular x ∈ 1 + I, there exist an idempotent e ∈ 1 + I and a

u ∈ R−1
q such that x = eu.

(3) For every regular x ∈ 1 + I, there exist an idempotent e ∈ 1 + I and a
u ∈ R−1

q such that x = ue.
(4) For every regular x ∈ 1 + I, there exist an idempotent e ∈ 1 + I and a

u ∈ R−1
q such that x = eu or ue.
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Proof. (1) ⇒ (2) is clear by Theorem 2.4.
(2) ⇒ (4) is trivial.
(4) ⇒ (1) Given any regular x ∈ 1 + I, we have an element y ∈ 1 + I

such that x = xyx and y = yxy. By assumption, there is an idempotent
e ∈ 1 + I and a u ∈ R−1

q such that y = eu or ue. Assume that y = eu.
Since yx+ (1− yx) = 1, eux+ (1− yx) = 1. As in the proof of Theorem 2.4,
we have that y + (1 − yx)(1 − e)u =

(
1 − eux(1 − e)

)
u ∈ R−1

q . This implies
that x = xyx = xwx, where w :=

(
1 − eux(1 − e)

)
u ∈ R−1

q . Assume that
y = ue. Obviously, xy+ (1− xy) = 1. Similarly, there exists a z ∈ R such that
w := y + z(1 − xy) ∈ R−1

q . It is easy to verify x = xyx = xwx. Lemma 2.2
applies.

(1) ⇔ (3) Applying (1) ⇔ (2) to the opposite ring Rop, the proof is true. �
Corollary 2.6. Let I be an ideal of an exchange ring R. Then the following
are equivalent:

(1) I is a QB-ideal.
(2) For any a, b ∈ 1 + I, aR = bR implies that there exists a u ∈ R−1

q such
that b = au.

(3) For any a, b ∈ 1 + I, Ra = Rb implies that there exists a u ∈ R−1
q such

that b = ua.

Proof. (1) ⇒ (2) For any a, b ∈ 1 + I, aR = bR implies that ax = b and
by = a for some x, y ∈ R. Further, x, y ∈ 1 + I. Since xy + (1 − xy) = 1,
there exists some z ∈ R such that u := x + (1 − xy)z ∈ R−1

q . Therefore
b = ax = a

(
x+ (1− xy)z

)
= au, as asserted.

(2) ⇒ (1) Given any regular x ∈ 1 + I, there exists a y ∈ 1 + I such that
x = xyx. Hence, xyR = xR. By assumption, we have a u ∈ R−1

q such that
x = xyu. According to Corollary 2.5, I is a QB-ideal.

(1) ⇔ (3) is symmetric. �
The following is an extension of the corresponding result on weakly stable

rings (cf. [10, Theorem 3.6]).

Theorem 2.7. Let I be an ideal of an exchange ring R. Then the following
are equivalent:

(1) I is a QB-ideal.
(2) For any x ∈ 1 + I, x = xyx implies that there exists a u ∈ R−1

q such
that x = xyu = uyx.

(3) For any x ∈ 1 + I, x = xyx implies that there exists a u ∈ R−1
q such

that xyu = uyx.

Proof. (1) ⇒ (2) Given any x = xyx and x ∈ 1 + I, then we have x = xzx, z =
zxz, where z = yxy. Since I is a QB-ideal, it follows by Lemma 2.2 that there
exists a v ∈ R−1

q such that z = zvz. Let u = (1 − xz − vz)v(1 − zx − zv).
One easily checks that (1 − xz − vz)2 = 1 = (1 − zx − zv)2. Hence u ∈ R−1

q .
Clearly, xzu = −xzv(1− zx− zv) = −xzv + xzx+ xzv = xzx = x and uzx =
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(1− xz − vz)v(−zvzx) = −(1− xz − vz)vzx = −vzx+ xzx+ vzx = xzx = x.
Thus, x = xzu = x(yxy)u = xyu and x = uzx = u(yxy)x = uyx. As a result,
we see that x = xyu = uyx.

(2) ⇒ (3) is trivial.
(3) ⇒ (1) Given x = xyx and x ∈ 1 + I, there exists a u ∈ R−1

q such that
xyu = uyx. Thus, we can find some ideals I and J such that IJ = 0 = JI,
and that uv ≡ 1 (mod I) or vu ≡ 1 (mod J). Construct two maps

ϕ : xR⊕ (1− xy)R→ yxR⊕ (1− yx)R;
ϕ
(
xr + (1− xy)s) = yxr + (1− yx)v(1− xy)s for any r, s ∈ R

and
φ : yR⊕ (1− yx)R→ xR⊕ (1− xy)R,

φ
(
yr + (1− yx)s) = xyr + u(1− yx)s for any r, s ∈ R.

