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INJECTIVE PROPERTY RELATIVE TO NONSINGULAR
EXACT SEQUENCES

MARZIEH ARABI-KAKAVAND, SHADI ASGARI, AND YASER TOLOOEI

ABSTRACT. We investigate modules M having the injective property rel-
ative to nonsingular modules. Such modules are called “N-injective mod-
ules”. It is shown that M is an N-injective R-module if and only if the
annihilator of Za(Rg) in M is equal to the annihilator of Z3(Rg) in
E(M). Every N-injective R-module is injective precisely when R is a
right nonsingular ring. We prove that the endomorphism ring of an N/-
injective module has a von Neumann regular factor ring. Every (finitely
generated, cyclic, free) R-module is A-injective, if and only if RM) g
N-injective, if and only if R is right t-semisimple. The N -injective prop-
erty is characterized for right extending rings, semilocal rings and rings
of finite reduced rank. Using the N-injective property, we determine the
rings whose all nonsingular cyclic modules are injective.

1. Introduction

To describe the content of the paper we first state some notations and recall
a few relevant results. Throughout, all rings are associative with unity and
all modules are unitary right modules. For a subset K of an R-module M,
we denote rr(K) = {r € R: Kr = 0}, and for a subset I of R we denote
IM(I) = {m € M : mI = 0}. Recall that the singular submodule Z(M)
of a module M is the set of m € M such that mI = 0 for some essential
right ideal I of R, or equivalently, rg(m) <. Rp (the notation <. denotes
an essential submodule). The Goldie torsion (or second singular) submodule
Zo(M) of M is defined by Zso(M)/Z(M) = Z(M/Z(M)). The following facts
are well known: Zy(M/Z2(M)) =0. If f: M — N is a homomorphism, then
f(Z2(M)) < Z3(N). Moreover, Zo(M) N A = Z5(A) for every submodule A
of M, and Zy(D, M) = @, Z2(M)) for every class of R-modules My. A
module M is called singular if Z(M) = M and nonsingular if Z(M) = 0, or
equivalently, Zo(M) = 0. The module M is called Zs-torsion if Zo(M) = M.
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Clearly, a submodule A of M is Zs-torsion if and ounly if A < Z3(M). The
class of Zs-torsion modules is closed under submodules, factor modules, direct
sums, and extensions. In [2], a submodule A of M is called t-essential in M
(written by A <;es M) if for every submodule B of M, ANB < Z5(M) implies
that B < Zy(M). Using this notion, it is easy to see that Zs(M) is the set of
m € M such that mI = 0 for some t-essential right ideal I of R, or equivalently,
rr(m) <tes Rp. Following [2], a submodule C of M is said to be t-closed in M
if C' <ges C' < M implies that C = C’; and a module M is called t-extending
if every t-closed submodule of M is a direct summand. In fact, t-extending
modules are precisely the modules M for which every closed submodule of M
containing Zs(M) is a direct summand of M.

Over the last 50 years numerous mathematicians have investigated rings
over which certain cyclic modules have a homological property. Among these,
determining the rings whose certain cyclic modules are injective has been of
interest. Osofsky [12] proved that every cyclic R-module is injective, if and only
if every R-module is injective, if and only if R is semisimple. A cyclic R-module
is called proper cyclic if it is not isomorphic to R. A ring R is called a right
PCl-ring if every proper cyclic R-module is injective. Faith [5] proved that
a right PCl-ring is either a semisimple ring or a simple right semihereditary
right Ore domain. An excellent reference for a thorough study of these rings
is [8]. The rings for which every singular module is injective were studied by
Goodearl [6]. He called them right SI-rings and characterized such rings as
those nonsingular ones for which R/I is semisimple for every essential right
ideal T of R. Osofsky and Smith [13] showed that every singular cyclic R-
module is injective if and only if R is a right SI-ring. More results on such
rings can be found in [4] and [14]. Motivated by these, a natural question is:
“What are the rings whose all nonsingular cyclic modules are injective?” In [3]
the rings whose all nonsingular modules are injective were studied. Such rings
are called right t-semisimple rings. It was shown that R is right ¢-semisimple, if
and only if every nonsingular R-module is semisimple, if and only if R/Z>(Rg)
is a semisimple ring, if and only if R is a direct product of two rings, one is
semisimple and the other is right Zs-torsion. By [3, Example 4.15], the class
of right ¢t-semisimple rings is properly contained in that of rings R for which
every nonsingular cyclic R-module is injective. This raises another question:
“Under which condition(s) the class of rings R for which every nonsingular
cyclic R-module is injective coincides with that of right t-semisimple rings?”
But, it is a fact, obtained by Baer’s criterion, that a nonsingular R-module M
is injective precisely when M is injective relative to the nonsingular R-module
R/Z3(Rg). This leads us to investigate the modules M which are injective
relative to nonsingular modules for finding the answers of the above questions.

