NOTES ON $\overline{WN_{n,0,0}}_{[2]}$ II ### SEUL HEE CHOI **Abstract.** The Weyl-type non-associative algebra $\overline{WN_{g_n,m,s_r}}$ and its subalgebra $\overline{WN_{n,m,s_r}}$ are defined and studied in the papers [2], [3], [9], [11], [12]. We find the derivation group $Der_{non}(\overline{WN_{1,0,0}}_{[2]})$ the non-associative simple algebra $\overline{WN_{1,0,0}}_{[2]}$. #### 1. Preliminaries Let **N** be the set of all non-negative integers and **Z** be the set of all integers. Let **F** be a field of characteristic zero. Let **F**• be the multiplicative group of non-zero elements of **F**. Let $\mathbf{F}[x_1, \dots, x_{m+s}]$ be the polynomial ring with the variables x_1, \dots, x_{m+s} . Let g_1, \dots, g_n be given polynomials in $\mathbf{F}[x_1, \dots, x_{m+s}]$. For $n, m, s \in \mathbf{N}$, let us define the commutative, associative **F**-algebra $F_{g_n,m,s} = \mathbf{F}[e^{\pm g_1}, \dots, e^{\pm g_n}, x_1^{\pm 1}, \dots, x_m^{\pm 1}, x_{m+1}, \dots, x_{m+s}]$ which is called a stable algebra in the paper [5] with the standard basis $$\mathbf{B} = \{ e^{a_1 g_1} \cdots e^{a_n g_n} x_1^{i_1} \cdots x_{m+s}^{i_{m+s}} | a_1, \cdots, a_n, i_1, \cdots, i_m \in \mathbf{Z}, \\ i_{m+1}, \cdots, i_{m+s} \in \mathbf{N} \}$$ and with the obvious addition and the multiplication [5], [8] where we take appropriate g_1, \dots, g_n so that **B** can be the standard basis of $F_{g_n,m,s}$. ∂_w , $1 \leq w \leq m+s$, denotes the usual partial derivative with respect to x_w on $F_{g_n,m,s}$. For partial derivatives $\partial_u, \dots, \partial_v$ of $F_{g_n,m,s}$, Received October 16, 2005. Accepted November 3, 2005. ²⁰⁰⁰ Mathematics Subject Classification: Primary 17B40, 17B56. **Key words and phrases**: simple, non-associative algebra, semi-Lie algebra, right identity, annihilator, Jacobian conjecture, derivation. the composition $\partial_u^{j_u} \circ \cdots \circ \partial_v^{j_v}$ of them is denoted $\partial_u^{j_u} \cdots \partial_v^{j_v}$ where $j_u, \dots, j_v \in \mathbb{N}$. Let us define the vector space $WN(g_n, m, s)$ over \mathbb{F} which is spanned by the standard basis (1) $$\{e^{a_1g_1}\cdots e^{a_ng_n}x_1^{i_1}\cdots x_{m+s}^{i_{m+s}}\partial_u^{j_u}\cdots \partial_v^{j_v}|a_1,\cdots,a_n,i_1,\cdots,i_m\in \mathbb{Z},\ i_{m+1},\cdots,i_{m+s}\in\mathbb{N},j_u,\cdots,j_v\in\mathbb{N},1\leq u,\cdots,v\leq m+s\}$$ Thus we may define the multiplication * on $WN(g_n, m, s)$ as follows: $$(2) e^{a_{11}g_{1}} \cdots e^{a_{1n}g_{n}} x_{1}^{i_{11}} \cdots x_{m+s}^{i_{1,m+s}} \partial_{u}^{j_{u}} \cdots \partial_{v}^{j_{v}} *$$ $$e^{a_{21}g_{1}} \cdots e^{a_{2n}g_{n}} x_{1}^{i_{21}} \cdots x_{m+s}^{i_{2,m+s}} \partial_{h}^{j_{h}} \cdots \partial_{w}^{j_{w}}$$ $$= e^{a_{11}g_{1}} \cdots e^{a_{1n}g_{n}} x_{1}^{i_{11}} \cdots x_{m+s}^{i_{1,m+s}} \partial_{u}^{j_{u}} \cdots \partial_{v}^{j_{v}}$$ $$(e^{a_{21}g_{1}} \cdots e^{a_{2n}g_{n}} x_{1}^{i_{21}} \cdots x_{m+s}^{i_{2,m+s}}) \partial_{h}^{j_{h}} \cdots \partial_{w}^{j_{w}}$$ for any