One easily checks that xϕ(1)x = xϕ(x) = xyx = x. Furthermore, we see that

1− φ(1)ϕ(1) = 1− φ
(
ϕ(1)

)
= 1− φ

(
yxy + (1− yx)v(1− xy)

)
= 1− (xyxy + u(1− yx)v(1− xy)

)
= (1− xy)(1− uv)(1− xy).

Likewise, we have that 1−ϕ(1)φ(1) = (1−yx)(1−vu)(1−yx). Thus, ϕ(1)φ(1) ≡
1 (mod I) or φ(1)ϕ(1) ≡ 1 (mod J). Hence, ϕ(1) ∈ R−1

q , and so we complete
the proof. �
Corollary 2.8. Let I be an ideal of an exchange ring R. Then the following
are equivalent:

(1) I is a QB-ideal.
(2) For any idempotents e, f ∈ 1 + I, eR ∼= fR implies that there exists a

u ∈ R−1
q such that eu = uf .

Proof. It is an immediate consequence of Theorem 2.7. �

3. Annihilators

An ideal I of a ring R is regular provided that for any x ∈ I, there exists
a y ∈ I such that x = xyx. A ring R is regular in case R as an ideal of
itself is regular. As is well known, every regular ring is an exchange ring. In
[5], the author investigate QB-ideals of a regular ring from the view point of
substitution of modules. The main purpose of this section is to study QB-ideals
of such rings by means of annihilators. We always use r(x)(`(x)) to denote the
right (left) annihilator of x ∈ R.

Theorem 3.1. Let I be an ideal of a regular ring R. Then the following are
equivalent:

(1) I is a QB-ring.
(2) For any a, b ∈ 1+I, r(a) = r(b), there exists u ∈ R−1

q such that a = ub.
(3) For any a, b ∈ 1+I, `(a) = `(b), there exists u ∈ R−1

q such that a = bu.
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Proof. (1) ⇒ (2) Suppose that r(a) = r(b), where a, b ∈ 1 + I. Since R is
regular, we have x ∈ R such that a = axa. Hence a(1 − xa) = 0, and then
1− xa ∈ r(a) = r(b). This infers that b(1− xa) = 0. So b = bxa ∈ Ra; whence
Rb ⊆ Ra. Likewise, we get Rb ⊆ Ra. So Ra = Rb. According to Corollary 2.6,
there exists a u ∈ R−1

q such that a = ub.
(2) ⇒ (1) Given any a ∈ 1 + I, then we have x ∈ 1 + I such that a = axa.

If r ∈ r(a), then ar = 0; hence xar = 0. This means that r ∈ r(xa). So we
get r(a) ⊆ r(xa). If t ∈ r(xa), then xat = 0; hence, at = axat = 0; hence,
t ∈ r(a). This shows that r(xa) ⊆ r(a). Thus r(a) = r(xa). By hypothesis, we
have a u ∈ R−1

q such that a = uxa. One easily checks that xa ∈ 1 + I is an
idempotent. According to Theorem 2.3, I is a QB-ideal.

(1) ⇔ (3) is symmetric. �

Corollary 3.2. Let R be a regular QB-ring. If aR∩ r(a) = 0, then there exist
an idempotent e ∈ R and a u ∈ R−1

q such that a = e+ u.

Proof. Since R is regular, we have x ∈ R such that a = axa; hence, R = aR⊕
(1−ax)R. Let ψ : R→ R given by ψ

(
ar+(1−ax)s) = (1−ax)s for any r, s ∈ R.

Then ψ2 = ψ. This means that ψ(1) ∈ R is an idempotent. Let u = a− ψ(1).
Assume that t ∈ r(u). Then ut = 0, so at = ψ(t) ∈ aR ∩ (1− ax)R = 0. This
infers that t ∈ Kerψ ∩ r(a) = aR ∩ r(a) = 0. That is, r(u) = 0 = r(1). It
follows from Theorem 3.1 that u ∈ R−1

q . Let e = ψ(1). Then a = u + e with
idempotent e ∈ R, as required. �

Corollary 3.3. Let R be a regular QB-ring. If aR ∼= bR, then there exist
u, v ∈ R−1

q such that a = ubv.

