Bull. Korean Math. Soc. **54** (2017), No. 2, pp. 559–571

https://doi.org/10.4134/BKMS.b160184 pISSN: 1015-8634 / eISSN: 2234-3016

INJECTIVE PROPERTY RELATIVE TO NONSINGULAR EXACT SEQUENCES

MARZIEH ARABI-KAKAVAND, SHADI ASGARI, AND YASER TOLOOEI

ABSTRACT. We investigate modules M having the injective property relative to nonsingular modules. Such modules are called " \mathcal{N} -injective modules". It is shown that M is an \mathcal{N} -injective R-module if and only if the annihilator of $Z_2(R_R)$ in M is equal to the annihilator of $Z_2(R_R)$ in E(M). Every \mathcal{N} -injective R-module is injective precisely when R is a right nonsingular ring. We prove that the endomorphism ring of an \mathcal{N} -injective module has a von Neumann regular factor ring. Every (finitely generated, cyclic, free) R-module is \mathcal{N} -injective, if and only if $R^{(\mathbb{N})}$ is \mathcal{N} -injective, if and only if R is right t-semisimple. The \mathcal{N} -injective property is characterized for right extending rings, semilocal rings and rings of finite reduced rank. Using the \mathcal{N} -injective property, we determine the rings whose all nonsingular cyclic modules are injective.

1. Introduction

To describe the content of the paper we first state some notations and recall a few relevant results. Throughout, all rings are associative with unity and all modules are unitary right modules. For a subset K of an R-module M, we denote $r_R(K) = \{r \in R : Kr = 0\}$, and for a subset I of R we denote $l_M(I) = \{m \in M : mI = 0\}$. Recall that the singular submodule Z(M) of a module M is the set of $m \in M$ such that mI = 0 for some essential right ideal I of R, or equivalently, $r_R(m) \leq_e R_R$ (the notation \leq_e denotes an essential submodule). The Goldie torsion (or second singular) submodule $Z_2(M)$ of M is defined by $Z_2(M)/Z(M) = Z(M/Z(M))$. The following facts are well known: $Z_2(M/Z_2(M)) = 0$. If $f: M \to N$ is a homomorphism, then $f(Z_2(M)) \leq Z_2(N)$. Moreover, $Z_2(M) \cap A = Z_2(A)$ for every submodule A of M, and $Z_2(\bigoplus_h M_h) = \bigoplus_h Z_2(M_h)$ for every class of R-modules M_h . A module M is called singular if Z(M) = M and nonsingular if Z(M) = 0, or equivalently, $Z_2(M) = 0$. The module M is called Z_2 -torsion if $Z_2(M) = M$.

Received March 3, 2016; Revised July 19, 2016.

²⁰¹⁰ Mathematics Subject Classification. 16D10, 16D70, 16D80, 16D40.

Key words and phrases. nonsingular and Z_2 -torsion modules, \mathcal{N} -injective modules, right t-semisimple rings.

The research of the second author was in part supported by a grant from IPM (No. 93160068).

Clearly, a submodule A of M is Z_2 -torsion if and only if $A \leq Z_2(M)$. The class of Z_2 -torsion modules is closed under submodules, factor modules, direct sums, and extensions. In [2], a submodule A of M is called t-essential in M (written by $A \leq_{tes} M$) if for every submodule B of M, $A \cap B \leq Z_2(M)$ implies that $B \leq Z_2(M)$. Using this notion, it is easy to see that $Z_2(M)$ is the set of $m \in M$ such that mI = 0 for some t-essential right ideal I of R, or equivalently, $r_R(m) \leq_{tes} R_R$. Following [2], a submodule C of M is said to be t-closed in M if $C \leq_{tes} C' \leq M$ implies that C = C'; and a module M is called t-extending if every t-closed submodule of M is a direct summand. In fact, t-extending modules are precisely the modules M for which every closed submodule of M containing $Z_2(M)$ is a direct summand of M.

Over the last 50 years numerous mathematicians have investigated rings over which certain cyclic modules have a homological property. Among these, determining the rings whose certain cyclic modules are injective has been of interest. Osofsky [12] proved that every cyclic R-module is injective, if and only if every R-module is injective, if and only if R is semisimple. A cyclic R-module is called proper cyclic if it is not isomorphic to R. A ring R is called a right PCI-ring if every proper cyclic R-module is injective. Faith [5] proved that a right PCI-ring is either a semisimple ring or a simple right semihereditary right Ore domain. An excellent reference for a thorough study of these rings is [8]. The rings for which every singular module is injective were studied by Goodearl [6]. He called them right SI-rings and characterized such rings as those nonsingular ones for which R/I is semisimple for every essential right ideal I of R. Osofsky and Smith [13] showed that every singular cyclic Rmodule is injective if and only if R is a right SI-ring. More results on such rings can be found in [4] and [14]. Motivated by these, a natural question is: "What are the rings whose all nonsingular cyclic modules are injective?" In [3] the rings whose all nonsingular modules are injective were studied. Such rings are called right t-semisimple rings. It was shown that R is right t-semisimple, if and only if every nonsingular R-module is semisimple, if and only if $R/Z_2(R_R)$ is a semisimple ring, if and only if R is a direct product of two rings, one is semisimple and the other is right Z_2 -torsion. By [3, Example 4.15], the class of right t-semisimple rings is properly contained in that of rings R for which every nonsingular cyclic R-module is injective. This raises another question: "Under which condition(s) the class of rings R for which every nonsingular cyclic R-module is injective coincides with that of right t-semisimple rings?" But, it is a fact, obtained by Baer's criterion, that a nonsingular R-module Mis injective precisely when M is injective relative to the nonsingular R-module $R/Z_2(R_R)$. This leads us to investigate the modules M which are injective relative to nonsingular modules for finding the answers of the above questions.