Let M and L be R-modules. Recall that M is said to be L-injective (or,
injective relative to L) if for every monomorphism f : K — L and every
homomorphism g : K — M, there is a homomorphism h : L — M such that
hf = g. We say that an R-module M is N-injective if M is injective relative
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to every nonsingular R-module; in other words, M is injective relative to every
nonsingular exact sequence 0 — K — L. (Note that every submodule of a
nonsingular module is nonsingular.) Section 2 is devoted to study A-injective
modules. Every injective module and every module over a right ¢t-semisimple
ring are N-injective. It is proved that M is N-injective, if and only if M is
injective relative to R/Z>(Rg), if and only if I3/ (Z2(RR)) = lp)(Z2(RR)), if
and only if M = Zo(M) @ M', where Zo(M) is N-injective and M’ is injective
(Theorem 2.2). A nonsingular module is N-injective if and only if it is injective
(Corollary 2.3(i)). For a module M,
injective = N -injective = t-extending,

but none of these implications is reversible (Corollary 2.3(ii)). The classes of
injective R-modules and N-injective R-modules coincide if and only if R is a
right nonsingular ring (Proposition 2.7). We prove that if M is an A-injective
module, then S/T is a von Neumann regular ring, where S = End(M) and
T={peS:oM < Z3(M)} (Theorem 2.9). This implies that R/Z3(RpR) is a
von Neumann regular ring whenever R is N-injective (Corollary 2.10).

In Section 3, we give several characterizations obtained by the N -injective
property. It is proved that R is a right ¢-semisimple ring, if and only if ev-
ery (finitely generated, cyclic, free) R-module is N-injective, if and only if
RM™) is N-injective (Theorem 3.1). This, in particular, implies that a semilo-
cal ring is N-injective precisely when R is right ¢-semisimple (Corollary 3.2).
In the sequel, it is shown that R is N-injective if and only if Za(Rpg) is
R/Z3(Rp)-injective and every nonsingular cyclic R-module is injective and
projective (Proposition 3.6). A right extending ring R is N-injective if and
only if R/Z3(Rg) is a right self-injective ring (Theorem 3.7). Moreover, if R
is a ring of finite reduced rank, then R is N-injective if and only if R is right
t-semisimple (Proposition 3.8).

By the obtained results, we find some answers to the above mentioned ques-
tions: 1) The rings whose every nonsingular cyclic module is injective are char-
acterized. In fact, R is such a ring if and only if R/Z3(RR) is a right self-
injective ring, and if R is right extending, these are equivalent to R being right
N-injective (Theorem 3.7). ii) The class of rings R for which every nonsingu-
lar cyclic R-module is injective coincides with that of right ¢-semisimple rings
whenever R is either semilocal or of finite reduced rank (Corollary 3.10).

2. N-injective modules

We say that an R-module M is AN-injective if M is injective relative to
every nonsingular R-module. Clearly, every injective R-module is A/-injective.
The following example shows that the class of N-injective R-modules properly
contains that of injective R-modules. More examples of N-injective modules
will be given in Examples 2.6.

Example 2.1. Let Ry be a right Zs-torsion ring (e.g., Ry = Z/p*Z, where
p is a prime number), Ry be a semisimple ring (e.g., Ry = D is a division
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ring), and R = Ry X Rp. Assume that M is an R-module, f : A — B is an
R-monomorphism where B is a nonsingular R-module, and g : A — M is an
R-homomorphism. By [3, Theorems 3.2(4) and 3.8(3)], A is a direct summand
of B, and hence g can be extended to an R-homomorphism h : B — M. This
shows that M is N-injective.

The next result gives several equivalent conditions for an A -injective module.

Theorem 2.2. The following statements are equivalent for an R-module M .
(1) M is N-injective.
2) M is R/Zy(RR)-injective.
) I (Z2(Rr)) = lpan)(Z2(RR))-
) Inm(Z2(RR)) is an injective R/Zs(RR)-module.
) M = Zy(M) ® M', where Zo(M) is N -injective and M’ is injective.
(6) For every monomorphism f : A — B of R-modules where A is nonsingu-
lar, and every R-homomorphism g : A — M, there exists an R-homomorphism
h:B — M such that hf = g.