basis elements $e^{a_{11}g_1}\cdots e^{a_{1n}g_n}x_1^{i_{11}}\cdots x_{m+s}^{i_{1,m+s}}\partial_u^{j_u}\cdots \partial_v^{j_v}$ and $e^{a_{21}g_1}\cdots e^{a_{2n}g_n}x_1^{i_{21}}\cdots x_{m+s}^{i_{2,m+s}}\partial_h^{j_h}\cdots \partial_w^{j_w}\in WN(g_n,m,s)$. Thus we can define the Weyl-type non-associative algebra $\overline{WN}_{g_n,m,s}$ with the multiplication * in (2) and with the set $WN(g_n,m,s)$ [1], [14]. For $r\in \mathbb{N}$, let us define the non-associative subalgebra $\overline{WN}_{g_n,m,s}$ of the non-associative algebra $\overline{WN}_{g_n,m,s}$ spanned by $$\{e^{a_1g_1}\cdots e^{a_ng_n}x_1^{i_1}\cdots x_s^{i_s}\partial_u^{j_u}\cdots\partial_v^{j_v}|a_1,\cdots,a_n,i_1,\cdots,i_m\in\mathbf{Z},$$ $$i_{m+1},\cdots,i_s\in\mathbf{N},j_u,\cdots,j_v\in\mathbf{N},$$ $$j_u+\cdots+j_v\leq r,1\leq u,\cdots,v\leq m+s\}$$ The non-associative subalgebra $\overline{WN_{g_n,m,s_1}}$ of the non-associative algebra $\overline{WN_{g_n,m,s}}$ is the the non-associative algebra $\overline{N_{g_n,m,s}}$ in the paper [1]. There is no left or right identity of $\overline{WN_{g_n,m,s}}$. The the non-associative algebra $\overline{WN_{g_n,m,s}}$ is \mathbf{Z}^n -graded as follows: (4) $$\overline{WN_{g_n,m,s}} = \bigoplus_{(a_1,\cdots,a_n)} WN_{(a_1,\cdots,a_n)}$$ where $WN_{(a_1,\cdots,a_n)}$ is the vector subspace of $\overline{WN_{g_n,m,s}}$ with the basis $$\{e^{a_1g_1}\cdots e^{a_ng_n}x_1^{i_1}\cdots x_{m+s}^{i_{m+s}}\partial_u^{j_u}\cdots \partial_v^{j_v}|i_1,\cdots,i_m\in\mathbf{Z},\ i_{m+1},\cdots,i_{m+s},j_u,\cdots,j_v\in\mathbf{N},1\leq u,\cdots,v\leq m+s\}.$$ An element in $WN_{(a_1,\dots,a_n)}$ is called an (a_1,\dots,a_n) -homogenous element and $WN_{(a_1,\dots,a_n)}$ is called the (a_1,\dots,a_n) -homogeneous component. For any basis element $e^{a_1g_1}\dots e^{a_ng_n}x_1^{i_1}\dots x_{m+s}^{i_{m+s}}\ \partial_t$ of $\overline{WN_{g_n,m,s}}$, let us define the homogeneous degree $deg_N(e^{a_1g_1}\dots e^{a_ng_n}x_1^{i_1}\dots x_{m+s}^{i_{m+s}}\partial_u^{j_u}\dots \partial_v^{j_v})$ of it as follows: $$deg_N(e^{a_1g_1}\cdots e^{a_ng_n}x_1^{i_1}\cdots x_{m+s}^{i_{m+s}}\partial_u^{j_u}\cdots \partial_v^{j_v}) = \sum_{u=1}^{m+s} |i_u|$$ where $|i_u|$ is the absolute value of i_u , $1 \leq u \leq m+s$. Throughout this paper, for any basis element $e^{a_{\mu}g_{\mu}}\cdots e^{a_{\nu}g_{\nu}}x_{\lambda}^{i_{\lambda}}\cdots x_{\sigma}^{i_{\sigma}}\partial_{u}^{j_{u}}\cdots\partial_{v}^{j_{v}}$, we write it such that $1 \le \mu \le \cdots \le \nu \le n$, $1 \le \lambda \le \cdots \le \sigma \le m$, and $1 \leq u \leq \cdots \leq v \leq m+s$. For any element $l \in \overline{WN_{g_n,m,s}}$, we may define $deg_N(l)$ as the highest homogeneous degree of the basis terms of l. Thus for any basis elements l_1 and l_2 of $\overline{WN_{0,0,s}}$, we may write $l_1 + l_1$ or $l_2 + l_1$ well orderly with unambiguity. For any element $l \in \overline{WN_{0,0,s}}$, we may define $deg_N(l)$ as the highest homogeneous degree of each monomial of l. For any $l \in \overline{WN_{g_n,m,s}}$, let us define #(l) as the number of different homogeneous components of l. $\overline{WN_{n,m,s}}$ (resp. $\overline{WN_{g_n,m,s_r}}$) has the subalgebra WT (resp. WT_r) spanned by $\{\partial_u^{j_u}\cdots\partial_v^{j_v}|(resp.