Let M and L be R-modules. Recall that M is said to be L-injective (or, injective relative to L) if for every monomorphism $f: K \to L$ and every homomorphism $g: K \to M$, there is a homomorphism $h: L \to M$ such that hf = g. We say that an R-module M is \mathcal{N} -injective if M is injective relative

to every nonsingular R-module; in other words, M is injective relative to every nonsingular exact sequence $0 \to K \to L$. (Note that every submodule of a nonsingular module is nonsingular.) Section 2 is devoted to study \mathcal{N} -injective modules. Every injective module and every module over a right t-semisimple ring are \mathcal{N} -injective. It is proved that M is \mathcal{N} -injective, if and only if M is injective relative to $R/Z_2(R_R)$, if and only if $l_M(Z_2(R_R)) = l_{E(M)}(Z_2(R_R))$, if and only if $M = Z_2(M) \oplus M'$, where $Z_2(M)$ is \mathcal{N} -injective and M' is injective (Theorem 2.2). A nonsingular module is \mathcal{N} -injective if and only if it is injective (Corollary 2.3(i)). For a module M,

injective $\Rightarrow \mathcal{N}$ -injective $\Rightarrow t$ -extending,

but none of these implications is reversible (Corollary 2.3(ii)). The classes of injective R-modules and \mathcal{N} -injective R-modules coincide if and only if R is a right nonsingular ring (Proposition 2.7). We prove that if M is an \mathcal{N} -injective module, then S/T is a von Neumann regular ring, where $S = \operatorname{End}(M)$ and $T = \{\varphi \in S : \varphi M \leq Z_2(M)\}$ (Theorem 2.9). This implies that $R/Z_2(R_R)$ is a von Neumann regular ring whenever R is \mathcal{N} -injective (Corollary 2.10).

In Section 3, we give several characterizations obtained by the \mathcal{N} -injective property. It is proved that R is a right t-semisimple ring, if and only if every (finitely generated, cyclic, free) R-module is \mathcal{N} -injective, if and only if $R^{(\mathbb{N})}$ is \mathcal{N} -injective (Theorem 3.1). This, in particular, implies that a semilocal ring is \mathcal{N} -injective precisely when R is right t-semisimple (Corollary 3.2). In the sequel, it is shown that R is \mathcal{N} -injective if and only if $Z_2(R_R)$ is $R/Z_2(R_R)$ -injective and every nonsingular cyclic R-module is injective and projective (Proposition 3.6). A right extending ring R is \mathcal{N} -injective if and only if $R/Z_2(R_R)$ is a right self-injective ring (Theorem 3.7). Moreover, if R is a ring of finite reduced rank, then R is \mathcal{N} -injective if and only if R is right t-semisimple (Proposition 3.8).

By the obtained results, we find some answers to the above mentioned questions: i) The rings whose every nonsingular cyclic module is injective are characterized. In fact, R is such a ring if and only if $R/Z_2(R_R)$ is a right self-injective ring, and if R is right extending, these are equivalent to R being right \mathcal{N} -injective (Theorem 3.7). ii) The class of rings R for which every nonsingular cyclic R-module is injective coincides with that of right t-semisimple rings whenever R is either semilocal or of finite reduced rank (Corollary 3.10).

2. \mathcal{N} -injective modules

We say that an R-module M is \mathcal{N} -injective if M is injective relative to every nonsingular R-module. Clearly, every injective R-module is \mathcal{N} -injective. The following example shows that the class of \mathcal{N} -injective R-modules properly contains that of injective R-modules. More examples of \mathcal{N} -injective modules will be given in Examples 2.6.

Example 2.1. Let R_1 be a right Z_2 -torsion ring (e.g., $R_1 = \mathbb{Z}/p^2\mathbb{Z}$, where p is a prime number), R_2 be a semisimple ring (e.g., $R_2 = D$ is a division

ring), and $R = R_1 \times R_2$. Assume that M is an R-module, $f: A \to B$ is an R-monomorphism where B is a nonsingular R-module, and $g: A \to M$ is an R-homomorphism. By [3, Theorems 3.2(4) and 3.8(3)], A is a direct summand of B, and hence g can be extended to an R-homomorphism $h: B \to M$. This shows that M is \mathcal{N} -injective.

The next result gives several equivalent conditions for an \mathcal{N} -injective module.

Theorem 2.2. The following statements are equivalent for an R-module M.