(

(3
(4
(5

Proof. (1) = (6). Let f : A — B be a monomorphism of R-modules where
A is nonsingular, and ¢ : A — M be a homomorphism. Assume that 7 :
B — B/Z5(B) is the natural epimorphism. Since A is nonsingular, 7f : A —
B/Z5(B) is a monomorphism. So by hypothesis, there exists a homomorphism
0 : B/Zy(B) — M such that Orf = g. Set h = 0.

(6) = (5). Let C be a complement of Zo(M) in M, and f : C — E(C) be the
inclusion map, where E(C) is the injective hull of C. Moreover, assume that
g : C'— M is the inclusion map. By hypothesis, there exists a homomorphism
h: E(C) — M such that hf = g. Since g is a monomorphism and C <. E(C),
we conclude that h is a monomorphism. Thus h(E(C)) = E(C) is injective,
and so h(E(C)) is a direct summand of M, say M = K & h(E(C)). Since
C' is nonsingular we conclude that E(C) is nonsingular, and so h(E(C)) is
nonsingular. Thus Z2(M) < K. On the other hand, ¢ = g(¢) = hf(c) = h(c),
for every ¢ € C. Thus C < h(E(C)). Hence Za(M) ® C <. M implies that
Zy(M) <. K. But Zy(M) is closed, and so Z3(M) = K. Since M satisfies
(6) and Z3(M) is a direct summand of M, it is easy to see that Zy(M) also
satisfies (6). Thus Z2(M) is N-injective. Now by setting M’ = h(FE(C)), the
desired decomposition is obtained.

(5) = (2). Since Z3(M) and M’ are R/Z5(Rpg)-injective, so is M.

(2) = (4). Let R = R/Zs(Rg), and I be a right ideal of R. Moreover,
assume that g : I — Iy (Z2(RRg)) is an R-homomorphism. By hypothesis g
can be extended to an R-homomorphism h : R — M. But clearly, h(R) <
Ir(Z2(RR)), and so g can be extended to the R-homomorphism h : R —
Ir(Z2(RR)). Thus by Baer’s criterion, Iy(Z2(Rg)) is an injective R-module.

(4) = (3). Set R = R/Z»(RRr), and K = l5(Z2(RR)). By [7, Exercise 5J],
lE(K)(ZQ(RR)) = E(Kﬁ) Now we show that ZE(K)(ZQ(RR)) = ZE(M)(ZQ(RR)).
Clearly, E(K) is a direct summand of E(M), say E(K)® D = E(M). Let
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r € g (Z2(RRr)) and 2 = e + d, where e € F(K) and d € D. Obvi-
ously, e € lgx)(Z2(Rg)) and d € Ip(Z2(Rg)). If d # 0, then there ex-
ists r € R such that 0 # dr € M. Thus drZ:(Rr) < dZ3(Rgr) = 0,
and so dr € K N D = 0 which is impossible. Hence d = 0 and =z = e €
lp(k)(Z2(RR)). This shows that [gx)(Z2(RR)) = lpn)(Z2(RR)), as desired.
Therefore E(K) = lp)(Z2(RR)). Since Ky is injective we conclude that
In(Z2(RR)) = lp(y(Z2(RR)).

(3) = (1). First note that Ipar)(Z2(Rr)) is an injective R/Z>(Rr)-module.
In fact, let R = R/Zs(Rg), and I be a right ideal of R. Moreover, let ¢ :
11— lp(my(Z2(RR)) be an R-homomorphism. Then ¢ can be extended to an
R-homomorphism ¢ : R — E(M). But clearly, ¥(R) < lp)(Z2(Rr)), and
so ¢ is extended to the R-homomorphism v : R — lg(y(Z2(RR)). Thus by
Baer’s criterion we conclude that {p(a)(Z2(Rg)) is an injective R-module, as
desired.

Now let N be a nonsingular R-module, f: A — N be an R-monomorphism
and g : A = M be an R-homomorphism. Since A is nonsingular, AZ>(Rg) =
0, and hence g(A) < lp(Z2(Rg)). But, by hypothesis and what we have
shown above Iy (Z2(Rpg)) is an injective R-module. So there exists an R-
homomorphism h : N — l3;(Z2(Rgr)) such that hf = g. Clearly, h : N - M
is an R-homomorphism. This shows that M is A-injective. (]

Corollary 2.3. (i) A nonsingular module M is N -injective if and only if M
18 1njective.
(ii) If M is an N -injective module, then M is t-extending.