\ j_u+\cdots+j_v\leq r),\ j_u,\cdots,j_v\in\mathbf{N},1\leq u,v\leq s_1\}$ which is the right annihilator of $\overline{WN_{g_n,m,s}}$ (resp. $\overline{WN_{g_n,m,s}}_r$). Let us define the non-associative subalgebra $\overline{WN_{n,0,0}}_{[r]}$ of the non-associative algebra $\overline{WN_{g_n,m,s}}$ is spanned by $\{e^{a_1x_1}\cdots e^{a_nx_n}\partial_u^r|1\leq u\leq n\}$. The non-associative algebra $\overline{WN_{n,0,0}}_{[r]}$ is \mathbf{Z}^n -graded as follows: (5) $$\overline{WN_{n,0,0}}_{[r]} = \bigoplus_{(a_1,\dots,a_n)} N_{(a_1,\dots,a_n)}$$ where $N_{(a_1,\dots,a_n)}$ is the vector subspace of $\overline{WN_{n,0,0}}_{[r]}$ with the basis $\{e^{a_1x_1}\cdots e^{a_nx_n}\partial_v^r|1\leq v\leq n\}$. The non-associative algebra $\overline{WN_{g_n,m,s}}$ contains the matrix ring $M_n(\mathbf{F})$ [1]. A non-associative algebra A is simple, if it has no proper two sided ideal which is not zero ideal [14]. For any element l in a non-associative algebra A, l is full, if the ideal < l > generated by l is A. Generally, the algebra $\overline{WN_{0,0,s_r}}$ or $\overline{WN_{0,0,s}}$ is not Lie admissible [1], [8], since the Jacobi identity does not hold using the commutator of the non-associative algebra $\overline{WN_{0,0,s_r}}$ or the non-associative algebra $\overline{WN_{0,0,s}}$ for r>1. For any F-algebra A and an element $l \in A$, an element $l_1 \in A$ is a left (resp. right) stabilizing element of l, if $l_1 * l = cl$ (resp. $l * l_1 = cl$) where $c \in \mathbf{F}$. For any element $l_1 \in A$, $l \in A$ is a locally left (resp. right) unity of $l_1 \in A$, if $l * l_1 = l_1$ (resp. $l_1 * l = l_1$) holds and throughout the paper, we read it as that l is a left unity of l_1 , etc.. The Weyl-type non-associative algebra $\overline{WN_{q_n,m,s_r}}$ and its subalgebra $\overline{WN_{n,m,s}}_r$ contains the matrix ring $M_s(\mathbf{F})$, i.e., $x_u\partial_v$ in The Weyl-type non-associative algebra $\overline{WN_{g_n,m,s}}_r$ or its subalgebra $\overline{WN_{n,m,s}}_r$ corresponds e_{uv} where e_{uv} is the unit matrix of $M_s(\mathbf{F})$ such that its uv-entry is one and its other terms are zero. # 2. Simplicity of $\overline{WN_{n,0,0}}_{[r]}$ Even if the non-associative algebra $\overline{WN_{n,0,0}}_{[r]}$ has right annihilators, we have the following results. The non-associative algebra $\overline{WN_{n,0,0}}_{[r]}$ has no idempotent. $\overline{WN_{1,0,0}}_{[r]}$ does not have a right identity and a left identity. For the set $W = \{w_a | a \in \mathbf{Z}\}$, let us define the addition + as follows: for any $w_a, w_b \in W$, $$w_a + w_b = w_{a+b}$$ and the multiplication \cdot as follows: $$w_a \cdot w_b = b^2 w_{a+b}$$ Then W_2 = is an non-associative algebra with the usual scalar multiplication. If we define the usual addition and Lie bracket on $W = \{w_a | a \in \mathbb{Z}\}$ as follows: $$[w_a, w_b] = (b^2 - a^2)w_{a+b}$$ Then $W_{2[,]}$ = is a semi-Lie algebra. The semi-Lie algebra $W_{2[,]}$ has one dimensional center spanned by w_0 . **Remark 1.