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INJECTIVE PROPERTY RELATIVE TO NONSINGULAR

EXACT SEQUENCES

Marzieh Arabi-Kakavand, Shadi Asgari, and Yaser Tolooei

Abstract. We investigate modules M having the injective property rel-
ative to nonsingular modules. Such modules are called “N -injective mod-
ules”. It is shown that M is an N -injective R-module if and only if the
annihilator of Z2(RR) in M is equal to the annihilator of Z2(RR) in
E(M). Every N -injective R-module is injective precisely when R is a
right nonsingular ring. We prove that the endomorphism ring of an N -
injective module has a von Neumann regular factor ring. Every (finitely

generated, cyclic, free) R-module is N -injective, if and only if R(N) is
N -injective, if and only if R is right t-semisimple. The N -injective prop-
erty is characterized for right extending rings, semilocal rings and rings
of finite reduced rank. Using the N -injective property, we determine the
rings whose all nonsingular cyclic modules are injective.

1. Introduction

To describe the content of the paper we first state some notations and recall
a few relevant results. Throughout, all rings are associative with unity and
all modules are unitary right modules. For a subset K of an R-module M ,
we denote rR(K) = {r ∈ R : Kr = 0}, and for a subset I of R we denote
lM (I) = {m ∈ M : mI = 0}. Recall that the singular submodule Z(M)
of a module M is the set of m ∈ M such that mI = 0 for some essential
right ideal I of R, or equivalently, rR(m) ≤e RR (the notation ≤e denotes
an essential submodule). The Goldie torsion (or second singular) submodule
Z2(M) of M is defined by Z2(M)/Z(M) = Z(M/Z(M)). The following facts
are well known: Z2(M/Z2(M)) = 0. If f : M → N is a homomorphism, then
f(Z2(M)) ≤ Z2(N). Moreover, Z2(M) ∩ A = Z2(A) for every submodule A
of M , and Z2(

⊕

λMλ) =
⊕

λ Z2(Mλ) for every class of R-modules Mλ. A
module M is called singular if Z(M) = M and nonsingular if Z(M) = 0, or
equivalently, Z2(M) = 0. The module M is called Z2-torsion if Z2(M) = M .
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Clearly, a submodule A of M is Z2-torsion if and only if A ≤ Z2(M). The
class of Z2-torsion modules is closed under submodules, factor modules, direct
sums, and extensions. In [2], a submodule A of M is called t-essential in M

(written by A ≤tes M) if for every submodule B ofM , A∩B ≤ Z2(M) implies
that B ≤ Z2(M). Using this notion, it is easy to see that Z2(M) is the set of
m ∈M such thatmI = 0 for some t-essential right ideal I of R, or equivalently,
rR(m) ≤tes RR. Following [2], a submodule C of M is said to be t-closed in M
if C ≤tes C

′ ≤ M implies that C = C′; and a module M is called t-extending
if every t-closed submodule of M is a direct summand. In fact, t-extending
modules are precisely the modules M for which every closed submodule of M
containing Z2(M) is a direct summand of M .

Over the last 50 years numerous mathematicians have investigated rings
over which certain cyclic modules have a homological property. Among these,
determining the rings whose certain cyclic modules are injective has been of
interest. Osofsky [12] proved that every cyclic R-module is injective, if and only
if every R-module is injective, if and only if R is semisimple. A cyclic R-module
is called proper cyclic if it is not isomorphic to R. A ring R is called a right
PCI-ring if every proper cyclic R-module is injective. Faith [5] proved that
a right PCI-ring is either a semisimple ring or a simple right semihereditary
right Ore domain. An excellent reference for a thorough study of these rings
is [8]. The rings for which every singular module is injective were studied by
Goodearl [6]. He called them right SI-rings and characterized such rings as
those nonsingular ones for which R/I is semisimple for every essential right
ideal I of R. Osofsky and Smith [13] showed that every singular cyclic R-
module is injective if and only if R is a right SI-ring. More results on such
rings can be found in [4] and [14]. Motivated by these, a natural question is:
“What are the rings whose all nonsingular cyclic modules are injective?” In [3]
the rings whose all nonsingular modules are injective were studied. Such rings
are called right t-semisimple rings. It was shown that R is right t-semisimple, if
and only if every nonsingular R-module is semisimple, if and only if R/Z2(RR)
is a semisimple ring, if and only if R is a direct product of two rings, one is
semisimple and the other is right Z2-torsion. By [3, Example 4.15], the class
of right t-semisimple rings is properly contained in that of rings R for which
every nonsingular cyclic R-module is injective. This raises another question:
“Under which condition(s) the class of rings R for which every nonsingular
cyclic R-module is injective coincides with that of right t-semisimple rings?”
But, it is a fact, obtained by Baer’s criterion, that a nonsingular R-module M
is injective precisely when M is injective relative to the nonsingular R-module
R/Z2(RR). This leads us to investigate the modules M which are injective
relative to nonsingular modules for finding the answers of the above questions.

