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NOTES ON Wi, 0y I

SeEuL HEE CHOI

Abstract. The Weyl-type non-associative algebra WNg,, m.s, and
its subalgebra W Ny, m,s, are defined and studied in the papers [8],
(9], [10], [12].

We will prove that the Weyl-type non-associative algebra W Nn 0,015
and its corresponding semi-Lie algebra are simple. We find the non-

associative algebra automorphism group Autnon(WNl,o'o[Q]).

1. Preliminaries

Let N be the set of all non-negative integers and Z be the set of all
integers. Let F be a field of characteristic zero. Let F* be the multiplica-

tive group of non-zero elements of F. Let F[z1, -+, Zm+s] be the polyno-
mial ring with the variables z1, -+ ,Zm+s. Let g1, -, gn be given poly-
nomials in F[z1,- - ,Zm4s]. For n,m,s € N, let us define the commu-
tative, associative F-algebra Fy, s = F[eigl, - ,eign,xlﬂ, e ,:cil,
Tm+1, ", Tm+s) Which is called a stable algebra in the paper [5] with
the standard basis
B = {ealgl - .eaﬂ-gﬂx? . .x:'::‘_:;!al, P ,an,il’ e ’im € Z,
im+1a o ,im+s € N}
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and with the obvious addition and the multiplication [5], [8] where we
take appropriate g1, - ,g, so that B can be the standard basis of
Fy, ms Ow, 1 < w < m+ s, denotes the usual partial derivative with
respect to x, on Fy . For partial derivatives Oy, --,0, of Fy, m.s,
the composition 6‘5“ 0.0 %” of them is denoted 61{“ 6‘{,” where
Ju>- -+, Jv € N. Let us define the vector space WN(gn, m,s) over F
which is spanned by the standard basis

b i » . .
(1) {eal!]l .,.eﬂngnmll... mm_:;(‘)““-aﬁ Ial,... yOny 01, iy € Z,
Ting1," aim—i—sENajua"' yJjv €N, 1< u, - aU§m+3}

Thus we may define the multiplication * on WN(g,, m, s) as follows:

(2) etmor... 6a1"g"$§11 . :rll_':s*‘saJu .. .813)'11 *
2191 ea2ngnz§21 .. :,21_’:;’38]’1 83}”
— o111, .. ealngnxill . ;{Lr:*‘ah O
(9 ammongian . gl g
for any basis elements e?1191 . .. g@ingnglit .. :,111:587“ .00 and e*19!
- ed2mdn gha Zr:sé‘“ -8l € WN(gn, m, s). Thus we can define

the Weyl-type non-associative algebra WN,, ., s with the multiplication
* in (2) and with the set WN(gn,m,s) [1], [14]. For r € N, let us de-
fine the the non-associative subalgebra W Ny, m,s, of the non-associative

algebra W N, m s spanned by
{ealgl.. angnx IZSaJ“‘ . .”Ial,... ,an,il,... ,imez’
im+1v"' ais € ijU7"' ajv € N’
(3) Jut -+ i <nl<u, - ;v <m+s}
The non-associative subalgebra WNgmm,sl of the non-associative alge-

bra W Ny, m,s is the the non-associative algebra Ny, s in the paper [1].
There is no left or right identity of WN,, m s. The the non-associative
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algebra WNy, m s is Z"-graded as follows:

(4) W Ny, m,s = @ WN(al,"',an)

(a1, ,an)

where WN(4, ... o) is the vector subspace of WNg, m s with the basis

(€9 eomingly - glmidle O lit, - im € Z,

im—}-la"' ,im+37jm"' )j’U €N71 SU, y U Sm+3}
An element in WN(g, .. o, is called an (a1, - - ,an)-homogenous ele-
ment and WN(g, ... o,y is called the (a1,---, an)-homogeneous compo-
nent. For any basis element €19 - - e%ndngil ... zi™re 9, of Wiy, s,
let us define the homogeneous degree degy (%191 - - - en9n gl ... :’n’ﬁ; ol