** An (non-associative, Lie, or associative) algebra A is simple if and only if every element of the (non-associative, Lie, or associative) algebra A is full. **Lemma 1.** For any ∂_u^r , $1 \le u \le n$, in the non-associative algebra $\overline{WN_{n,m,s}}_{[r]}$, ∂_u^r is full. *Proof.* The proof of this lemma is standard, so let us omit it. \Box **Theorem 1.** The non-associative algebra $\overline{WN_{n,m,s}}_{[r]}$ is simple. Proof. The proof of this theorem is also standard, so let us omit it. Corollary 1. The non-associative algebra $\overline{WN_{1,m,s}}_{[r]}$ is simple. *Proof.* The proof of the corollary is straightforward by Theorem 1. Thus let us omit the proof of the corollary. \Box **Theorem 2.** If r is odd, then the semi-Lie algebra $\overline{WN_{n,m,s}}_{[r]_{[,]}}$ is simple. *Proof.* The proof of the theorem is straightforward by Theorem 1. So let omit it. \Box Corollary 2. The Lie algebra $\overline{WN_{0,0,n}}_{1[,]}$ is simple. *Proof.* Since the Lie algebra $\overline{WN_{n,0,0}}_{1[,]}$ is isomorphic to the Lie algebra $\overline{WN_{0,0,n}}_{1[,]}$, the Lie algebra $\overline{WN_{0,0,n}}_{1[,]}$ is simple. The semi-Lie algebra $\overline{WN_{0,0,n}}_{[r][,]}$ is called the Witt type semi-Lie algebra [13]. ## 3. Derivations of $\overline{WN_{1,0,0}}_{[2]}$ and Isomorphism Note that the **F**-algebra $\mathbf{F}[x,x^{-1}]$ is isomorphic to the **F**-algebra $\mathbf{F}[e^{\pm x}]$ as **F**-algebras. **Definition 1.** Let A be an **F**-algebra. An additive **F**-map D from A to A is a derivation if $D(l_1 * l_2) = D(l_1) * l_2 + l_1 * D(l_2)$ for any $l_1, l_2 \in A$. **Example 5.** The usual partial derivative ∂_u , $1 \le u \le n$, on $\mathbf{F}[x_1, \dots, x_n]$ is a well known derivation on $\mathbf{F}[x_1, \dots, x_n]$. **Note 1.** For any basis element $e^{kx}\partial^2$ of the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$, if we define **F**-additive linear map D_c of the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$ as follows: $$D_c(e^{kx}\partial^2) = cke^{kx}\partial^2$$ then D_c can be linearly extended to a derivation of the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$ where $c \in \mathbf{F}$. **Lemma 2.** For any derivation D of the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$, if $D(\partial^2) = 0$, then D is the derivation D_c which is defined in Note 1. *Proof.