Proof. Since ψ : aR ∼= bR, one easily checks that Ra = Rψ(a) and ψ(a)R = bR.
Hence r(a) = r

(
ψ(a)

)
and `

(
ψ(a)

)
= `(a). In view of Theorem 3.1, we can

find u, v ∈ R−1
q such that a = uψ(a) and ψ(a) = bv. Therefore a = ubv, as

asserted. �

It is well known that a regular ring R has a.c.c on right annihilators if and
only if it has finitely many minimal prime ideals. A ring R is unit-regular in
case for any x ∈ R, there exists a u ∈ U(R) such that x = xux. We now
observe the following.

Corollary 3.4. Let R be a regular ring having a.c.c. on right annihilators.
Then R is a QB-ring if and only if it is unit-regular.

Proof. Clearly, every unit-regular ring is a QB-ring. Conversely, assume now
that R is a QB-ring. Given any a ∈ R, then there is a chain r(a) ⊆ r(a2) ⊆ · · · .
Since R is a regular ring having a.c.c. on right annihilators, there exists a
positive integer n such that r(an) = r(an+1). By virtue of Theorem 3.1, we
have some u ∈ R−1

q such that an = uan+1. Thus R is strongly π-regular.
According to [9, Theorem 30.9], R has stable range one. Therefore R is unit-
regular by [9, Theorem 30.6]. �
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Following [1], an element a ∈ R is said to be quasi-invertible provided that
a ∈ R−1

q . Let I be a right ideal of a ring R. We say that every quasi-invertible
element lifts modulo I in case (1 − ab)R(1 − ba)

⋂
(1 − ba)R(1 − ab) ⊆ I for

some b ∈ R implies that a ≡ x (mod I) for some x ∈ R−1
q .

Lemma 3.5. Let I be an ideal of a regular ring R. Then the following are
equivalent:

(1) I is a QB-ideal.
(2) Every quasi-invertible element in 1 + I lifts modulo any right ideal of

R.

Proof. (1) ⇒ (2) Suppose that (1−ab)R(1−ba)⋂(1−ba)R(1−ab) ⊆ I for some
b ∈ R, where a ∈ 1 + I. Since I is a QB-ideal, it follows from ab+ (1− ab) = 1
that v = b+y(1−ab) ∈ R−1

q for a y ∈ R. Let u be a quasi-inverse of v such that
u = uvu, and let w = u+a(1−vu)+(1−uv)a. By [1, Theorem 2.3], w ∈ R−1

q .
For any x ∈ R, we denote x+ I by π(x). Similarly to [1, Proposition 7.1], we
have π(v)π(a)π(v) = π

(
(b+y(1−ab))a(b+y(1−ab))) = π

(
ba(b+y(1−ab))) =

π
(
b+y(1−ab)) = π(v). Clearly, π(w) = π(u)+π(a)

(
π(1)−π(v)π(u)

)
+
(
π(1)−

π(u)π(v)
)
π(a). Since (1 − uv)R(1 − vu) = 0, we get (1 − uv)a(1 − vu) = 0.

This deduces that π(a) − π(a)π(v)π(u) − π(u)π(v)π(a) + π(u) = 0; whence,
π(a) = π(u) + π(a)

(
π(1) − π(v)π(u)

)
+
(
π(1) − π(u)π(v)

)
π(a). So we get

π(a) = π(w), as desired.
(2) ⇒ (1) Suppose that ax + b = 1 in R, where a ∈ 1 + I, x, b ∈ R. If

bR = R, then bc = 1 for a c ∈ R. Hence, a + bc(1 − a) = 1 ∈ R−1
q . Now

assume that bR 6= R. Clearly, ax ≡ 1 (mod bR); hence, a ∈ 1 + I is a quasi-
invertible element modulo the right ideal bR. So we have a u ∈ R−1

q such
that a ≡ u (mod bR). This infers that a − u = by for some y ∈ R. That is,
a+ b(−y) = u ∈ R−1

q , as required. �

If x ∈ R is regular, then there exists some y ∈ R such that x = xyx and
y = yxy. We say such y is a reflexive inverse of x, and denote it by x+. Now
we characterize QB-ideals by means of reflexive inverses.

Theorem 3.6. Let I be an ideal of a regular ring R. Then the following are
equivalent:

(1) I is a QB-ideal.
(2) For each a ∈ 1 + I, there exist a u ∈ R−1

q and an element x ∈ `(a+)
such that a = u+ x.

