Browse > Article
http://dx.doi.org/10.4134/JKMS.2012.49.4.687

SPECIAL WEAK PROPERTIES OF GENERALIZED POWER SERIES RINGS  

Ouyang, Lunqun (Department of Mathematics Hunan University of Science and Technology)
Publication Information
Journal of the Korean Mathematical Society / v.49, no.4, 2012 , pp. 687-701 More about this Journal
Abstract
Let $R$ be a ring and $nil(R)$ the set of all nilpotent elements of $R$. For a subset $X$ of a ring $R$, we define $N_R(X)=\{a{\in}R{\mid}xa{\in}nil(R)$ for all $x{\in}X$}, which is called a weak annihilator of $X$ in $R$. $A$ ring $R$ is called weak zip provided that for any subset $X$ of $R$, if $N_R(Y){\subseteq}nil(R)$, then there exists a finite subset $Y{\subseteq}X$ such that $N_R(Y){\subseteq}nil(R)$, and a ring $R$ is called weak symmetric if $abc{\in}nil(R){\Rightarrow}acb{\in}nil(R)$ for all a, b, $c{\in}R$. It is shown that a generalized power series ring $[[R^{S,{\leq}}]]$ is weak zip (resp. weak symmetric) if and only if $R$ is weak zip (resp. weak symmetric) under some additional conditions. Also we describe all weak associated primes of the generalized power series ring $[[R^{S,{\leq}}]]$ in terms of all weak associated primes of $R$ in a very straightforward way.
Keywords
weak annihilator; weak associated prime; generalized power series;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Ribenboim, Noetherian rings of generalized power series, J. Pure. Appl. Algebra 79 (1992), no. 3, 293-312.   DOI   ScienceOn
2 P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra 198 (1997), no. 2, 327-338.   DOI   ScienceOn
3 R. C. Shock, Polynomial rings over finite dimensional rings, Pacific J. Math. 42 (1972), 251-257.   DOI
4 D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272.   DOI   ScienceOn
5 S. Annin, Associated primes over skew polynomial rings, Comm. Algebra 30 (2002), no. 5, 2511-2528.   DOI   ScienceOn
6 G. A. Elliott and P. Ribenboim, Fields of generalized power series, Arch. Math. (Basel) 54 (1990), no. 4, 365-371.   DOI
7 S. Annin, Associated primes over Ore extension rings, J. Algebra Appl. 3 (2004), no. 2, 193-205.   DOI   ScienceOn
8 J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math. 58 (1975), no. 1, 1-13.   DOI
9 J. Brewer and W. Heinzer, Associated primes of principal ideals, Duke Math. J. 41 (1974), 1-7.   DOI
10 C. Faith, Associated primes in commutative polynomial rings, Comm. Algebra 28 (2000), no. 8, 3983-3986.   DOI   ScienceOn
11 Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52.   DOI   ScienceOn
12 C. Y. Hong, N. K. Kim, T. K. Kwak, and Y. Lee, Extensions of zip rings, J. Pure Appl. Algebra 195 (2005), no. 3, 231-242.   DOI   ScienceOn
13 Z. Liu, Special properties of rings of generalized power series, Comm. Algebra 32 (2004), no. 8, 3215-3226.   DOI   ScienceOn
14 J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368.   DOI
15 Z. Liu, PF-rings of generalised power series, Bull. Austral. Math. Soc. 57 (1998), no. 3, 427-432.   DOI
16 Z. Liu, Injectivity of modules of generalized inverse polynomials, Comm. Algebra 29 (2001), no. 2, 583-592.   DOI   ScienceOn
17 G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123.   DOI   ScienceOn
18 L. Ouyang, Ore extensions of weak zip rings, Glasg. Math. J. 51 (2009), no. 3, 525-537.   DOI   ScienceOn
19 L. Ouyang and Y. Chen, On weak symmetric rings, Comm. Algebra 38 (2010), no. 2, 697-713.   DOI   ScienceOn
20 P. Ribenboim, Rings of generalized power series: Nilpotent elements, Abh. Math. Sem. Univ. Hamburg 61 (1991), 15-33.   DOI