.- 89") of it as follows:

m+s
degn (e®19 - e*onay . inzsdfe - 00) = 3 Ji)

where |i,| is the absolute value of iy, 1 < u < m + s. Throughout
this paper, for any basis element e*9 . ea"g"x "’67“ B0 we
write it such that 1 < p < .- <pv <n, 1 <A< --- <0 < m,
and 1 < u < --- < v < m + s. For any element | € WNy, .,
we may define degn(l) as the highest homogeneous degree of the ba-
sis terms of I. Thus for any basis elements /; and Iy of WTW, we
may write Iy + [; or l2 + I3 well orderly with unambiguity. For any
element | € WNpg s, we may define degn(l) as the highest homoge-
neous degree of each monomial of I. For any | € WNy, s, let us define
#(1) as the number of different homogeneous components of I. W Npm.s
(resp. WNy, m,s,) has the subalgebra WT (resp. WT;) spanned by
(O -0 |(resp. Jut+ - +Jv<T) Jur v € N1 <uv < 51}
which is the right annihilator of WN,, m s (resp. WNy, ms.). Let us
define the non-associative subalgebra m[2] of the non-associative
algebra WN,, ;s is spanned by {e?®!..-e™*92]1 < u < n}. The
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non-associative algebra Wiy 0,01 is Z"-graded as follows:

(5) Whooog = B Nayan)

((11,'“ 70'”)

where N, ... q,) i the vector subspace of m[g] with the basis
{em®1 ... e H2|1 < v < n}. The non-associative algebra WN,, m s
contains the matrix ring M,(F) [1]. A non-associative algebra A is
simple, if it has no proper two sided ideal which is not zero ideal [14].

For any element [ in a non-associative algebra A, [ is full, if the ideal

< [ > generated by [ is A. Generally, the algebra W Noyo,s, or WNgpg s
is not Lie admissible [1], [8], since the Jacobi identity does not hold
using the commutator of the non-associative algebra WTWT or the
non-associative algebra WNpgs for r > 1. For any F-algebra A and
an element [ € A, an element Iy € A is a left (resp. right) stabilizing
element of [, if {; *! = ¢l (resp. lxl; = cl) where ¢ € F. For any element
l1 € A, 1l € Ais alocally left (resp. right) unity of [y € A, if I xl; =4
(resp. Iy x = l1) holds and throughout the paper, we read it as that [ is
a left unity of [1, etc.. The Weyl-type non-associative algebra, mT
and its subalgebra mr contains the matrix ring M (F), i.e., 2,8,
in The Weyl-type non-associative algebra m; or its subalgebra
mr corresponds ey, where ey, is the unit matrix of My(F) such

that its uv-entry is one and its other terms are zero.

2. Simplicity of WNn,oyo[Q]

Even if the non-associative algebra WNTL,O,O[Q] has right annihilators,
we have the following results. The non-associative algebra WNnyo,o[g]

has no idempotent.
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Remark 1. An (non-associative, Lie, or associative) algebra A is
simple if and only if every element of the (non-associative, Lie, or asso-

ciative) algebra A is full.

Lemma 1. For any 65, 1 < uw < n, in the non-associative algebra
WNn,O,O[Q], 0% is full.

Proof. Let I be anon-zero ideal of the non-associative algebra WNn,()yg[Q]
which contains 8, in the lemma. For any basis element et . . . ¢n%n {2
of WNn,O,O[g] with a, # 0,

2 a1x1 anTn 92 _ 2 ,01T1 _  ,anTn H2
05 % eMT ...l = aje et eI

This implies that WNn,O,O{Q] cl,ie., WNn,o,o[Q] = J. This implies that

O, 1s full. Therefore we have proven the lemma. O
Theorem 1. The non-associative algebra WNn,O,O[g] is simple.

Proof. Let I be anon-zero ideal of the non-associative algebra m@]'
Let [ be any non-zero element in I. Let us prove the theorem by induc-
tion on #(1) of [. If #(I) = 1, then there is nothing to prove by Lemma
1. Let us assume that we have proven the theorem #(l) = k where k
is a positive integer. If [ has at least two different partial derivatives 2

and 62, then we have that
#(Uxe™™92)<k-1

This implies that we have proven the theorem by induction. Let us
assume that [ has only one partial derivative, say 82. Without loss
of generality, we may assume that [ has two different basis terms i.e.
e¥1%1 ... e g2 and eb131... G2 guch that a; # by. This implies
that
#(02 (e ™Y x1)) <k—1

This implies that (92 (e~*1®192x1)) € I and #(8?* (e~ *1*192xl)) < k—1.
Thus we have that I = m@] by induction. Therefore we have

proven the theorem. O
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Corollary 1. The non-associative algebra WN1,0,0[2] is simple.