(3) For each a ∈ 1 + I, there exist a u ∈ R−1
q and an element x ∈ r(a+)

such that a = u+ x.

Proof. (1) ⇒ (2) Let a ∈ 1 + I. Since R is regular, we have a+ ∈ R such that
a = aa+a and a+ = a+aa+. Let I = `(a+). Then 1− a+a ∈ I. That is, a ∈ R
is a quasi-invertible element modulo I. By virtue of Lemma 3.5, we can find a
u ∈ R−1

q such that a− u ∈ I, as required.



880 HUANYIN CHEN

(2) ⇒ (1) For each a ∈ 1+I, there exist a u ∈ R−1
q and an element x ∈ `(a+)

such that a = u+ x. Hence a− u ∈ `(a+), and then (a− u)a+ = 0. This infers
that aa+ = ua+, so a = aa+a = ua+a. Clearly, a+a ∈ 1 + I is an idempotent.
According to Corollary 2.5, I is a QB-ideal.

(1) ⇔ (3) is clear by symmetry. �

Corollary 3.7. Let I be an ideal of a regular ring R. Then the following are
equivalent:

(1) I is a QB-ideal.
(2) For each a ∈ 1+I, there exist a u ∈ R−1

q and an element x ∈ `(a) such
that a+ = u+ x.

(3) For each a ∈ 1 + I, there exist a u ∈ R−1
q and an element x ∈ r(a)

such that a+ = u+ x.

Proof. For any a ∈ 1 + I, there exists a a+ ∈ R such that a = aa+a, a+ =
a+aa+. Clearly, a+ ∈ 1 + I, and that a ∈ R can be seen as (a+)+ ∈ R.
Applying Theorem 3.6, we complete the proof. �

So far, one mainly studied diagonal reduction only for matrices over a ring
(cf. [9]). We now consider the matrices over QB-ideals of a regular ring.

Lemma 3.8. Every 2×2 triangular matrix over a regular ideal of a ring admits
a diagonal reduction.

Proof. Let I be a regular ideal of a ring R, and let A = ( a 0
c b ) ∈ M2(I). As I

is regular, there exists an idempotent e ∈ I such that aR = eR. Write a = ec
and e = ad. Set U =

(
d 1−dc
−1 c

)
. Then U ∈ GL2(R). Further, AU = ( e 0

t s ) .
Write s = ss′s and s′ = s′ss′. By adding to the first column of AU its 2-th
column right multiplied by −s′t, we may assume that ss′t = 0. Set

V =
(

s ss′ − 1
1 + s′s s′

)
.

Then V ∈ GL2(R). Furthermore,

V AU =
(

se− t 0
(1 + s′s)e s′s

)
.

Thus, we may assume that V AU =
( y 0

e f

)
, where f = s′s ∈ R is an idempotent.

Write (1− f)e = (1− f)eh(1− f)e. Set z = y
(
1− h(1− f)e

)
. By elementary

transformations, V AU can be reduced to the form
(

z 0
e f

)
. One easily checks

that
(
z 0
e f

)
B21(−e)B12

(
h(1−f)

)
B21

(− (1−f)e
)
B12

(−h(1−f)
)

= diag(∗, ∗),

and therefore we complete the proof. �
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As is well known, every square matrix over a unit-regular ring admits a
diagonal reduction. For 2×2 matrices over a QB-ideal of regular rings, we can
derive the following.

Theorem 3.9. Let I be a QB-ideal of a regular ring R. Then for any A ∈
M2(I), there exist U ∈ GL2(R), V ∈ M2(R)−1

q such that UAV = diag(e1, e2)
for some e1, e2 ∈ I.
Proof. Let

(
a b
c d

) ∈M2(I). Since I is a QB-ideal of a regular ring R, as in the
proof of Theorem 2.3, we can find w1, w2 ∈ R−1

q such that aw1 = f, bw2 = e are

idempotents. Let Q1 =
(

1 f−1
−f 1

)
. Then (a, b)diag(w1, w2)Q1 =

(
(1− e)f, e

)
.