Proof. (i) This follows from Theorem 2.2(5).
(i) This is obtained by Theorem 2.2(5) and [2, Theorem 2.11(3)]. O

The converse implication of Corollary 2.3(ii) is not always true. For example,
Z is an extending module which is not injective, hence it is not N-injective by
Corollary 2.3(1).

Corollary 2.4. The following statements are equivalent for a ring R.
(1) R/Z5(RR) is a right Noetherian ring.
(2) MM is N-injective, for every N -injective module M.
(3) Fvery direct sum of N -injective modules is N -injective.

Proof. (1) = (3). Let M = @, M., where each M) is N-injective. By Theo-
rem 2.2(4), Iy, (Z2(RR)) is an injective R/Zy(Rg)-module. Hence Iy (Z2(RR))
= Pyca vy (Z2(RR)) is an injective R/Zy(Rpg)-module since R/Z>(Rg) is
right Noetherian. Thus by Theorem 2.2(4), M is N-injective.

(3) = (2). This implication is clear.

(2) = (1). By [11, Theorem 7.48(4)], it suffices to show that M®™ is an
injective R/Zs(Rpg)-module, for every injective R/Zs(Rp)-module M. Since M
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is R/Z2(Rp)-injective as an R-module, Theorem 2.2(2) implies that M is N-
injective. Thus by hypothesis, M ™) is N-injective, hence R/Z(Rp)-injective.
So MM is an injective R/Zs(Rg)-module. O

A ring R is called a right V-ring (or right co-semisimple) if every simple
R-module is injective.

Corollary 2.5. The following statements are equivalent for a ring R.
(1) Every simple R-module is N -injective.
(2) R/Z5(RR) is a right V-ring.

Proof. (1) = (2). Let S be a simple R/Zs(Rp)-module. Clearly, S is a simple
R-module, and so as an R-module, S is N-injective, hence R/Zs(Rg)-injective.
Thus S is an injective R/Z(Rg)-module.

(2) = (1). Let S be a simple R-module. Clearly, l5(Z2(Rg)) is S or 0.
So by hypothesis, Is(Z2(Rg)) is an injective R/Z3(Rpr)-module. Hence S is
N-injective by Theorem 2.2(4). O

In the following we give more examples of N -injective modules.

Examples 2.6. (i) Let U be a right Z,-torsion ring (e.g., U = Z/p*Z for a
prime number p). Then T' = (§ ) is a right Zs-torsion ring; see [3, Proposition
3.11]. Set R=T xZ, and M = T x Q. Since T is right Zs-torsion, every
T-module X is Zs-torsion (note that X Zs(Tr) < Z3(X)), and hence every
T-module is AN-injective. On the other hand, Q is an injective Z-module.
Therefore T is an N-injective R-module and Q is an injective R-module. But,
Z3(M) =T, and so by Theorem 2.2(5), M is an N -injective R-module.

(ii) Let Ry be a right Z»-torsion ring (e.g., 1 = [, Z/p*Z, where p runs
through the set of prime numbers), Ry a right nonsingular right Noetherian
ring (e.g., Ry = (§ 5), where D is a division ring), and R = Ry X Ry. By
[3, Lemma 3.10], Z2(Rr) = Ri, and so R/Z2(Rr) = Rz is right Noetherian.
Now let M be an R-module and A be a set. By Corollary 2.4, E(M)®) is an
N-injective R-module.

(iii) Let Ry be a right Zs-torsion ring (e.g., Ry = [[ Z/p*Z, where p is a
prime number and A is a set), Rs a right nonsingular right V-ring (e.g., R is
a field), and R = Ry X Re. Then Z3(Rg) = Ri, and so R/Z3(Rgr) = Ry is
a right V-ring. Thus by Corollary 2.5, R/L is an N-injective R-module, for
every maximal right ideal L of R.

The following result shows that the classes of AM-injective R-modules and
injective R-modules coincide if and only if R is a right nonsingular ring.

Proposition 2.7. The following statements are equivalent for a ring R.
(1) Every N -injective R-module is injective.
(2) R is right nonsingular.