- (1) M is \mathcal{N} -injective.
- (2) M is $R/Z_2(R_R)$ -injective.
- (3) $l_M(Z_2(R_R)) = l_{E(M)}(Z_2(R_R)).$
- (4) $l_M(Z_2(R_R))$ is an injective $R/Z_2(R_R)$ -module.
- (5) $M = Z_2(M) \oplus M'$, where $Z_2(M)$ is \mathcal{N} -injective and M' is injective.
- (6) For every monomorphism $f:A\to B$ of R-modules where A is nonsingular, and every R-homomorphism $g:A\to M$, there exists an R-homomorphism $h:B\to M$ such that hf=g.
- *Proof.* (1) \Rightarrow (6). Let $f:A \to B$ be a monomorphism of R-modules where A is nonsingular, and $g:A \to M$ be a homomorphism. Assume that $\pi:B \to B/Z_2(B)$ is the natural epimorphism. Since A is nonsingular, $\pi f:A \to B/Z_2(B)$ is a monomorphism. So by hypothesis, there exists a homomorphism $\theta:B/Z_2(B)\to M$ such that $\theta\pi f=g$. Set $h=\theta\pi$.
- $(6)\Rightarrow (5)$. Let C be a complement of $Z_2(M)$ in M, and $f:C\to E(C)$ be the inclusion map, where E(C) is the injective hull of C. Moreover, assume that $g:C\to M$ is the inclusion map. By hypothesis, there exists a homomorphism $h:E(C)\to M$ such that hf=g. Since g is a monomorphism and $C\le_e E(C)$, we conclude that h is a monomorphism. Thus $h(E(C))\cong E(C)$ is injective, and so h(E(C)) is a direct summand of M, say $M=K\oplus h(E(C))$. Since C is nonsingular we conclude that E(C) is nonsingular, and so h(E(C)) is nonsingular. Thus $Z_2(M)\le K$. On the other hand, c=g(c)=hf(c)=h(c), for every $c\in C$. Thus $C\le h(E(C))$. Hence $Z_2(M)\oplus C\le_e M$ implies that $Z_2(M)\le_e K$. But $Z_2(M)$ is closed, and so $Z_2(M)=K$. Since M satisfies (6) and $Z_2(M)$ is a direct summand of M, it is easy to see that $Z_2(M)$ also satisfies (6). Thus $Z_2(M)$ is \mathcal{N} -injective. Now by setting M'=h(E(C)), the desired decomposition is obtained.
 - (5) \Rightarrow (2). Since $Z_2(M)$ and M' are $R/Z_2(R_R)$ -injective, so is M.
- $(2) \Rightarrow (4)$. Let $\overline{R} = R/Z_2(R_R)$, and \overline{I} be a right ideal of \overline{R} . Moreover, assume that $g: \overline{I} \to l_M(Z_2(R_R))$ is an \overline{R} -homomorphism. By hypothesis g can be extended to an R-homomorphism $h: \overline{R} \to M$. But clearly, $h(\overline{R}) \leq l_M(Z_2(R_R))$, and so g can be extended to the \overline{R} -homomorphism $h: \overline{R} \to l_M(Z_2(R_R))$. Thus by Baer's criterion, $l_M(Z_2(R_R))$ is an injective \overline{R} -module.
- $(4) \Rightarrow (3)$. Set $\overline{R} = R/Z_2(R_R)$, and $K = l_M(Z_2(R_R))$. By [7, Exercise 5J], $l_{E(K)}(Z_2(R_R)) = E(K_{\overline{R}})$. Now we show that $l_{E(K)}(Z_2(R_R)) = l_{E(M)}(Z_2(R_R))$. Clearly, E(K) is a direct summand of E(M), say $E(K) \oplus D = E(M)$. Let

 $x \in l_{E(M)}(Z_2(R_R))$ and x = e + d, where $e \in E(K)$ and $d \in D$. Obviously, $e \in l_{E(K)}(Z_2(R_R))$ and $d \in l_D(Z_2(R_R))$. If $d \neq 0$, then there exists $r \in R$ such that $0 \neq dr \in M$. Thus $dr Z_2(R_R) \leq dZ_2(R_R) = 0$, and so $dr \in K \cap D = 0$ which is impossible. Hence d = 0 and $x = e \in$ $l_{E(K)}(Z_2(R_R))$. This shows that $l_{E(K)}(Z_2(R_R)) = l_{E(M)}(Z_2(R_R))$, as desired. Therefore $E(K_{\overline{R}}) = l_{E(M)}(Z_2(R_R))$. Since $K_{\overline{R}}$ is injective we conclude that $l_M(Z_2(R_R)) = l_{E(M)}(Z_2(R_R)).$

 $(3) \Rightarrow (1)$. First note that $l_{E(M)}(Z_2(R_R))$ is an injective $R/Z_2(R_R)$ -module. In fact, let $\overline{R} = R/Z_2(R_R)$, and \overline{I} be a right ideal of \overline{R} . Moreover, let φ : $\overline{I} \to l_{E(M)}(Z_2(R_R))$ be an \overline{R} -homomorphism. Then φ can be extended to an R-homomorphism $\psi: \overline{R} \to E(M)$. But clearly, $\psi(\overline{R}) \leq l_{E(M)}(Z_2(R_R))$, and so φ is extended to the \overline{R} -homomorphism $\psi: \overline{R} \to l_{E(M)}(Z_2(R_R))$. Thus by Baer's criterion we conclude that $l_{E(M)}(Z_2(R_R))$ is an injective \overline{R} -module, as

Now let N be a nonsingular R-module, $f: A \to N$ be an R-monomorphism and $g: A \to M$ be an R-homomorphism. Since A is nonsingular, $AZ_2(R_R) =$ 0, and hence $g(A) \leq l_M(Z_2(R_R))$. But, by hypothesis and what we have shown above $l_M(Z_2(R_R))$ is an injective \overline{R} -module. So there exists an \overline{R} homomorphism $h: N \to l_M(Z_2(R_R))$ such that hf = g. Clearly, $h: N \to M$ is an R-homomorphism. This shows that M is \mathcal{N} -injective.

Corollary 2.3. (i) A nonsingular module M is N-injective if and only if M is injective.

(ii) If M is an \mathcal{N} -injective module, then M is t-extending.

Proof. (i) This follows from Theorem 2.2(5).

(ii) This is obtained by Theorem 2.2(5) and [2, Theorem 2.11(3)]. П

The converse implication of Corollary 2.3(ii) is not always true. For example, \mathbb{Z} is an extending module which is not injective, hence it is not \mathcal{N} -injective by Corollary 2.3(i).

Corollary 2.4. The following statements are equivalent for a ring R.

- (1) $R/Z_2(R_R)$ is a right Noetherian ring.
- (2) $M^{(\mathbb{N})}$ is \mathcal{N} -injective, for every \mathcal{N} -injective module M.
- (3) Every direct sum of \mathcal{N} -injective modules is \mathcal{N} -injective.

Proof. (1) \Rightarrow (3). Let $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$, where each M_{λ} is \mathcal{N} -injective. By Theorem 2.2(4), $l_{M_{\lambda}}(Z_2(R_R))$ is an injective $R/Z_2(R_R)$ -module. Hence $l_M(Z_2(R_R))$ $=\bigoplus_{\lambda\in\Lambda}l_{M_{\lambda}}(Z_2(R_R))$ is an injective $R/Z_2(R_R)$ -module since $R/Z_2(R_R)$ is right Noetherian. Thus by Theorem 2.2(4), M is \mathcal{N} -injective.