Let M and L be R-modules. Recall that M is said to be L-injective (or,
injective relative to L) if for every monomorphism f : K → L and every
homomorphism g : K → M , there is a homomorphism h : L → M such that
hf = g. We say that an R-module M is N -injective if M is injective relative
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to every nonsingular R-module; in other words, M is injective relative to every
nonsingular exact sequence 0 → K → L. (Note that every submodule of a
nonsingular module is nonsingular.) Section 2 is devoted to study N -injective
modules. Every injective module and every module over a right t-semisimple
ring are N -injective. It is proved that M is N -injective, if and only if M is
injective relative to R/Z2(RR), if and only if lM (Z2(RR)) = lE(M)(Z2(RR)), if
and only if M = Z2(M)⊕M ′, where Z2(M) is N -injective and M ′ is injective
(Theorem 2.2). A nonsingular module is N -injective if and only if it is injective
(Corollary 2.3(i)). For a module M ,

injective ⇒ N -injective ⇒ t-extending,

but none of these implications is reversible (Corollary 2.3(ii)). The classes of
injective R-modules and N -injective R-modules coincide if and only if R is a
right nonsingular ring (Proposition 2.7). We prove that if M is an N -injective
module, then S/T is a von Neumann regular ring, where S = End(M) and
T = {ϕ ∈ S : ϕM ≤ Z2(M)} (Theorem 2.9). This implies that R/Z2(RR) is a
von Neumann regular ring whenever R is N -injective (Corollary 2.10).

In Section 3, we give several characterizations obtained by the N -injective
property. It is proved that R is a right t-semisimple ring, if and only if ev-
ery (finitely generated, cyclic, free) R-module is N -injective, if and only if
R(N) is N -injective (Theorem 3.1). This, in particular, implies that a semilo-
cal ring is N -injective precisely when R is right t-semisimple (Corollary 3.2).
In the sequel, it is shown that R is N -injective if and only if Z2(RR) is
R/Z2(RR)-injective and every nonsingular cyclic R-module is injective and
projective (Proposition 3.6). A right extending ring R is N -injective if and
only if R/Z2(RR) is a right self-injective ring (Theorem 3.7). Moreover, if R
is a ring of finite reduced rank, then R is N -injective if and only if R is right
t-semisimple (Proposition 3.8).

By the obtained results, we find some answers to the above mentioned ques-
tions: i) The rings whose every nonsingular cyclic module is injective are char-
acterized. In fact, R is such a ring if and only if R/Z2(RR) is a right self-
injective ring, and if R is right extending, these are equivalent to R being right
N -injective (Theorem 3.7). ii) The class of rings R for which every nonsingu-
lar cyclic R-module is injective coincides with that of right t-semisimple rings
whenever R is either semilocal or of finite reduced rank (Corollary 3.10).

2. N -injective modules

We say that an R-module M is N -injective if M is injective relative to
every nonsingular R-module. Clearly, every injective R-module is N -injective.
The following example shows that the class of N -injective R-modules properly
contains that of injective R-modules. More examples of N -injective modules
will be given in Examples 2.6.

Example 2.1. Let R1 be a right Z2-torsion ring (e.g., R1 = Z/p2Z, where
p is a prime number), R2 be a semisimple ring (e.g., R2 = D is a division
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ring), and R = R1 × R2. Assume that M is an R-module, f : A → B is an
R-monomorphism where B is a nonsingular R-module, and g : A → M is an
R-homomorphism. By [3, Theorems 3.2(4) and 3.8(3)], A is a direct summand
of B, and hence g can be extended to an R-homomorphism h : B → M . This
shows that M is N -injective.

The next result gives several equivalent conditions for anN -injective module.

Theorem 2.2. The following statements are equivalent for an R-module M .

(1) M is N -injective.

(2) M is R/Z2(RR)-injective.
(3) lM (Z2(RR)) = lE(M)(Z2(RR)).
(4) lM (Z2(RR)) is an injective R/Z2(RR)-module.

(5) M = Z2(M)⊕M ′, where Z2(M) is N -injective and M ′ is injective.

(6) For every monomorphism f : A→ B of R-modules where A is nonsingu-

lar, and every R-homomorphism g : A→M , there exists an R-homomorphism

h : B →M such that hf = g.