Proof. The implication (2) = (1) follows from Theorem 2.2. For (1) = (2), set
A =1gr(Z3(RR)). We show that A is an essential right ideal of R. Let I be a
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right ideal of R such that ANI = 0. So lx(Z2(Rr)) = 0 for every R-submodule
K of I. Thus by Theorem 2.2(4), K is AN-injective, and so by hypothesis it is
injective. This implies that I is a semisimple direct summand of R. On the
other hand, if J is a nonsingular right ideal of R, then JZ3(Rg) < Z3(J) =0,
and so J < A. Hence by the semisimple property of I we conclude that I is
singular. But R cannot contain a nonzero singular direct summand, and so
I = 0. This shows that A is an essential right ideal of R. Thus E(A) = E(RRg).
By Theorem 2.2(4), lg(a)(Z2(RR)) is an injective R/Z>(Rg)-module, and so
it is N-injective as an R-module. Thus by hypothesis, Iga)(Z2(Rr)) is an
injective R-module. But A < lga)(Z2(RRr)), and so lga)(Z2(RRr)) = E(A).
Thus ZQ(RR) = RZQ(RR) S E(RR)ZQ(RR) = E(A)ZQ(RR) = 0. Hence R is
right nonsingular. (]

Corollary 2.8. The following statements are equivalent for a ring R.
(1) Every N -injective R-module is projective.
(2) R is semisimple.

Proof. Tt suffices to show that (1) = (2). By hypothesis, every injective R-
module is projective. So R is quasi-Frobenius, and hence every projective
R-module is injective; see [11, Theorems 7.55 and 7.56(2)]. Thus hypothesis
implies that every N-injective R-module is injective. Hence R is right nonsin-
gular by Proposition 2.7. So by [3, Corollary 4.6], R is semisimple. O

We end this section by proving that the endomorphism ring of an A-injective
module has a von Neumann regular factor ring. It will be observed that the
endomorphism ring of an N-injective module is not necessarily von Neumann
regular; see Remark 3.5.

Theorem 2.9. Let M be a module, S = End(M), and T ={p € S : oM <
Zo(M)}. If M is N -injective, then S/T is a von Neumann regular ring.

Proof. First we show that T is a two-sided ideal of S. Let ¢ € T and
Y € S. Since ¢ € T we conclude that p~1(Z2(M)) = M. But clearly,
¢~ (Z2(M)) < () 1 (Z2(M)), hence (Yp)~1(Z2(M)) = M. So vy € T.
On the other hand, (p¢)~H(Z2(M)) = =1 (o™ H(Z2(M))) = =Y (M) = M.
Hence ¢y € T'. This shows that T is a two-sided ideal of S.

Now we show that S/T is von Neumann regular. Let ¢» € S. By Corollary
2.3(ii), M is t-extending. So by [2, Theorem 2.11(5)], there exists a direct sum-
mand D of M, say M = D @ E, such that 9=} (Z2(M)) <tes D. Assume that
‘bar’ denotes the image in M/Zo(M). Since Zo(M) < =1 (Zy(M)) we conclude
that M = D @ E. Moreover, 1) : E — 1 E defined by ¢ T = ¢« is an isomor-
phism (¢ is one-to-one, since a € Zy(M) implies that z € =1 (Zo(M))NE <
DNE = 0). But M is injective by Theorem 2.2(5), and so M has C5 condition.
Thus ¢ F is a direct summand of M, say M = )E ® K. This implies that M =
YE & (K 4+ Z2(M)); in fact, it is enough to show that Y E N (K + Z3(M)) = 0.
Let o =k + z, where x € E, k € K and z € Z3(M). Then ¢z + Zy(M) =
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k4 Zy(M) € YENK = 0. Thus z € ¢~ Y(Z2(M)) N E = 0, and hence
YEN(K+Zy(M)) = 0, as desired. On the other hand, ¥~!(Z2(M))NE = 0 im-
plies that ¢|g : E — ¢ E is an isomorphism. Set 6 = (¢|g)~1 @ Ik4z,m) €S-
Clearly, 41 (Z(M)) & B < (1 — 064)~"(Zo(M)). But ¢~ (Zo(M)) <sen D
implies that ¥ ~1(Z2(M))® E <;es D®E = M by [2, Proposition 2.2(4)]. Thus
( — P 0)~H(Za(M)) <tes M. Moreover, (¢ — 1) 01))~1(Z3(M)) is t-closed in
M by [2, Corollary 2.7]. Thus (v)—1 6¢p)~H(Z2(M)) = M. Hence p—p 0y € T,
and so S/T is von Neumann regular. O

Corollary 2.10. Let a ring R be N -injective.
(i) R/Z2(RR) is a von Neumann regular ring.
(ii) Rad(P) < Z3(P) for every projective R-module P.