- $(3) \Rightarrow (2)$. This implication is clear.
- $(2) \Rightarrow (1)$. By [11, Theorem 7.48(4)], it suffices to show that $M^{(\mathbb{N})}$ is an injective $R/Z_2(R_R)$ -module, for every injective $R/Z_2(R_R)$ -module M. Since M

is $R/Z_2(R_R)$ -injective as an R-module, Theorem 2.2(2) implies that M is \mathcal{N} -injective. Thus by hypothesis, $M^{(\mathbb{N})}$ is \mathcal{N} -injective, hence $R/Z_2(R_R)$ -injective. So $M^{(\mathbb{N})}$ is an injective $R/Z_2(R_R)$ -module.

A ring R is called a right V-ring (or right co-semisimple) if every simple R-module is injective.

Corollary 2.5. The following statements are equivalent for a ring R.

- (1) Every simple R-module is \mathcal{N} -injective.
- (2) $R/Z_2(R_R)$ is a right V-ring.
- *Proof.* (1) \Rightarrow (2). Let S be a simple $R/Z_2(R_R)$ -module. Clearly, S is a simple R-module, and so as an R-module, S is \mathcal{N} -injective, hence $R/Z_2(R_R)$ -injective. Thus S is an injective $R/Z_2(R_R)$ -module.
- $(2) \Rightarrow (1)$. Let S be a simple R-module. Clearly, $l_S(Z_2(R_R))$ is S or S. So by hypothesis, $l_S(Z_2(R_R))$ is an injective $R/Z_2(R_R)$ -module. Hence S is N-injective by Theorem 2.2(4).

In the following we give more examples of \mathcal{N} -injective modules.

- **Examples 2.6.** (i) Let U be a right Z_2 -torsion ring (e.g., $U = \mathbb{Z}/p^2\mathbb{Z}$ for a prime number p). Then $T = \begin{pmatrix} U & U \\ 0 & U \end{pmatrix}$ is a right Z_2 -torsion ring; see [3, Proposition 3.11]. Set $R = T \times \mathbb{Z}$, and $M = T \times \mathbb{Q}$. Since T is right Z_2 -torsion, every T-module X is Z_2 -torsion (note that $XZ_2(T_T) \leq Z_2(X)$), and hence every T-module is \mathcal{N} -injective. On the other hand, \mathbb{Q} is an injective \mathbb{Z} -module. Therefore T is an \mathcal{N} -injective R-module and \mathbb{Q} is an injective R-module. But, $Z_2(M) = T$, and so by Theorem 2.2(5), M is an \mathcal{N} -injective R-module.
- (ii) Let R_1 be a right Z_2 -torsion ring (e.g., $R_1 = \prod_p \mathbb{Z}/p^2\mathbb{Z}$, where p runs through the set of prime numbers), R_2 a right nonsingular right Noetherian ring (e.g., $R_2 = \begin{pmatrix} D & D \\ 0 & D \end{pmatrix}$, where D is a division ring), and $R = R_1 \times R_2$. By [3, Lemma 3.10], $Z_2(R_R) = R_1$, and so $R/Z_2(R_R) \cong R_2$ is right Noetherian. Now let M be an R-module and Λ be a set. By Corollary 2.4, $E(M)^{(\Lambda)}$ is an \mathcal{N} -injective R-module.
- (iii) Let R_1 be a right Z_2 -torsion ring (e.g., $R_1 = \prod_{\Lambda} \mathbb{Z}/p^2\mathbb{Z}$, where p is a prime number and Λ is a set), R_2 a right nonsingular right V-ring (e.g., R_2 is a field), and $R = R_1 \times R_2$. Then $Z_2(R_R) = R_1$, and so $R/Z_2(R_R) \cong R_2$ is a right V-ring. Thus by Corollary 2.5, R/L is an \mathcal{N} -injective R-module, for every maximal right ideal L of R.

The following result shows that the classes of \mathcal{N} -injective R-modules and injective R-modules coincide if and only if R is a right nonsingular ring.

Proposition 2.7. The following statements are equivalent for a ring R.

- (1) Every \mathcal{N} -injective R-module is injective.
- (2) R is right nonsingular.

Proof. The implication $(2) \Rightarrow (1)$ follows from Theorem 2.2. For $(1) \Rightarrow (2)$, set $A = l_R(Z_2(R_R))$. We show that A is an essential right ideal of R. Let I be a

right ideal of R such that $A\cap I=0$. So $l_K(Z_2(R_R))=0$ for every R-submodule K of I. Thus by Theorem 2.2(4), K is \mathcal{N} -injective, and so by hypothesis it is injective. This implies that I is a semisimple direct summand of R. On the other hand, if J is a nonsingular right ideal of R, then $JZ_2(R_R) \leq Z_2(J)=0$, and so $J \leq A$. Hence by the semisimple property of I we conclude that I is singular. But R cannot contain a nonzero singular direct summand, and so I=0. This shows that A is an essential right ideal of R. Thus $E(A)=E(R_R)$. By Theorem 2.2(4), $l_{E(A)}(Z_2(R_R))$ is an injective $R/Z_2(R_R)$ -module, and so it is \mathcal{N} -injective as an R-module. Thus by hypothesis, $l_{E(A)}(Z_2(R_R))$ is an injective R-module. But $A \leq l_{E(A)}(Z_2(R_R))$, and so $l_{E(A)}(Z_2(R_R))=E(A)$. Thus $Z_2(R_R)=RZ_2(R_R)\leq E(R_R)Z_2(R_R)=E(A)Z_2(R_R)=0$. Hence R is right nonsingular.

Corollary 2.8. The following statements are equivalent for a ring R.

- (1) Every \mathcal{N} -injective R-module is projective.
- (2) R is semisimple.

Proof. It suffices to show that $(1) \Rightarrow (2)$. By hypothesis, every injective R-module is projective. So R is quasi-Frobenius, and hence every projective R-module is injective; see [11, Theorems 7.55 and 7.56(2)]. Thus hypothesis implies that every \mathcal{N} -injective R-module is injective. Hence R is right nonsingular by Proposition 2.7. So by [3, Corollary 4.6], R is semisimple. \square

We end this section by proving that the endomorphism ring of an \mathcal{N} -injective module has a von Neumann regular factor ring. It will be observed that the endomorphism ring of an \mathcal{N} -injective module is not necessarily von Neumann regular; see Remark 3.5.