Proof. (1) ⇒ (6). Let f : A → B be a monomorphism of R-modules where
A is nonsingular, and g : A → M be a homomorphism. Assume that π :
B → B/Z2(B) is the natural epimorphism. Since A is nonsingular, πf : A →
B/Z2(B) is a monomorphism. So by hypothesis, there exists a homomorphism
θ : B/Z2(B) →M such that θπf = g. Set h = θπ.

(6) ⇒ (5). Let C be a complement of Z2(M) inM , and f : C → E(C) be the
inclusion map, where E(C) is the injective hull of C. Moreover, assume that
g : C →M is the inclusion map. By hypothesis, there exists a homomorphism
h : E(C) →M such that hf = g. Since g is a monomorphism and C ≤e E(C),
we conclude that h is a monomorphism. Thus h(E(C)) ∼= E(C) is injective,
and so h(E(C)) is a direct summand of M , say M = K ⊕ h(E(C)). Since
C is nonsingular we conclude that E(C) is nonsingular, and so h(E(C)) is
nonsingular. Thus Z2(M) ≤ K. On the other hand, c = g(c) = hf(c) = h(c),
for every c ∈ C. Thus C ≤ h(E(C)). Hence Z2(M) ⊕ C ≤e M implies that
Z2(M) ≤e K. But Z2(M) is closed, and so Z2(M) = K. Since M satisfies
(6) and Z2(M) is a direct summand of M , it is easy to see that Z2(M) also
satisfies (6). Thus Z2(M) is N -injective. Now by setting M ′ = h(E(C)), the
desired decomposition is obtained.

(5) ⇒ (2). Since Z2(M) and M ′ are R/Z2(RR)-injective, so is M .
(2) ⇒ (4). Let R = R/Z2(RR), and I be a right ideal of R. Moreover,

assume that g : I → lM (Z2(RR)) is an R-homomorphism. By hypothesis g
can be extended to an R-homomorphism h : R → M . But clearly, h(R) ≤
lM (Z2(RR)), and so g can be extended to the R-homomorphism h : R →
lM (Z2(RR)). Thus by Baer’s criterion, lM (Z2(RR)) is an injective R-module.

(4) ⇒ (3). Set R = R/Z2(RR), and K = lM (Z2(RR)). By [7, Exercise 5J],
lE(K)(Z2(RR)) = E(KR). Now we show that lE(K)(Z2(RR)) = lE(M)(Z2(RR)).
Clearly, E(K) is a direct summand of E(M), say E(K) ⊕ D = E(M). Let
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x ∈ lE(M)(Z2(RR)) and x = e + d, where e ∈ E(K) and d ∈ D. Obvi-
ously, e ∈ lE(K)(Z2(RR)) and d ∈ lD(Z2(RR)). If d 6= 0, then there ex-
ists r ∈ R such that 0 6= dr ∈ M . Thus drZ2(RR) ≤ dZ2(RR) = 0,
and so dr ∈ K ∩ D = 0 which is impossible. Hence d = 0 and x = e ∈
lE(K)(Z2(RR)). This shows that lE(K)(Z2(RR)) = lE(M)(Z2(RR)), as desired.
Therefore E(KR) = lE(M)(Z2(RR)). Since KR is injective we conclude that
lM (Z2(RR)) = lE(M)(Z2(RR)).

(3) ⇒ (1). First note that lE(M)(Z2(RR)) is an injective R/Z2(RR)-module.

In fact, let R = R/Z2(RR), and I be a right ideal of R. Moreover, let ϕ :
I → lE(M)(Z2(RR)) be an R-homomorphism. Then ϕ can be extended to an

R-homomorphism ψ : R → E(M). But clearly, ψ(R) ≤ lE(M)(Z2(RR)), and

so ϕ is extended to the R-homomorphism ψ : R → lE(M)(Z2(RR)). Thus by

Baer’s criterion we conclude that lE(M)(Z2(RR)) is an injective R-module, as
desired.

Now let N be a nonsingular R-module, f : A→ N be an R-monomorphism
and g : A → M be an R-homomorphism. Since A is nonsingular, AZ2(RR) =
0, and hence g(A) ≤ lM (Z2(RR)). But, by hypothesis and what we have
shown above lM (Z2(RR)) is an injective R-module. So there exists an R-
homomorphism h : N → lM (Z2(RR)) such that hf = g. Clearly, h : N → M

is an R-homomorphism. This shows that M is N -injective. �

Corollary 2.3. (i) A nonsingular module M is N -injective if and only if M

is injective.

(ii) If M is an N -injective module, then M is t-extending.

Proof. (i) This follows from Theorem 2.2(5).
(ii) This is obtained by Theorem 2.2(5) and [2, Theorem 2.11(3)]. �

The converse implication of Corollary 2.3(ii) is not always true. For example,
Z is an extending module which is not injective, hence it is not N -injective by
Corollary 2.3(i).