Proof. (i) Let r € R, and f, be the endomorphism of R defined by f,.(z) = rz.
If r € Z3(RR), then f.(R) < Z3(Rg). If fr(R) < Z3(Rpg), then f.(1) =r €
Z3(Rp). Therefore under the ring isomorphism @ : R — S = End(Rp) defined
by ®(r) = f,, the ideal Zo(Rp) is isomorphic to T = {p € S : ¢R < Zs(RR)}.
Hence R/Z3(Rr) =2 S/T, and so by Theorem 2.9, R/Z3(Rp) is a von Neumann
regular ring.

(i) Since the Jacobson radical of a von Neumann regular ring is zero, (i
implies that Rad(R) < Z3(Rp). Hence Rad(P) = PRad(R) < PZ3(Rgr) <
Zs(P). O

3. More characterizations

In this section we give several characterizations obtained by the N-injective
property. For right extending rings, semilocal rings and rings of finite reduced
rank, the N-injective property is characterized. Moreover, we determine the
rings R for which every nonsingular cyclic R-module is injective. Recall that a
ring R is right ¢-semisimple if and only if R/Z>(Rpg) is a semisimple ring.

Theorem 3.1. The following statements are equivalent for a ring R.
(1) Every free (projective) R-module is N -injective.
(2) Every cyclic R-module is N -injective.
(3) Every R-module is N -injective.
(4) R is right t-semisimple.
(5) RMN s N -injective.
(6) [[r(Z2(RRr))™ is an injective R/Z2(RRg)-module.

Proof. (1) = (4). Let [R/Zs(Rg)]™ be a free R/Zy(Rr)-module. Since
Z3(RWM) = Zy(Rr)™ we conclude that [R/Za(Rg)|™ = RN /Z,(RW).
Hence by hypothesis and Theorem 2.2(5), the module [R/Z(Rg)|™) is an in-
jective R-module, and so it is an injective R/Z2(Rp)-module. Thus R/Z3(RR)
is a right Y-injective ring, and so it is quasi-Frobenius by [4, 18.1]. On the
other hand, R/Z>(Rp) is a right nonsingular ring. Thus by [3, Corollary 4.6],
R/Z5(Rpg) is a semisimple ring.
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(2) = (4). Let M be a cyclic R/Z3(Rgr)-module. Then M is a cyclic
R-module, and so by hypothesis, M is R/Z3(Rg)-injective. Hence M is an
injective R/Zs(Rp)-module. Thus R/Z>(Rpg) is a semisimple ring.

(4) = (3). Assume that B and M are R-modules, and A is a nonsingular sub-
module of B. By [3, Theorem 3.2(4)], A is a direct summand of B. So clearly,
every R-homomorphism g : A — M can be extended to an R-homomorphism
h: B — M. Thus by Theorem 2.2(6), M is N -injective.

(3) = (1), (3) = (2) and (1) = (5). These implications are obvious.

(5) = (6). Clearly, lpe (Z2(RRg)) = [Ir(Z2(Rg))]™. Thus by Theorem
2.2(4), [Ir(Z2(RR))]™ is an injective R/Z>(Rg)-module.

(6) = (1). Let R™ be a free R-module. By hypothesis, [Ir(Z2(Rr))]™ is
an injective R/Z,(Rg)-module. Thus by [1, Theorem 25.1], [[r(Z2(Rr))]™ is
an injective R/Z(Rg)-module. So by Theorem 2.2(4), R™) is N-injective. [

A ring R is called semilocal if R/Rad(R) is semisimple. Semiperfect rings
(hence right and left perfect rings, semiprimary rings, right and left Artinian
rings, and local rings) are semilocal. The next result determines the AN-
injective semilocal rings. Moreover, by Corollary 2.10, if R is A-injective,
then Rad(R) < Z2(Rpg). The converse implication is not necessarily true even
though R is right Noetherian; e.g., R = Z. The next result shows that the
converse implication holds for semilocal rings.

Corollary 3.2. Let R be a semilocal ring. The following statements are equiv-
alent.

(1) R is N-injective.

(2) R is right t-semisimple.

(3) Rad(R) < Z>(Rx).

If R is local, the above statements are equivalent to

(4) R is right Za-torsion.

Proof. (3) = (2). If R is semilocal, then R/Rad(R) is semisimple. Thus by
hypothesis, R/Z>(Rp) is semisimple, and so R is right t-semisimple.

(2) = (1). This follows from Theorem 3.1.

(4) = (2). This is clear by [3, Theorem 2.3].

Now assume that R is a local ring. We show that (3) = (4). Since R is
local, Rad(R) is essential in R. So by [2, Proposition 2.2(4)], R/Rad(R) is Zo-
torsion. Moreover, by hypothesis, Rad(R) is Za-torsion. Therefore R is right
Zo-torsion. O

Recall that a ring R is called quasi-Frobenius if R is right (or left) Artinian
and right (or left) self-injective.