Theorem 2.9. Let M be a module, S = End(M), and $T = \{ \varphi \in S : \varphi M \leq Z_2(M) \}$. If M is \mathcal{N} -injective, then S/T is a von Neumann regular ring.

Proof. First we show that T is a two-sided ideal of S. Let $\varphi \in T$ and $\psi \in S$. Since $\varphi \in T$ we conclude that $\varphi^{-1}(Z_2(M)) = M$. But clearly, $\varphi^{-1}(Z_2(M)) \leq (\psi \varphi)^{-1}(Z_2(M))$, hence $(\psi \varphi)^{-1}(Z_2(M)) = M$. So $\psi \varphi \in T$. On the other hand, $(\varphi \psi)^{-1}(Z_2(M)) = \psi^{-1}(\varphi^{-1}(Z_2(M))) = \psi^{-1}(M) = M$. Hence $\varphi \psi \in T$. This shows that T is a two-sided ideal of S.

Now we show that S/T is von Neumann regular. Let $\psi \in S$. By Corollary 2.3(ii), M is t-extending. So by [2, Theorem 2.11(5)], there exists a direct summand D of M, say $M = D \oplus E$, such that $\psi^{-1}(Z_2(M)) \leq_{tes} D$. Assume that 'bar' denotes the image in $M/Z_2(M)$. Since $Z_2(M) \leq \psi^{-1}(Z_2(M))$ we conclude that $\overline{M} = \overline{D} \oplus \overline{E}$. Moreover, $\overline{\psi} : \overline{E} \to \overline{\psi} \overline{E}$ defined by $\overline{\psi} \, \overline{x} = \overline{\psi} x$ is an isomorphism ($\overline{\psi}$ is one-to-one, since $\psi x \in Z_2(M)$ implies that $x \in \psi^{-1}(Z_2(M)) \cap E \leq D \cap E = 0$). But \overline{M} is injective by Theorem 2.2(5), and so \overline{M} has C_2 condition. Thus $\overline{\psi} E$ is a direct summand of \overline{M} , say $\overline{M} = \overline{\psi} E \oplus \overline{K}$. This implies that $M = \psi E \oplus (K + Z_2(M))$; in fact, it is enough to show that $\psi E \cap (K + Z_2(M)) = 0$. Let $\psi x = k + z$, where $x \in E$, $k \in K$ and $z \in Z_2(M)$. Then $\psi x + Z_2(M) = 0$.

 $k+Z_2(M)\in\overline{\psi E}\cap\overline{K}=0$. Thus $x\in\psi^{-1}(Z_2(M))\cap E=0$, and hence $\psi E\cap (K+Z_2(M))=0$, as desired. On the other hand, $\psi^{-1}(Z_2(M))\cap E=0$ implies that $\psi|_E:E\to\psi E$ is an isomorphism. Set $\theta=(\psi|_E)^{-1}\oplus 1_{K+Z_2(M)}\in S$. Clearly, $\psi^{-1}(Z_2(M))\oplus E\le (\psi-\psi\theta\psi)^{-1}(Z_2(M))$. But $\psi^{-1}(Z_2(M))\le_{tes}D$ implies that $\psi^{-1}(Z_2(M))\oplus E\le_{tes}D\oplus E=M$ by [2, Proposition 2.2(4)]. Thus $(\psi-\psi\theta\psi)^{-1}(Z_2(M))\le_{tes}M$. Moreover, $(\psi-\psi\theta\psi)^{-1}(Z_2(M))$ is t-closed in M by [2, Corollary 2.7]. Thus $(\psi-\psi\theta\psi)^{-1}(Z_2(M))=M$. Hence $\psi-\psi\theta\psi\in T$, and so S/T is von Neumann regular.

Corollary 2.10. Let a ring R be \mathcal{N} -injective.

- (i) $R/Z_2(R_R)$ is a von Neumann regular ring.
- (ii) $\operatorname{Rad}(P) \leq Z_2(P)$ for every projective R-module P.

Proof. (i) Let $r \in R$, and f_r be the endomorphism of R defined by $f_r(x) = rx$. If $r \in Z_2(R_R)$, then $f_r(R) \leq Z_2(R_R)$. If $f_r(R) \leq Z_2(R_R)$, then $f_r(1) = r \in Z_2(R_R)$. Therefore under the ring isomorphism $\Phi : R \to S = \operatorname{End}(R_R)$ defined by $\Phi(r) = f_r$, the ideal $Z_2(R_R)$ is isomorphic to $T = \{\varphi \in S : \varphi R \leq Z_2(R_R)\}$. Hence $R/Z_2(R_R) \cong S/T$, and so by Theorem 2.9, $R/Z_2(R_R)$ is a von Neumann regular ring.

(ii) Since the Jacobson radical of a von Neumann regular ring is zero, (i) implies that $\operatorname{Rad}(R) \leq Z_2(R_R)$. Hence $\operatorname{Rad}(P) = P\operatorname{Rad}(R) \leq PZ_2(R_R) \leq Z_2(P)$.

3. More characterizations

In this section we give several characterizations obtained by the \mathcal{N} -injective property. For right extending rings, semilocal rings and rings of finite reduced rank, the \mathcal{N} -injective property is characterized. Moreover, we determine the rings R for which every nonsingular cyclic R-module is injective. Recall that a ring R is right t-semisimple if and only if $R/Z_2(R_R)$ is a semisimple ring.

Theorem 3.1. The following statements are equivalent for a ring R.