Corollary 2.4. The following statements are equivalent for a ring R.

(1) R/Z2(RR) is a right Noetherian ring.

(2) M (N) is N -injective, for every N -injective module M .

(3) Every direct sum of N -injective modules is N -injective.

Proof. (1) ⇒ (3). LetM =
⊕

λ∈ΛMλ, where eachMλ isN -injective. By Theo-
rem 2.2(4), lMλ

(Z2(RR)) is an injective R/Z2(RR)-module. Hence lM (Z2(RR))
=

⊕

λ∈Λ lMλ
(Z2(RR)) is an injective R/Z2(RR)-module since R/Z2(RR) is

right Noetherian. Thus by Theorem 2.2(4), M is N -injective.
(3) ⇒ (2). This implication is clear.
(2) ⇒ (1). By [11, Theorem 7.48(4)], it suffices to show that M (N) is an

injective R/Z2(RR)-module, for every injective R/Z2(RR)-moduleM . SinceM
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is R/Z2(RR)-injective as an R-module, Theorem 2.2(2) implies that M is N -
injective. Thus by hypothesis, M (N) is N -injective, hence R/Z2(RR)-injective.
So M (N) is an injective R/Z2(RR)-module. �

A ring R is called a right V -ring (or right co-semisimple) if every simple
R-module is injective.

Corollary 2.5. The following statements are equivalent for a ring R.

(1) Every simple R-module is N -injective.

(2) R/Z2(RR) is a right V-ring.

Proof. (1) ⇒ (2). Let S be a simple R/Z2(RR)-module. Clearly, S is a simple
R-module, and so as an R-module, S is N -injective, hence R/Z2(RR)-injective.
Thus S is an injective R/Z2(RR)-module.

(2) ⇒ (1). Let S be a simple R-module. Clearly, lS(Z2(RR)) is S or 0.
So by hypothesis, lS(Z2(RR)) is an injective R/Z2(RR)-module. Hence S is
N -injective by Theorem 2.2(4). �

In the following we give more examples of N -injective modules.

Examples 2.6. (i) Let U be a right Z2-torsion ring (e.g., U = Z/p2Z for a
prime number p). Then T = ( U U

0 U ) is a right Z2-torsion ring; see [3, Proposition
3.11]. Set R = T × Z, and M = T × Q. Since T is right Z2-torsion, every
T -module X is Z2-torsion (note that XZ2(TT ) ≤ Z2(X)), and hence every
T -module is N -injective. On the other hand, Q is an injective Z-module.
Therefore T is an N -injective R-module and Q is an injective R-module. But,
Z2(M) = T , and so by Theorem 2.2(5), M is an N -injective R-module.

(ii) Let R1 be a right Z2-torsion ring (e.g., R1 =
∏

p Z/p
2Z, where p runs

through the set of prime numbers), R2 a right nonsingular right Noetherian
ring (e.g., R2 = (D D

0 D ), where D is a division ring), and R = R1 × R2. By
[3, Lemma 3.10], Z2(RR) = R1, and so R/Z2(RR) ∼= R2 is right Noetherian.
Now let M be an R-module and Λ be a set. By Corollary 2.4, E(M)(Λ) is an
N -injective R-module.

(iii) Let R1 be a right Z2-torsion ring (e.g., R1 =
∏

Λ Z/p2Z, where p is a
prime number and Λ is a set), R2 a right nonsingular right V -ring (e.g., R2 is
a field), and R = R1 × R2. Then Z2(RR) = R1, and so R/Z2(RR) ∼= R2 is
a right V -ring. Thus by Corollary 2.5, R/L is an N -injective R-module, for
every maximal right ideal L of R.

The following result shows that the classes of N -injective R-modules and
injective R-modules coincide if and only if R is a right nonsingular ring.

Proposition 2.7. The following statements are equivalent for a ring R.

(1) Every N -injective R-module is injective.

(2) R is right nonsingular.

Proof. The implication (2) ⇒ (1) follows from Theorem 2.2. For (1) ⇒ (2), set
A = lR(Z2(RR)). We show that A is an essential right ideal of R. Let I be a
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right ideal of R such that A∩I = 0. So lK(Z2(RR)) = 0 for every R-submodule
K of I. Thus by Theorem 2.2(4), K is N -injective, and so by hypothesis it is
injective. This implies that I is a semisimple direct summand of R. On the
other hand, if J is a nonsingular right ideal of R, then JZ2(RR) ≤ Z2(J) = 0,
and so J ≤ A. Hence by the semisimple property of I we conclude that I is
singular. But R cannot contain a nonzero singular direct summand, and so
I = 0. This shows that A is an essential right ideal of R. Thus E(A) = E(RR).
By Theorem 2.2(4), lE(A)(Z2(RR)) is an injective R/Z2(RR)-module, and so
it is N -injective as an R-module. Thus by hypothesis, lE(A)(Z2(RR)) is an
injective R-module. But A ≤ lE(A)(Z2(RR)), and so lE(A)(Z2(RR)) = E(A).
Thus Z2(RR) = RZ2(RR) ≤ E(RR)Z2(RR) = E(A)Z2(RR) = 0. Hence R is
right nonsingular. �

Corollary 2.8. The following statements are equivalent for a ring R.