Corollary 3.3. A ring R is quasi-Frobenius if and only if R is right t-semi-
simple and RN is Zy(Rp)-injective.

Proof. (=) Since R™ is injective, it is Zy(Rpg)-injective. Moreover, by [3,
Proposition 4.5], R is right t-semisimple.
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(<) By Theorems 3.1(3) and 2.2(5), Z2(Rpg) is a direct summand of R.
Moreover, by Theorem 3.1(5), R™ is R/Z(Rp)-injective. Thus by hypothesis,
RM™) is R-injective, so RM is injective. Hence R is quasi-Frobenius by 4,
18.1(b)] and [1, Theorem 25.1]. O

Recall that R is called a right pseudo-Frobenius ring if R is an injective
cogenerator in Mod-R. Every quasi-Frobenius ring is right pseudo-Frobenius;
see [9, Theorem 19.25]. The next result shows that a right pseudo-Frobenius
ring for which the second singular ideal is Noetherian is quasi-Frobenius.

Corollary 3.4. Let R be a ring.

(1) If R is right pseudo-Frobenius, then R is right t-semisimple.

(2) R is quasi-Frobenius if and only if R is right pseudo-Frobenius and
Z3(RpR) is Noetherian (Artinian).

(3) R is quasi-Frobenius if and only if R is right Kasch and Z2(RR) is
injective and Noetherian (Artinian).

Proof. (1) Since R is right pseudo-Frobenius, R is right self-injective and semi-
perfect. Hence Corollary 3.2 implies that R is right ¢t-semisimple.

(2) Let R be right pseudo-Frobenius and Z3(Rpr) be Noetherian (Artinian).
By (1), R is right ¢-semisimple, and so R/Z2(Rp) is Noetherian (Artinian).
Thus R is Noetherian (Artinian), and hence R is quasi-Frobenius. The converse
is clear.

(3) Let R be quasi-Frobenius. Then Z3(Rp) is injective and Noetherian
(Artinian). Moreover, R is right pseudo-Frobenius, and so by [9, Theorem
19.25], R is right Kasch. The converse implication follows from [15, Theorem
5] and (2). O

Remark 3.5. (i) The endomorphism ring of an N-injective module has a von
Neumann regular factor ring (Theorem 2.9), but itself is not necessarily von
Neumann regular. In fact, by Theorem 3.1(5) and [10, Proposition 2.17], if R
is a right t-semisimple ring which is not semisimple, then R™ is A/-injective
and End(R™) is not von Neumann regular.

(ii) Recall that every injective R-module is projective if and only if every
projective R-module is injective (and these are equivalent to R being quasi-
Frobenius). However, Corollary 2.8 and Theorem 3.1 show that this equivalence
does not hold if we replace injective by A-injective.

Proposition 3.6. The following statements are equivalent for a ring R.

(1) R is N-injective.

(2) Z2(RR) is R/Z2(RR)-injective and every finitely generated (cyclic) non-
singular R-module is injective and projective.

Proof. (1) = (2). By Theorem 2.2(5), Z2(RR) is R/Z2(Rgr)-injective. Let M
be a finitely generated nonsingular R-module. There exists a finitely generated
free R-module F such that M = F/C for some submodule C' of F. By [2,
Proposition 2.6(6)], C is a t-closed submodule of F. On the other hand, F is
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N-injective, and so by Corollary 2.3(ii), F' is t-extending. Thus C' is a direct
summand of F, and so M is isomorphic to a direct summand of F. This
implies that M is projective and A-injective which implies that M is injective
by Corollary 2.3(i).

(2) = (1). By Theorem 2.2(2), Zo(Rpr) is N-injective. Since R/Z3(Rp) is
projective by hypothesis, Zo(Rpg) is a direct summand of R, say R = Zo(Rg) ®
R'. But, R’ = R/Z5(Rg) is injective by hypothesis, and so by Theorem 2.2(5),
R is N-injective. O

The following result characterizes the rings over which every cyclic (finitely
generated) nonsingular module is injective. Moreover, this result determines
that when a right extending ring is N -injective.

Theorem 3.7. The following statements are equivalent for a ring R.
(1) Every cyclic (finitely generated) nonsingular R-module is injective.
(2) R/Z3(RR) is a right self-injective ring.

If R is right extending, then the above statements are equivalent to

(3) R is N-injective.

Proof. (1) = (2). By hypothesis, R/Z>(Rg) is an injective R-module, and
hence, a right self-injective ring.