- (1) Every free (projective) R-module is \mathcal{N} -injective.
- (2) Every cyclic R-module is \mathcal{N} -injective.
- (3) Every R-module is \mathcal{N} -injective.
- (4) R is right t-semisimple.
- (5) $R^{(\mathbb{N})}$ is \mathcal{N} -injective.
- (6) $[l_R(Z_2(R_R))]^{(\mathbb{N})}$ is an injective $R/Z_2(R_R)$ -module.

Proof. (1) \Rightarrow (4). Let $[R/Z_2(R_R)]^{(\Lambda)}$ be a free $R/Z_2(R_R)$ -module. Since $Z_2(R^{(\Lambda)}) = Z_2(R_R)^{(\Lambda)}$ we conclude that $[R/Z_2(R_R)]^{(\Lambda)} \cong R^{(\Lambda)}/Z_2(R^{(\Lambda)})$. Hence by hypothesis and Theorem 2.2(5), the module $[R/Z_2(R_R)]^{(\Lambda)}$ is an injective R-module, and so it is an injective $R/Z_2(R_R)$ -module. Thus $R/Z_2(R_R)$ is a right Σ -injective ring, and so it is quasi-Frobenius by [4, 18.1]. On the other hand, $R/Z_2(R_R)$ is a right nonsingular ring. Thus by [3, Corollary 4.6], $R/Z_2(R_R)$ is a semisimple ring.

- (2) \Rightarrow (4). Let M be a cyclic $R/Z_2(R_R)$ -module. Then M is a cyclic R-module, and so by hypothesis, M is $R/Z_2(R_R)$ -injective. Hence M is an injective $R/Z_2(R_R)$ -module. Thus $R/Z_2(R_R)$ is a semisimple ring.
- $(4) \Rightarrow (3)$. Assume that B and M are R-modules, and A is a nonsingular submodule of B. By [3, Theorem 3.2(4)], A is a direct summand of B. So clearly, every R-homomorphism $g:A\to M$ can be extended to an R-homomorphism $h: B \to M$. Thus by Theorem 2.2(6), M is N-injective.
 - $(3) \Rightarrow (1), (3) \Rightarrow (2)$ and $(1) \Rightarrow (5)$. These implications are obvious.
- (5) \Rightarrow (6). Clearly, $l_{R^{(\mathbb{N})}}(Z_2(R_R)) = [l_R(Z_2(R_R))]^{(\mathbb{N})}$. Thus by Theorem 2.2(4), $[l_R(Z_2(R_R))]^{(\mathbb{N})}$ is an injective $R/Z_2(R_R)$ -module.
- $(6) \Rightarrow (1)$. Let $R^{(\Lambda)}$ be a free R-module. By hypothesis, $[l_R(Z_2(R_R))]^{(\mathbb{N})}$ is an injective $R/Z_2(R_R)$ -module. Thus by [1, Theorem 25.1], $[l_R(Z_2(R_R))]^{(\Lambda)}$ is an injective $R/Z_2(R_R)$ -module. So by Theorem 2.2(4), $R^{(\Lambda)}$ is \mathcal{N} -injective. \square

A ring R is called semilocal if R/Rad(R) is semisimple. Semiperfect rings (hence right and left perfect rings, semiprimary rings, right and left Artinian rings, and local rings) are semilocal. The next result determines the \mathcal{N} injective semilocal rings. Moreover, by Corollary 2.10, if R is \mathcal{N} -injective, then $Rad(R) \leq Z_2(R_R)$. The converse implication is not necessarily true even though R is right Noetherian; e.g., $R = \mathbb{Z}$. The next result shows that the converse implication holds for semilocal rings.

Corollary 3.2. Let R be a semilocal ring. The following statements are equivalent.

- R is N-injective.
- (2) R is right t-semisimple.
- (3) $Rad(R) \leq Z_2(R_R)$.
- If R is local, the above statements are equivalent to
- (4) R is right Z_2 -torsion.
- *Proof.* (3) \Rightarrow (2). If R is semilocal, then R/Rad(R) is semisimple. Thus by hypothesis, $R/Z_2(R_R)$ is semisimple, and so R is right t-semisimple.
 - $(2) \Rightarrow (1)$. This follows from Theorem 3.1.
 - $(4) \Rightarrow (2)$. This is clear by [3, Theorem 2.3].

Now assume that R is a local ring. We show that $(3) \Rightarrow (4)$. Since R is local, Rad(R) is essential in R. So by [2, Proposition 2.2(4)], R/Rad(R) is Z_2 torsion. Moreover, by hypothesis, Rad(R) is Z_2 -torsion. Therefore R is right Z_2 -torsion.

Recall that a ring R is called quasi-Frobenius if R is right (or left) Artinian and right (or left) self-injective.

Corollary 3.3. A ring R is quasi-Frobenius if and only if R is right t-semisimple and $R^{(\mathbb{N})}$ is $Z_2(R_R)$ -injective.

Proof. (\Rightarrow) Since $R^{(\mathbb{N})}$ is injective, it is $Z_2(R_R)$ -injective. Moreover, by [3, Proposition 4.5], R is right t-semisimple.

 (\Leftarrow) By Theorems 3.1(3) and 2.2(5), $Z_2(R_R)$ is a direct summand of R. Moreover, by Theorem 3.1(5), $R^{(\mathbb{N})}$ is $R/Z_2(R_R)$ -injective. Thus by hypothesis, $R^{(\mathbb{N})}$ is R-injective, so $R^{(\mathbb{N})}$ is injective. Hence R is quasi-Frobenius by [4, 18.1(b)] and [1, Theorem 25.1].

Recall that R is called a right pseudo-Frobenius ring if R is an injective cogenerator in Mod-R. Every quasi-Frobenius ring is right pseudo-Frobenius; see [9, Theorem 19.25]. The next result shows that a right pseudo-Frobenius ring for which the second singular ideal is Noetherian is quasi-Frobenius.

Corollary 3.4. Let R be a ring.