As (1−e)f ∈ I, we have a t ∈ R such that (1−e)f = (1−e)ft(1−e)f . It follows
from (1−e)ft+(1−(1−e)ft) = 1 that (1−e)fte+(1−(1−e)ft)e = e; hence,
1−e+(1−(1−e)ft)e = 1−(1−e)fte. Accordingly, (1−e)f+

(
1−(1−e)ft)ef =(

1− (1− e)fte
)
f . Clearly,

(
(1− e)f + (1− (1− e)ft)ef

)
t+
(
1− (1− e)ft

)
(1− eft) = 1.

Thus, (
1− (1− e)fte

)
ft+

(
1− (1− e)ft

)
(1− eft) = 1.

As a result,

ft
(
1− (1−e)fte)+(1+(1−e)fte)(1− (1−e)ft)(1−eft)(1− (1−e)fte) = 1.

By the proceeding discussion, we have a z ∈ R such that

f +
(
1 + (1− e)fte

)(
1− (1− e)ft

)
z ∈ U(R).

That is, (
1− (1− e)fte

)
f +

(
1− (1− e)ft

)
z ∈ U(R),

and so v := (1−e)f+
(
1−(1−e)ft)(ef+z) ∈ U(R). Hence, (1−e)f = (1−e)ftv

such that f1 = (1− e)fu is an idempotent, where u = v−1. Set g = f1(1− e).
Let Q2 = diag(u, 1), Q3 = diag(1− f1e, 1 + f1e), Q4 =

( 1−g 1
−g 1

)
. Then

(
a b
c d

)
diag(w1, w2)Q1Q2Q3Q4

(
0 1
1 0

)
=
( ∗ 0
∗∗ ∗

)
.

One easily checks that Q1, Q2, Q3, Q4 ∈ E2(R). According to Lemma 3.8, we
complete the proof. �

Corollary 3.10. Let R be a regular QB-ring. Then for any A ∈ M2(R),
there exist U ∈ GL2(R), V ∈M2(R)−1

q such that UAV = diag(e1, e2) for some
e1, e2 ∈ R.

Proof. It is an immediate consequence of Theorem 3.9. �

The class of regular QB-ring is very large. Let V be an infinite-dimensional
vector space over a field F , letQ = EndF (V ), and let J = {x ∈ Q | dimF (xV ) <
∞}. Set R = {(x, y) ∈ Q×Q | x− y ∈ J}. Then R is a regular QB-ring.
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4. Prime rings

A ring R is prime provided that for any ideals I and J , IJ = 0 implies
that either I = 0 or J = 0. For example, every regular ring satisfying the
comparability axiom is a prime exchange ring. Every prime factor of exchange
rings is a prime exchange ring. The aim of this section is to investigate QB-
ideals of prime exchange rings. We use R−1

l (resp. R−1
r ) to denote the set of all

left (resp. right) invertible elements of R.

Lemma 4.1. Let I be an ideal of a prime exchange ring R. Then the following
are equivalent:

(1) I is a QB-ideal.
(2) For any regular x ∈ 1 + I, there exists right or left invertible u ∈ R

such that x = xux.

Proof. Since R is a prime ring, we see that R−1
q = R−1

l ∪ R−1
r . Therefore we

get the result by Lemma 2.2. �

Let I be a QB-ideal of a prime exchange ring, and let A ∈ FP (I). If B and
C are any right R-modules such that A ⊕ B ∼= A ⊕ C, we note that B .⊕ C
or C .⊕ B (cf. [10]).

Lemma 4.2. Let I be an ideal of a prime exchange ring R. Then R is a
QB-ring if and only if

(1) R/I is a QB-ring.
(2) (R/I)−1

q = (R−1
q + I)/I.

(3) I is a QB-ideal.

Proof. One direction is clear by [1, Theorem 7.2]. Conversely, assume now that
(1), (2) and (3) hold. Since R is a prime ring, R−1

q = R−1
l ∪R−1

r . Suppose that p
and q is a pair of defect idempotents of R. Then we have right or left invertible
u ∈ R such that p = 1 − uv and q = 1 − vu, where uv = 1 or vu = 1. Hence
p = 1 or q = 1, and then (1− p)R(1− q) = 0. Therefore I +R−1

q ⊆ cl(R−1
q ) by

[1, Lemma 1.5]. Using [1, Theorem 7.2], we complete the proof. �

Theorem 4.3. Let I be an ideal of a prime exchange ring R. Then R is a
QB-ring if and only if

(1) R/I is a QB-ring.
(2) (R/I)−1

q = (R/I)−1
l ∪ (R/I)−1

r .

(3) For any idempotents e ∈ 1+I, f ∈ R, eR ∼= fR implies that (1−e)R .⊕
(1− f)R or (1− f)R .⊕ (1− e)R.