(1) Every N -injective R-module is projective.

(2) R is semisimple.

Proof. It suffices to show that (1) ⇒ (2). By hypothesis, every injective R-
module is projective. So R is quasi-Frobenius, and hence every projective
R-module is injective; see [11, Theorems 7.55 and 7.56(2)]. Thus hypothesis
implies that every N -injective R-module is injective. Hence R is right nonsin-
gular by Proposition 2.7. So by [3, Corollary 4.6], R is semisimple. �

We end this section by proving that the endomorphism ring of anN -injective
module has a von Neumann regular factor ring. It will be observed that the
endomorphism ring of an N -injective module is not necessarily von Neumann
regular; see Remark 3.5.

Theorem 2.9. Let M be a module, S = End(M), and T = {ϕ ∈ S : ϕM ≤
Z2(M)}. If M is N -injective, then S/T is a von Neumann regular ring.

Proof. First we show that T is a two-sided ideal of S. Let ϕ ∈ T and
ψ ∈ S. Since ϕ ∈ T we conclude that ϕ−1(Z2(M)) = M . But clearly,
ϕ−1(Z2(M)) ≤ (ψϕ)−1(Z2(M)), hence (ψϕ)−1(Z2(M)) = M . So ψϕ ∈ T .
On the other hand, (ϕψ)−1(Z2(M)) = ψ−1(ϕ−1(Z2(M))) = ψ−1(M) = M .
Hence ϕψ ∈ T . This shows that T is a two-sided ideal of S.

Now we show that S/T is von Neumann regular. Let ψ ∈ S. By Corollary
2.3(ii), M is t-extending. So by [2, Theorem 2.11(5)], there exists a direct sum-
mand D of M , say M = D ⊕ E, such that ψ−1(Z2(M)) ≤tes D. Assume that
‘bar’ denotes the image inM/Z2(M). Since Z2(M) ≤ ψ−1(Z2(M)) we conclude
that M = D ⊕ E. Moreover, ψ : E → ψE defined by ψ x = ψx is an isomor-
phism (ψ is one-to-one, since ψx ∈ Z2(M) implies that x ∈ ψ−1(Z2(M))∩E ≤
D∩E = 0). ButM is injective by Theorem 2.2(5), and soM has C2 condition.

Thus ψE is a direct summand ofM , sayM = ψE⊕K. This implies thatM =
ψE ⊕ (K +Z2(M)); in fact, it is enough to show that ψE ∩ (K +Z2(M)) = 0.
Let ψx = k + z, where x ∈ E, k ∈ K and z ∈ Z2(M). Then ψx + Z2(M) =
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k + Z2(M) ∈ ψE ∩ K = 0. Thus x ∈ ψ−1(Z2(M)) ∩ E = 0, and hence
ψE∩(K+Z2(M)) = 0, as desired. On the other hand, ψ−1(Z2(M))∩E = 0 im-
plies that ψ|E : E → ψE is an isomorphism. Set θ = (ψ|E)−1⊕ 1K+Z2(M) ∈ S.

Clearly, ψ−1(Z2(M)) ⊕ E ≤ (ψ − ψ θψ)−1(Z2(M)). But ψ−1(Z2(M)) ≤tes D

implies that ψ−1(Z2(M))⊕E ≤tes D⊕E =M by [2, Proposition 2.2(4)]. Thus
(ψ − ψ θψ)−1(Z2(M)) ≤tes M . Moreover, (ψ − ψ θψ)−1(Z2(M)) is t-closed in
M by [2, Corollary 2.7]. Thus (ψ−ψ θψ)−1(Z2(M)) =M . Hence ψ−ψ θψ ∈ T ,
and so S/T is von Neumann regular. �

Corollary 2.10. Let a ring R be N -injective.

(i) R/Z2(RR) is a von Neumann regular ring.

(ii) Rad(P ) ≤ Z2(P ) for every projective R-module P .