- (1) If R is right pseudo-Frobenius, then R is right t-semisimple.
- (2) R is quasi-Frobenius if and only if R is right pseudo-Frobenius and $Z_2(R_R)$ is Noetherian (Artinian).
- (3) R is quasi-Frobenius if and only if R is right Kasch and $Z_2(R_R)$ is injective and Noetherian (Artinian).
- *Proof.* (1) Since R is right pseudo-Frobenius, R is right self-injective and semi-perfect. Hence Corollary 3.2 implies that R is right t-semisimple.
- (2) Let R be right pseudo-Frobenius and $Z_2(R_R)$ be Noetherian (Artinian). By (1), R is right t-semisimple, and so $R/Z_2(R_R)$ is Noetherian (Artinian). Thus R is Noetherian (Artinian), and hence R is quasi-Frobenius. The converse is clear.
- (3) Let R be quasi-Frobenius. Then $Z_2(R_R)$ is injective and Noetherian (Artinian). Moreover, R is right pseudo-Frobenius, and so by [9, Theorem 19.25], R is right Kasch. The converse implication follows from [15, Theorem 5] and (2).
- Remark 3.5. (i) The endomorphism ring of an \mathcal{N} -injective module has a von Neumann regular factor ring (Theorem 2.9), but itself is not necessarily von Neumann regular. In fact, by Theorem 3.1(5) and [10, Proposition 2.17], if R is a right t-semisimple ring which is not semisimple, then $R^{(\mathbb{N})}$ is \mathcal{N} -injective and $\operatorname{End}(R^{(\mathbb{N})})$ is not von Neumann regular.
- (ii) Recall that every injective R-module is projective if and only if every projective R-module is injective (and these are equivalent to R being quasi-Frobenius). However, Corollary 2.8 and Theorem 3.1 show that this equivalence does not hold if we replace injective by \mathcal{N} -injective.

Proposition 3.6. The following statements are equivalent for a ring R.

- R is N-injective.
- (2) $Z_2(R_R)$ is $R/Z_2(R_R)$ -injective and every finitely generated (cyclic) non-singular R-module is injective and projective.
- *Proof.* (1) \Rightarrow (2). By Theorem 2.2(5), $Z_2(R_R)$ is $R/Z_2(R_R)$ -injective. Let M be a finitely generated nonsingular R-module. There exists a finitely generated free R-module F such that $M \cong F/C$ for some submodule C of F. By [2, Proposition 2.6(6)], C is a t-closed submodule of F. On the other hand, F is

 \mathcal{N} -injective, and so by Corollary 2.3(ii), F is t-extending. Thus C is a direct summand of F, and so M is isomorphic to a direct summand of F. This implies that M is projective and N-injective which implies that M is injective by Corollary 2.3(i).

 $(2) \Rightarrow (1)$. By Theorem 2.2(2), $Z_2(R_R)$ is \mathcal{N} -injective. Since $R/Z_2(R_R)$ is projective by hypothesis, $Z_2(R_R)$ is a direct summand of R, say $R = Z_2(R_R) \oplus$ R'. But, $R' \cong R/Z_2(R_R)$ is injective by hypothesis, and so by Theorem 2.2(5), R is \mathcal{N} -injective.

The following result characterizes the rings over which every cyclic (finitely generated) nonsingular module is injective. Moreover, this result determines that when a right extending ring is \mathcal{N} -injective.

Theorem 3.7. The following statements are equivalent for a ring R.

- (1) Every cyclic (finitely generated) nonsingular R-module is injective.
- (2) $R/Z_2(R_R)$ is a right self-injective ring.
- If R is right extending, then the above statements are equivalent to
- (3) R is \mathcal{N} -injective.
- *Proof.* (1) \Rightarrow (2). By hypothesis, $R/Z_2(R_R)$ is an injective R-module, and hence, a right self-injective ring.
- $(2) \Rightarrow (1)$. Let M be a finitely generated nonsingular R-module. Then M is a finitely generated nonsingular $R/Z_2(R_R)$ -module. But, $R/Z_2(R_R)$ is a right self-injective ring, and by Proposition 3.6, every finitely generated nonsingular module over a right self-injective ring is injective. So M is an injective $R/Z_2(R_R)$ -module. Therefore Baer's criterion implies that M is an injective R-module.
 - $(3) \Rightarrow (1)$. This follows from Proposition 3.6.

Now assume that R is right extending. We show that $(1) \Rightarrow (3)$. Since R is right extending, $Z_2(R_R)$ is a direct summand of R, say $R = Z_2(R_R) \oplus R'$. By $[4, 7.11], Z_2(R_R)$ is R'-injective. Hence $Z_2(R_R)$ is $R/Z_2(R_R)$ -injective. On the other hand, R' is injective since R' is a cyclic nonsingular R-module. Thus by [2, Theorem 2.11(3)], $R^{(n)} = Z_2(R_R)^{(n)} \oplus R'^{(n)}$ is t-extending. So by hypothesis and [2, Remark 3.14], every finitely generated nonsingular R-module is injective and projective. Thus by Proposition 3.6, R is \mathcal{N} -injective.

A ring R is called of finite (Goldie) reduced rank if the uniform dimension of $R/Z_2(R_R)$ is finite. Every ring of finite uniform dimension is of finite reduced rank; see [9, (7.35)].

Proposition 3.8. The following statements are equivalent for a ring R of finite reduced rank.

- (1) R is N-injective.
- (2) R is right t-semisimple.
- (3) Every nonsingular principal right ideal of R is injective.
- (4) Every nonsingular principal right ideal of R is a direct summand.