Proof. Suppose that R is a QB-ring. Then (R/I)−1
q = (R−1

q + I)/I by Lemma
4.2. Since R is a prime ring, R−1

q = R−1
l ∪ R−1

r . Thus (R/I)−1
q = (R−1

l ∪
R−1

r + I)/I ⊆ (R−1
l + I)/I ∪ (R−1

r + I)/I ⊆ (R/I)−1
l ∪ (R/I)−1

r . Clearly,
(R/I)−1

l ∪ (R/I)−1
r ⊆ (R/I)−1

q . Therefore we have (R/I)−1
q = (R/I)−1

l ∪
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(R/I)−1
r . Suppose that eR ∼= fR with idempotents e, f ∈ R. Since R is a prime

ring, one easily checks that (1− e)R .⊕ (1− f)R or (1− f)R .⊕ (1− e)R.
Conversely, assume now that (1), (2) and (3) hold. Given any regular x ∈

1 + I, there exists y ∈ 1 + I such that x = xyx. Hence, xy ∈ 1 + I. Since
xyR ∼= yxR, we deduce that (1−xy)R .⊕ (1−yx)R or (1−yx)R .⊕ (1−xy)R.
As in the proof of Theorem 2.7, x = xux for a u ∈ R−1

q . In view of Lemma 2.2,
I is a QB-ideal.

Clearly, (R−1
q +I)/I ⊆ (R/I)−1

q . One the other hand, (R/I)−1
q = (R/I)−1

l ∪
(R/I)−1

r . We only prove that one-sided invertible elements lift modulo I. As-
sume that xy = 1 in R/I. Since R is an exchange ring, one easily finds some
a, b ∈ R such that a = aba, b = bab, a = x and b = y. Hence, ab = 1. So
1 − ab ∈ I, i.e., ab ∈ 1 + I. Since abR ∼= baR, we have either (1 − ab)R .⊕
(1 − ba)R or (1 − ba)R .⊕ (1 − ab)R. If (1 − ab)R .⊕ (1 − ba)R, then we
can find s ∈ (1 − ab)R(1 − ba), t ∈ (1 − ba)R(1 − ab)R such that 1 − ab = st.
Clearly, at = sb = 0; hence, (a + s)(t + b) = ab + st = 1. That is, a + s ∈ R
is right invertible. Obviously, we have s ∈ (1 − ab)R(1 − ba) ⊆ I, and then
x = a = a+ s. That is, x can be lifted by a right invertible element modulo I. If
(1−ba)R .⊕ (1−ab)R, then we have s ∈ (1−ba)R(1−ab), t ∈ (1−ab)R(1−ba)R
such that 1−ba = st. Obviously, bt = sa = 0; hence, (b+s)(a+t) = ba+st = 1.
Also we have t ∈ (1−ab)R(1−ba) ⊆ I, so x = a = a+ t. That is, x can be lifted
by a left invertible element modulo I. Analogously, x can be lifted modulo I
in case x is left invertible. Therefore

(R/I)−1
q = (R/I)−1

l ∪(R/I)−1
r ⊆ ((R−1

l +I)/I
)∪((R−1

r +I)/I
) ⊆ (R−1

q +I)/I.

Accordingly, (R/I)−1
q = (R−1

q + I)/I. It follows from Lemma 4.2 that R is a
QB-ring. �

Corollary 4.4. Let I be an ideal of a prime exchange ring R. Then R is a
QB-ring if and only if

(1) R/I is a QB-ring.
(2) (R/I)−1

q = (R/I)−1
l ∪ (R/I)−1

r .
(3) For any idempotents e ∈ 1 + I, f ∈ R, eR ∼= fR implies that eu = uf

for a u ∈ R−1
q .

Proof. One direction is obvious by Theorem 4.3 and Corollary 2.6. Conversely,
assume that (1), (2) and (3) hold. Then eu = uf for a u ∈ R−1

q . Since R
is a prime ring, we deduce that either uv = 1 or vu = 1. If uv = 1, then
1 − e = u(1 − f)v = ab, where a = (1 − e)u(1 − f) and b = (1 − f)v(1 − e);
hence, (1− e)R .⊕ (1− f)R. If vu = 1, then we have f = veu. Similarly, we
get (1−f)R .⊕ (1−e)R. It follows from Theorem 4.3 that R is a QB-ring. �
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