Proof. (i) Let r ∈ R, and fr be the endomorphism of R defined by fr(x) = rx.
If r ∈ Z2(RR), then fr(R) ≤ Z2(RR). If fr(R) ≤ Z2(RR), then fr(1) = r ∈
Z2(RR). Therefore under the ring isomorphism Φ : R → S = End(RR) defined
by Φ(r) = fr, the ideal Z2(RR) is isomorphic to T = {ϕ ∈ S : ϕR ≤ Z2(RR)}.
Hence R/Z2(RR) ∼= S/T , and so by Theorem 2.9, R/Z2(RR) is a von Neumann
regular ring.

(ii) Since the Jacobson radical of a von Neumann regular ring is zero, (i)
implies that Rad(R) ≤ Z2(RR). Hence Rad(P ) = P Rad(R) ≤ PZ2(RR) ≤
Z2(P ). �

3. More characterizations

In this section we give several characterizations obtained by the N -injective
property. For right extending rings, semilocal rings and rings of finite reduced
rank, the N -injective property is characterized. Moreover, we determine the
rings R for which every nonsingular cyclic R-module is injective. Recall that a
ring R is right t-semisimple if and only if R/Z2(RR) is a semisimple ring.

Theorem 3.1. The following statements are equivalent for a ring R.

(1) Every free (projective) R-module is N -injective.

(2) Every cyclic R-module is N -injective.

(3) Every R-module is N -injective.

(4) R is right t-semisimple.

(5) R(N) is N -injective.

(6) [lR(Z2(RR))]
(N) is an injective R/Z2(RR)-module.

Proof. (1) ⇒ (4). Let [R/Z2(RR)]
(Λ) be a free R/Z2(RR)-module. Since

Z2(R
(Λ)) = Z2(RR)

(Λ) we conclude that [R/Z2(RR)]
(Λ) ∼= R(Λ)/Z2(R

(Λ)).
Hence by hypothesis and Theorem 2.2(5), the module [R/Z2(RR)]

(Λ) is an in-
jective R-module, and so it is an injective R/Z2(RR)-module. Thus R/Z2(RR)
is a right Σ-injective ring, and so it is quasi-Frobenius by [4, 18.1]. On the
other hand, R/Z2(RR) is a right nonsingular ring. Thus by [3, Corollary 4.6],
R/Z2(RR) is a semisimple ring.
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(2) ⇒ (4). Let M be a cyclic R/Z2(RR)-module. Then M is a cyclic
R-module, and so by hypothesis, M is R/Z2(RR)-injective. Hence M is an
injective R/Z2(RR)-module. Thus R/Z2(RR) is a semisimple ring.

(4) ⇒ (3). Assume thatB andM areR-modules, and A is a nonsingular sub-
module of B. By [3, Theorem 3.2(4)], A is a direct summand of B. So clearly,
every R-homomorphism g : A → M can be extended to an R-homomorphism
h : B →M . Thus by Theorem 2.2(6), M is N -injective.

(3) ⇒ (1), (3) ⇒ (2) and (1) ⇒ (5). These implications are obvious.
(5) ⇒ (6). Clearly, lR(N)(Z2(RR)) = [lR(Z2(RR))]

(N). Thus by Theorem
2.2(4), [lR(Z2(RR))]

(N) is an injective R/Z2(RR)-module.
(6) ⇒ (1). Let R(Λ) be a free R-module. By hypothesis, [lR(Z2(RR))]

(N) is
an injective R/Z2(RR)-module. Thus by [1, Theorem 25.1], [lR(Z2(RR))]

(Λ) is
an injective R/Z2(RR)-module. So by Theorem 2.2(4), R(Λ) is N -injective. �

A ring R is called semilocal if R/Rad(R) is semisimple. Semiperfect rings
(hence right and left perfect rings, semiprimary rings, right and left Artinian
rings, and local rings) are semilocal. The next result determines the N -
injective semilocal rings. Moreover, by Corollary 2.10, if R is N -injective,
then Rad(R) ≤ Z2(RR). The converse implication is not necessarily true even
though R is right Noetherian; e.g., R = Z. The next result shows that the
converse implication holds for semilocal rings.

Corollary 3.2. Let R be a semilocal ring. The following statements are equiv-

alent.

(1) R is N -injective.

(2) R is right t-semisimple.

(3) Rad(R) ≤ Z2(RR).
If R is local, the above statements are equivalent to

(4) R is right Z2-torsion.

Proof. (3) ⇒ (2). If R is semilocal, then R/Rad(R) is semisimple. Thus by
hypothesis, R/Z2(RR) is semisimple, and so R is right t-semisimple.