* Let D be the derivation of the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$ in the lemma. By $D(\partial^2 * \partial^2) = 0$, we have that $D(\partial^2) = c\partial^2$ where $c \in \mathbf{F}$. By $D(\partial^2 * e^x \partial^2) = D(e^x \partial^2)$, we have that (6) $$D(\partial^2) * e^x \partial^2 + \partial^2 * D(e^x \partial^2) = D(e^x \partial^2)$$ This implies that (7) $$D(e^x \partial^2) = c_1 e^{rx} \partial^2 + c_2 e^{-sx} \partial^2 + \#_1$$ with appropriate scalars and $r > s \in \mathbb{N}$ where $\#_1$ is the sum of remaining terms. By (6), we have that s = 1, r = 1, and c = 0, i.e., $D(\partial^2) = 0$. By $D(e^{2x}\partial^2) = D(e^x\partial^2 * e^x\partial^2)$, we have that $$D(e^{2x}\partial^2) = 2c_1e^{2x}\partial^2 + 2c_2\partial^2$$ By $D(\partial^2 * 1e^{2x}\partial^2) = 4D(1e^{2x}\partial^2)$, we have that $D(e^{2x}\partial^2) = 2c_1e^{2x}\partial^2$. By induction on k of $e^{kx}\partial^2$, we can prove that $$D(e^{kx}\partial^2) = kc_1 e^{kx}\partial^2$$ This implies that D is the derivation D_c in Note 1. Therefore we have proven the lemma. **Theorem 3.** For any derivation D of the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$, $D = \sum_{c \in \mathbf{F}} D_c$ where D_c is the derivation which is defined in Note 1. *Proof.* The proof of the theorem is straightforward by Lemma 2. So let us omit its remaining steps of the proof. \Box By Theorem 2, we know that every derivation of the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$ is the sum of scalar derivations. All the derivations of the non-associative algebras $\overline{WN_{1,0,0}}_{[2]}$, $1 \leq r \leq 3$, are found in the papers [1], [11], [12]. Thus it is an interesting problem to find all the derivations of the non-associative algebras $\overline{WN_{n,0,0}}_{[r]}$. Also it is an interesting problem to find the non-associative algebra automorphism group $Aut_{non}(\overline{WN_{n,0,0}}_{[r]})$ of the non-associative algebras $\overline{WN_{n,0,0}}_{[r]}$ [1], [7], [10]. **Proposition 1.** The non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$ is not isomorphic to the non-associative algebra $\overline{WN_{1,0,0}}_{[1]}$. *Proof.* Let us assume that there is an isomorphism θ from $\overline{WN_{1,0,0}}_{[1]}$ to $\overline{WN_{1,0,0}}_{[2]}$. This implies that $\theta(\partial) = c\partial^2$ for $c \in \mathbf{F}^{\bullet}$. By $\theta(\partial * e^x \partial) = \theta(e^x \partial)$, we have that $\theta(e^x \partial) = de^{ax}\partial^2 + \#_1$ where $\#_1$ is the sum of the remaining terms of $\theta(e^x\partial)$ and $e^{ax}\partial^2$ is its maximal term with respect to the order. We have that $ca^2 = 1$. Since θ is an automorphism and $\overline{WN_{1,0,0}}_{[2]}$ is infinite dimensional, we can take $a_1 >> a$, then we have that $ca_1^2 = 1$ where $a_1 >> a$ represents a_1 is a sufficiently larger number than a. These imply that $a^2 = a_1$. This contradiction shows that there is no isomorphism between two algebras. This completes the proof of the proposition. **Proposition 2.