Proof. The implication $(2) \Rightarrow (1)$ follows from Theorem 3.1, the implication $(1) \Rightarrow (3)$ follows from Proposition 3.6, and the implication $(3) \Rightarrow (4)$ is clear. $(4) \Rightarrow (2)$. By [3, Theorem 2.3(4)], it suffices to show that a nonsingular right ideal K of R is a direct summand. Since R is of finite reduced rank, so is K. Hence K is of finite uniform dimension as it is nonsingular. Thus by [9, Proposition (6.30)'] and [1, Proposition 10.14], K is a finite direct sum of indecomposable right ideals. So by hypothesis, K is a finite direct sum of minimal right ideals, say $K = a_1 R \oplus a_2 R \oplus \cdots \oplus a_n R$. If n = 1, then K is a direct summand of R. Let n > 1. By induction, assume that $a_2 R \oplus \cdots \oplus a_n R = eR$ for some idempotent $e \in R$. Since $(1-e)a_1R$ is a submodule of K, it is nonsingular. Hence by hypothesis, $(1-e)a_1R = e'R$ for some idempotent $e' \in R$. However, K = eR + e'R and ee' = 0. Therefore e'' = e + e' - e'e is an idempotent and

Following [2], a ring R is called right Σ -t-extending if every free R-module is t-extending.

Corollary 3.9. A ring R is right t-semisimple if and only if R is N-injective and right Σ -t-extending.

Proof. (\Rightarrow) This follows from Theorem 3.1 and [3, Corollary 3.6].

K = e''R is a direct summand of R, as desired.

 (\Leftarrow) Let $R^{(\Lambda)}$ be a free R-module. By [2, Theorem 2.11(3)], $[R/Z_2(R_R)]^{(\Lambda)} \cong R^{(\Lambda)}/Z_2(R^{(\Lambda)})$ is an extending R-module. Thus $[R/Z_2(R_R)]^{(\Lambda)}$ is an extending $R/Z_2(R_R)$ -module. So $R/Z_2(R_R)$ is a right Σ -extending ring. Thus by [4, 12.21($(d) \Leftrightarrow (e)$)], $R/Z_2(R_R)$ is an Artinian ring. So R is of finite reduced rank. Thus by Proposition 3.8, R is right t-semisimple.

Our last result shows that a ring R for which every nonsingular cyclic R-module is injective is precisely a right t-semisimple ring, whenever R is either semilocal or of finite reduced rank; see [3, Example 4.15].

Corollary 3.10. Let R be a ring which is either semilocal or of finite reduced rank. Then every cyclic (finitely generated) nonsingular R-module is injective if and only if R is right t-semisimple.

Proof. The implication (\Leftarrow) is obtained by [3, Theorem 3.2(4)]. For (\Rightarrow), set $\overline{R} = R/Z_2(R_R)$. By Theorem 3.7, \overline{R} is right self-injective. So Rad(\overline{R}) ≤ $Z_2(\overline{R_R})$ by Corollary 2.10(ii). But $Z_2(\overline{R_R}) = 0$, hence Rad(R) ≤ $Z_2(R_R)$. Moreover, \overline{R} is von Neumann regular by Corollary 2.10(i). So by [3, Lemma 4.12], every nonsingular cyclic right ideal of R is a direct summand. Thus Corollary 3.2(3) and Proposition 3.8(4) imply that R is right t-semisimple. \square

Acknowledgement. The authors wish to express their gratitude to the referee for carefully reading the article and making many valuable comments.

References

 F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, New York, Springer-Verlag, 1992.

- [2] Sh. Asgari and A. Haghany, t-Extending modules and t-Baer modules, Comm. Algebra **39** (2011), no. 5, 1605–1623.
- Sh. Asgari, A. Haghany, and Y. Tolooei, t-Semisimple modules and t-semisimple rings, Comm. Algebra 41 (2013), no. 5, 1882–1902.
- [4] N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, Extending Modules, Pitman Research Notes in Mathematics 313, Harlow, Longman, 1994.
- [5] C. Faith, When are proper cyclics injective?, Pacific J. Math. 45 (1973), 97–112.
- [6] K. R. Goodearl, Singular Torsion and Splitting Properties, Mem. Amer. Math. Soc. No. 124, AMS, 1972.
- [7] K. R. Goodearl and R. B. Warfield Jr., An Introduction to Noncommutative Noetherian Rings, 2nd ed. London Mathematical Society Student Texts, Vol. 16. Cambridge: Cambridge University Press, 2004.
- [8] S. K. Jain, A. K. Srivastava, and A. A. Tuganbaev, Cyclic Modules and the Structure of Rings, Oxford University Press, 2012.
- T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, Vol. 189, Berlin, New York: Springer-Verlag, 1998.
- [10] G. Lee, S. T. Rizvi, and C. S. Roman, Modules whose endomorphism rings are von Neumann regular, Comm. Algebra 41 (2013), no. 11, 4066-4088.
- [11] W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Mathematics, Vol. 158, Cambridge: Cambridge University Press, 2003.
- [12] B. L. Osofsky, Homological properties of rings and modules, Rutgers University, Doctoral Dissertation, 1964.
- [13] B. L. Osofsky and P. F. Smith, Cyclic modules whose quotients have all complements submodules direct summands, J. Algebra 139 (1991), no. 2, 342-354.
- [14] S. T. Rizvi and M. F. Yousif, On continuous and singular modules, Noncommutative Ring Theory, Proc., Athens, Lecture Notes in Mathematics, Vol. 1448, pp. 116-124, Berlin, New York and Heidelberg: Springer Verlag, 1990.
- [15] M. F. Yousif, Y. Zhou, and N. Zeyad, On pseudo-Frobenius rings, Canad. Math. Bull. **48** (2005), no. 2, 317–320.

Marzieh Arabi-Kakavand

DEPARTMENT OF MATHEMATICAL SCIENCES

ISFAHAN UNIVERSITY OF TECHNOLOGY

Isfahan, Iran

E-mail address: m.arabikakavand@math.iut.ac.ir

SHADI ASGARI

DEPARTMENT OF MATHEMATICAL SCIENCES

University of Isfahan

Isfahan, Iran

SCHOOL OF MATHEMATICS

Institute for Research in Fundamental Sciences (IPM)

TEHRAN, IRAN

E-mail address: sh_asgari@ipm.ir

Yaser Tolooei

Department of Mathematics

FACULTY OF SCIENCE

RAZI UNIVERSITY

KERMANSHAH, IRAN

E-mail address: y.toloei@razi.ac.ir