(2) ⇒ (1). This follows from Theorem 3.1.
(4) ⇒ (2). This is clear by [3, Theorem 2.3].
Now assume that R is a local ring. We show that (3) ⇒ (4). Since R is

local, Rad(R) is essential in R. So by [2, Proposition 2.2(4)], R/Rad(R) is Z2-
torsion. Moreover, by hypothesis, Rad(R) is Z2-torsion. Therefore R is right
Z2-torsion. �

Recall that a ring R is called quasi-Frobenius if R is right (or left) Artinian
and right (or left) self-injective.

Corollary 3.3. A ring R is quasi-Frobenius if and only if R is right t-semi-

simple and R(N) is Z2(RR)-injective.

Proof. (⇒) Since R(N) is injective, it is Z2(RR)-injective. Moreover, by [3,
Proposition 4.5], R is right t-semisimple.
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(⇐) By Theorems 3.1(3) and 2.2(5), Z2(RR) is a direct summand of R.
Moreover, by Theorem 3.1(5), R(N) is R/Z2(RR)-injective. Thus by hypothesis,
R(N) is R-injective, so R(N) is injective. Hence R is quasi-Frobenius by [4,
18.1(b)] and [1, Theorem 25.1]. �

Recall that R is called a right pseudo-Frobenius ring if R is an injective
cogenerator in Mod-R. Every quasi-Frobenius ring is right pseudo-Frobenius;
see [9, Theorem 19.25]. The next result shows that a right pseudo-Frobenius
ring for which the second singular ideal is Noetherian is quasi-Frobenius.

Corollary 3.4. Let R be a ring.

(1) If R is right pseudo-Frobenius, then R is right t-semisimple.

(2) R is quasi-Frobenius if and only if R is right pseudo-Frobenius and

Z2(RR) is Noetherian (Artinian).
(3) R is quasi-Frobenius if and only if R is right Kasch and Z2(RR) is

injective and Noetherian (Artinian).

Proof. (1) Since R is right pseudo-Frobenius, R is right self-injective and semi-
perfect. Hence Corollary 3.2 implies that R is right t-semisimple.

(2) Let R be right pseudo-Frobenius and Z2(RR) be Noetherian (Artinian).
By (1), R is right t-semisimple, and so R/Z2(RR) is Noetherian (Artinian).
Thus R is Noetherian (Artinian), and hence R is quasi-Frobenius. The converse
is clear.

(3) Let R be quasi-Frobenius. Then Z2(RR) is injective and Noetherian
(Artinian). Moreover, R is right pseudo-Frobenius, and so by [9, Theorem
19.25], R is right Kasch. The converse implication follows from [15, Theorem
5] and (2). �

Remark 3.5. (i) The endomorphism ring of an N -injective module has a von
Neumann regular factor ring (Theorem 2.9), but itself is not necessarily von
Neumann regular. In fact, by Theorem 3.1(5) and [10, Proposition 2.17], if R
is a right t-semisimple ring which is not semisimple, then R(N) is N -injective
and End(R(N)) is not von Neumann regular.

(ii) Recall that every injective R-module is projective if and only if every
projective R-module is injective (and these are equivalent to R being quasi-
Frobenius). However, Corollary 2.8 and Theorem 3.1 show that this equivalence
does not hold if we replace injective by N -injective.

Proposition 3.6. The following statements are equivalent for a ring R.

(1) R is N -injective.

(2) Z2(RR) is R/Z2(RR)-injective and every finitely generated (cyclic) non-
singular R-module is injective and projective.

Proof. (1) ⇒ (2). By Theorem 2.2(5), Z2(RR) is R/Z2(RR)-injective. Let M
be a finitely generated nonsingular R-module. There exists a finitely generated
free R-module F such that M ∼= F/C for some submodule C of F . By [2,
Proposition 2.6(6)], C is a t-closed submodule of F . On the other hand, F is
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N -injective, and so by Corollary 2.3(ii), F is t-extending. Thus C is a direct
summand of F , and so M is isomorphic to a direct summand of F . This
implies that M is projective and N -injective which implies that M is injective
by Corollary 2.3(i).

(2) ⇒ (1). By Theorem 2.2(2), Z2(RR) is N -injective. Since R/Z2(RR) is
projective by hypothesis, Z2(RR) is a direct summand of R, say R = Z2(RR)⊕
R′. But, R′ ∼= R/Z2(RR) is injective by hypothesis, and so by Theorem 2.2(5),
R is N -injective. �

The following result characterizes the rings over which every cyclic (finitely
generated) nonsingular module is injective. Moreover, this result determines
that when a right extending ring is N -injective.

Theorem 3.7. The following statements are equivalent for a ring R.

(1) Every cyclic (finitely generated) nonsingular R-module is injective.

(2) R/Z2(RR) is a right self-injective ring.

If R is right extending, then the above statements are equivalent to

(3) R is N -injective.

Proof. (1) ⇒ (2). By hypothesis, R/Z2(RR) is an injective R-module, and
hence, a right self-injective ring.