** The semi-Lie algebra $\overline{WN_{1,0,0}}_{[2][,]}$ is not isomorphic to the semi-Lie algebra $\overline{WN_{1,0,0}}_{[1][,]}$ as semi-Lie algebras. Proof. Let us assume that there is an isomorphism θ from $\overline{WN_{1,0,0}}_{[1]_{[,]}}$ to $\overline{WN_{1,0,0}}_{[2]_{[,]}}$. There are l_1 and l_2 in $\overline{WN_{1,0,0}}_{[1]_{[,]}}$ such that $\theta(l_1) = e^{ax}\partial^2$ and $\theta(l_2) = e^{-ax}\partial^2$. This implies that $\theta([l_1, l_2]) = [e^{ax}\partial^2, e^{-ax}\partial^2] = 0$. This contradicts the fact that $e^{ax}\partial^2$ and $e^{-ax}\partial^2$ are linearly independent. Thus there is no isomorphism θ from $\overline{WN_{1,0,0}}_{[1]_{[,]}}$ to $\overline{WN_{1,0,0}}_{[2]_{[,]}}$. Corollary 3. The semi-Lie algebra $\overline{WN_{1,0,0}}_{[3][,]}$ contains 3 dimensional Lie subalgebra isomorphic to the Lie algebra $sl_2(\mathbf{F})$. *Proof.* Obviously, the Lie subalgebra the semi-Lie algebra $\overline{WN_{1,0,0}}_{[3][,]}$ spanned by $\{e^{ax}\partial^3, \partial^3, e^{-ax}\partial^3 | a \in \mathbf{Z}\}$ is isomorphic to the Lie algebra $sl_2(\mathbf{F})$. Since $\overline{WN_{1,0,0}}_{[2]}$ has a lot of infinite dimensional subalgebras, it is an interesting problem to find its all finite dimensional subalgebras. **Proposition 3.** There is the unique finite dimensional subalgebra of the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$ spanned by ∂^2 . *Proof.* Obviously, the subalgebra spanned by ∂^2 is one dimension. Conversely, it is easy to prove that any one dimensional subalgebra of $\overline{WN_{1,0,0}}_{[2]}$ spanned by ∂^2 . Let A be a finite dimensional subalgebra of $\overline{WN_{1,0,0}}_{[2]}$. Let l be a non-zero element of A. We may assume that $l \neq \partial^2$ where $c \in \mathbf{F}^{\bullet}$. Also, we may assume that l is the sum of more than one basis term of $\overline{WN_{1,0,0}}_{[2]}$. Thus l can be written as follows: $$l = c_a e^{ax} \partial^2 + \#_1$$ where $\#_1$ is the sum of remaining terms of l and $e^{ax}\partial^2$ is the maximal with respect to its order with appropriate scalars and $a \neq 0$. This implies that the subalgebra A_1 of A generated by l is infinite. This contradicts the fact that A_1 is finite. This shows that $l = c_1\partial^2$ for $c_1 \in \mathbf{F}^{\bullet}$. thus we have proven the proposition. Corollary 4. The matrix ring $M_n(\mathbf{F})$ is not embedded in the the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$ for $n \leq 2$. *Proof.* The proof of the corollary straightforward by Proposition 2. Let us omit it. \Box Corollary 5. A finite dimensional subalgebra of the semi-Lie algebra $\overline{WN_{1,0,0}}_{[3][]}$ has dimension one, two, or three. *Proof.* Since the semi-Lie algebra $\overline{WN_{1,0,0}}_{[3][,]}$ is self-centralizing, the proof of the corollary is similar to the proof of Proposition 3. Let us omit it. **Proposition 4.** The non-associative algebra W_2 is isomorphic to the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$. The semi-Lie algebra $W_{2[,]}$ is isomorphic to the semi-Lie algebra $\overline{WN_{1,0,0}}_{[2][,]}$. The quotient algebra of the semi-Lie algebra $W_{2[,]}/$ of $W_{2[,]}$ by the one-dimensional space $< w_0 >$ spanned by w_0 is simple. *Proof.