(2) = (1). Let M be a finitely generated nonsingular R-module. Then M is
a finitely generated nonsingular R/Z;(Rp)-module. But, R/Z3(Rg) is a right
self-injective ring, and by Proposition 3.6, every finitely generated nonsingu-
lar module over a right self-injective ring is injective. So M is an injective
R/Z5(Rg)-module. Therefore Baer’s criterion implies that M is an injective
R-module.

(3) = (1). This follows from Proposition 3.6.

Now assume that R is right extending. We show that (1) = (3). Since R is
right extending, Z2(Rpg) is a direct summand of R, say R = Z3(Rg) @ R'. By
[4, 7.11], Z2(RR) is R'-injective. Hence Z3(RR) is R/Z2(Rpg)-injective. On the
other hand, R’ is injective since R’ is a cyclic nonsingular R-module. Thus by
[2, Theorem 2.11(3)], R™ = Zy(Rg)™ @ R'(™ is t-extending. So by hypothesis
and [2, Remark 3.14], every finitely generated nonsingular R-module is injective
and projective. Thus by Proposition 3.6, R is AN -injective. (I

A ring R is called of finite (Goldie) reduced rank if the uniform dimension of
R/Z5(Rpg) is finite. Every ring of finite uniform dimension is of finite reduced
rank; see [9, (7.35)].

Proposition 3.8. The following statements are equivalent for a ring R of finite
reduced rank.

(1) R is N-injective.

(2) R is right t-semisimple.

(3) Every nonsingular principal right ideal of R is injective.

(4) Every nonsingular principal right ideal of R is a direct summand.
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Proof. The implication (2) = (1) follows from Theorem 3.1, the implication
(1) = (3) follows from Proposition 3.6, and the implication (3) = (4) is clear.

(4) = (2). By [3, Theorem 2.3(4)], it suffices to show that a nonsingular
right ideal K of R is a direct summand. Since R is of finite reduced rank,
so is K. Hence K is of finite uniform dimension as it is nonsingular. Thus
by [9, Proposition (6.30)’] and [1, Proposition 10.14], K is a finite direct sum
of indecomposable right ideals. So by hypothesis, K is a finite direct sum of
minimal right ideals, say K = a1 R®asR®- - -Pa,R. If n =1, then K is a direct
summand of R. Let n > 1. By induction, assume that as R®- - -Pa, R = eR for
some idempotent e € R. Since (1—e)a; R is a submodule of K, it is nonsingular.
Hence by hypothesis, (1 —e)a; R = ¢/R for some idempotent ¢’ € R. However,
K =eR+ ¢€e'R and e¢’ = 0. Therefore ¢ = e + ¢/ — €’e is an idempotent and
K = ¢"R is a direct summand of R, as desired. O

Following [2], a ring R is called right Y-t-extending if every free R-module
is t-extending.

Corollary 3.9. A ring R is right t-semisimple if and only if R is N -injective
and right Y-t-extending.

Proof. (=) This follows from Theorem 3.1 and [3, Corollary 3.6].

(<) Let R™ be a free R-module. By [2, Theorem 2.11(3)], [R/Z2(Rg)]») =
RWM) /Z5(RM)) is an extending R-module. Thus [R/Z2(Rg)]™ is an extending
R/Z5(Rg)-module. So R/Z>(Rg) is a right Y-extending ring. Thus by [4,
12.21((d) < (e))], R/Z2(Rg) is an Artinian ring. So R is of finite reduced
rank. Thus by Proposition 3.8, R is right ¢-semisimple. (I

Our last result shows that a ring R for which every nonsingular cyclic R-
module is injective is precisely a right ¢t-semisimple ring, whenever R is either
semilocal or of finite reduced rank; see [3, Example 4.15].

Corollary 3.10. Let R be a ring which is either semilocal or of finite reduced
rank. Then every cyclic (finitely generated) nonsingular R-module is injective
if and only if R is right t-semisimple.

Proof. The implication (<) is obtained by [3, Theorem 3.2(4)]. For (=), set
R = R/Z»(Rg). By Theorem 3.7, R is right self-injective. So Rad(R) <
Z3(Rg) by Corollary 2.10(ii). But Z;(Rz) = 0, hence Rad(R) < Za(Rg).
Moreover, R is von Neumann regular by Corollary 2.10(i). So by [3, Lemma
4.12], every nonsingular cyclic right ideal of R is a direct summand. Thus

Corollary 3.2(3) and Proposition 3.8(4) imply that R is right t-semisimple. [J
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