(2) ⇒ (1). Let M be a finitely generated nonsingular R-module. Then M is
a finitely generated nonsingular R/Z2(RR)-module. But, R/Z2(RR) is a right
self-injective ring, and by Proposition 3.6, every finitely generated nonsingu-
lar module over a right self-injective ring is injective. So M is an injective
R/Z2(RR)-module. Therefore Baer’s criterion implies that M is an injective
R-module.

(3) ⇒ (1). This follows from Proposition 3.6.
Now assume that R is right extending. We show that (1) ⇒ (3). Since R is

right extending, Z2(RR) is a direct summand of R, say R = Z2(RR)⊕R′. By
[4, 7.11], Z2(RR) is R

′-injective. Hence Z2(RR) is R/Z2(RR)-injective. On the
other hand, R′ is injective since R′ is a cyclic nonsingular R-module. Thus by
[2, Theorem 2.11(3)], R(n) = Z2(RR)

(n)⊕R′(n) is t-extending. So by hypothesis
and [2, Remark 3.14], every finitely generated nonsingular R-module is injective
and projective. Thus by Proposition 3.6, R is N -injective. �

A ring R is called of finite (Goldie) reduced rank if the uniform dimension of
R/Z2(RR) is finite. Every ring of finite uniform dimension is of finite reduced
rank; see [9, (7.35)].

Proposition 3.8. The following statements are equivalent for a ring R of finite

reduced rank.

(1) R is N -injective.

(2) R is right t-semisimple.

(3) Every nonsingular principal right ideal of R is injective.

(4) Every nonsingular principal right ideal of R is a direct summand.
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Proof. The implication (2) ⇒ (1) follows from Theorem 3.1, the implication
(1) ⇒ (3) follows from Proposition 3.6, and the implication (3) ⇒ (4) is clear.

(4) ⇒ (2). By [3, Theorem 2.3(4)], it suffices to show that a nonsingular
right ideal K of R is a direct summand. Since R is of finite reduced rank,
so is K. Hence K is of finite uniform dimension as it is nonsingular. Thus
by [9, Proposition (6.30)’] and [1, Proposition 10.14], K is a finite direct sum
of indecomposable right ideals. So by hypothesis, K is a finite direct sum of
minimal right ideals, sayK = a1R⊕a2R⊕· · ·⊕anR. If n = 1, thenK is a direct
summand of R. Let n > 1. By induction, assume that a2R⊕· · ·⊕anR = eR for
some idempotent e ∈ R. Since (1−e)a1R is a submodule ofK, it is nonsingular.
Hence by hypothesis, (1− e)a1R = e′R for some idempotent e′ ∈ R. However,
K = eR + e′R and ee′ = 0. Therefore e′′ = e + e′ − e′e is an idempotent and
K = e′′R is a direct summand of R, as desired. �

Following [2], a ring R is called right Σ-t-extending if every free R-module
is t-extending.

Corollary 3.9. A ring R is right t-semisimple if and only if R is N -injective

and right Σ-t-extending.

Proof. (⇒) This follows from Theorem 3.1 and [3, Corollary 3.6].
(⇐) Let R(Λ) be a free R-module. By [2, Theorem 2.11(3)], [R/Z2(RR)]

(Λ) ∼=
R(Λ)/Z2(R

(Λ)) is an extending R-module. Thus [R/Z2(RR)]
(Λ) is an extending

R/Z2(RR)-module. So R/Z2(RR) is a right Σ-extending ring. Thus by [4,
12.21((d) ⇔ (e))], R/Z2(RR) is an Artinian ring. So R is of finite reduced
rank. Thus by Proposition 3.8, R is right t-semisimple. �

Our last result shows that a ring R for which every nonsingular cyclic R-
module is injective is precisely a right t-semisimple ring, whenever R is either
semilocal or of finite reduced rank; see [3, Example 4.15].

Corollary 3.10. Let R be a ring which is either semilocal or of finite reduced

rank. Then every cyclic (finitely generated) nonsingular R-module is injective

if and only if R is right t-semisimple.

Proof. The implication (⇐) is obtained by [3, Theorem 3.2(4)]. For (⇒), set
R = R/Z2(RR). By Theorem 3.7, R is right self-injective. So Rad(R) ≤
Z2(RR) by Corollary 2.10(ii). But Z2(RR) = 0, hence Rad(R) ≤ Z2(RR).

Moreover, R is von Neumann regular by Corollary 2.10(i). So by [3, Lemma
4.12], every nonsingular cyclic right ideal of R is a direct summand. Thus
Corollary 3.2(3) and Proposition 3.8(4) imply that R is right t-semisimple. �
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