* Let us define an **F**-map θ from the non-associative algebra W_2 is isomorphic to the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$ as follows: $$\theta(w_a) = e^{ax} \partial^2$$ for any $w_a \in W_2$. Then it is easy to prove that θ is an isomorphism between map. Similarly, the **F**-map θ can be an isomorphism from to the semi-Lie algebra W_2 is isomorphic to the semi-Lie algebra $\overline{WN_{1,0,0}}_{[2]_{[,]}}$. The remaining statement of the proposition is obvious, because $[w_a, w_b] = 0$ if and only if b = a or b = -a. This completes the proof of the proposition. By Proposition 4, the algebras $\overline{WN_{1,0,0}}_{[2]}$ and $\overline{WN_{1,0,0}}_{[2][,]}$ have different notations, but in many variables case, still the polynomial notation seems more convenient to handle it. **Open Question.** Find all the derivations of $\overline{WN_{n,0,0}}_{[r]}$. #### References - Mohammad H. Ahmadi, Ki-Bong Nam, and Jonathan Pakinathan, Lie admissible non-associative algebras, Algebra Colloquium, Vol. 12, No. 1, World Scientific, (March) 2005, 113-120. - [2] Seul Hee Choi and Ki-Bong Nam, The Derivation of a Restricted Weyl Type Non-Associative Algebra, Vol. 28, No. 3, Hadronic Journal, 2005, 287-295. - [3] Seul Hee Choi and Ki-Bong Nam, Derivations of a restricted Weyl Type Algebra I, Rocky Mountain Math. Journal, Appear, 2005. - [4] T. Ikeda, N. Kawamoto and Ki-Bong Nam, A class of simple subalgebras of Generalized W algebras, Proceedings of the International Conference in 1998 at Pusan (Eds. A. C. Kim), Walter de Gruyter Gmbh Co. KG, 2000, 189-202. - [5] V. G. Kac, Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom, 38, 1974, 832-834. - [6] I. Kaplansky, The Virasoro algebra, Comm. Math. Phys., 86 (1982), no 1., 49-54. - [7] Naoki Kawamoto, Atsushi Mitsukawa, Ki-Bong Nam, and Moon-Ok Wang, The automorphisms of generalized Witt type Lie algebras, Journal of Lie Theory, 13 Vol(2), Heldermann Verlag, 2003, 571-576. - [8] Ki-Bong Nam, On Some Non-Associative Algebras Using Additive Groups, Southeast Asian Bulletin of Mathematics, Vol. 27, Springer Verlag, 2003, 493-500. - [9] Ki-Bong Nam and Seul Hee Choi, On Evaluation Algebras, Southeast Asian Bulletin of Mathematics, Vol. 29, Springer Verlag, 2005, 381-385. - [10] Ki-Bong Nam and Moon-Ok Wang, Notes on Some Non-Associative Algebras, Journal of Applied Algebra and Discrete Structured, Vol. 1, No. 3, 159-164. - [11] Ki-Bong Nam and Seul Hee Choi, On the Derivations of Non-Associative Weyltype Algebras, Appear, Southeast Asian Bull. Math., 2005. - [12] Ki-Bong Nam, Yanggon Kim and Moon-Ok Wang, Weyl-type Non-Associative Algebras I, IMCC Proceedings, 2004, SAS Publishers, 147-155. - [13] A. N. Rudakov, Groups of Automorphisms of Infinite-Dimensional Simple Lie Algebras, Math. USSR-Izvestija, 3, 1969, 707-722. - [14] R. D. Schafer, Introduction to nonassociative algebras, Dover, 1995, 128-138. Seul Hee Choi Dept. of Mathematics Jeonju University Chon-ju 560-759, Korea Email: chois@jj.ac.kr