Proof. The proof of the corollary is straightforward by Theorem 1.
Thus let us omit the proof of the corollary. O

Theorem 2. The semi-Lie algebra, WN",070[2][] is simple.

Proof. Since every element of the semi-Lie algebra WNpoo 2 is full,
the proof of the theorem is straightforward by Theorem 1. So let omit
it. d

Corollary 2. The Lie algebra WNO,O,nl[ ] is simple.

Proof. Since the Lie algebra WNn,O,Ol[] is isomorphic to the Lie al-
gebra WNO’O:Tbl[]’ the Lie algebra WNO,O,nl[] is simple. Od

The semi-Lie algebra WNOYO,nm“ is called the Witt type semi-Lie al-

gebra [13]. WNl,o,or[] is self-centralizing (7].

3. Automorphism group Autnon(WNl,o,o[z])

For any non-associative algebras A and B, an additive F-map 6 from
A to B is an algebra homomorphism, if 0l * l2) = 6(l1) * 0(l2) holds
for any I1,l; € A. For any algebra homomorphism from A to B is a
monomorphism, if # is injective. For any algebra homomorphism from
A to B is a endomorphism, if 6 is surjective. Note that by Corollary
1, the non-associative algebra WTW[Q] spanned by {€*0?|a € Z} is
simple. For any Lie algebras L; over F, an F-map 6 from Li to Ly is
Lie homomorphism, if §([l1,{5]) = [8(l1), 8(l2)] holds for any ly,ls € L.
For the Lie homomorphism 6, from L; to L, (resp. L) if it is bijective,
then we call it isomorphism (resp. automorphism) etc.. The matrix ring

M, (F) is not imbedded in the the non-associative algebra WNn,0,0[2]
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as F-algebras, since any subalgebra A of the the non-associative alge-
bra WNn,o,o[Q] does not have the identity element of A such that the

dimension of A is greater than 3.

Proposition 1. For any non-associative algebra endomorphism 6 of

WNl,o,o[Q], if ¢ is non-zero, then 0 is injective.

Proof. Let 8 be a non-associative algebra endomorphism 6 of WNl,O,O[Q]'
Ker(0) is an ideal of WN1,0,0[2]. By Corollary 1, either Ker(f) = 0 holds
or Ker(0) = W N1,0,015 holds. Since 6 is not the zero map, Ker(8) = 0.

This implies that 6 is injective. So we have proven the proposition. [

Note 1. For any basis element e**0 of WN110,0[2], if we define F-
linear maps 6, 4, and 6_ 4, of WNLO,O[Q]a as follows:
0, 4,(e"°0%) = d¥ekzo?
and
6—,d2 (ekza2) — dlzce—kza2
then 6, 4, and 0_ 4, can be linearly extended to non-associative algebra

automorphisms of WN; ¢ 2l where dy,ds € F*.

Lemma 2. For any non-associative algebra automorphism 0 of

WNi00 2]’ 6(8%) = cd? holds where c is a non-zero scalar.

Proof. Let 8 be the non-associative algebra automorphism 6 of W N 1,0,0[2]
in the lemma. Since 0 is a basis of the right annihilator of WN10,0p, 0
is invariant under any automorphism of W Ny ,[2]. This implies that

8(8%) = cd? holds where c is a non-zero scalar. O

Lemma 3. For any 0 in the non-associative algebra automorphism

group Autn(m(WNl,O,o[Q]) of WN1,0,0{2] is 0 is either . g, or 6_ 4, where
di,dy € F.
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Proof. Let 6 be the non-associative algebra automorphism of WiN100p
in the lemma. By Lemma 3, §(6%) = cd? holds where ¢ is a non-zero
scalar. By Lemma 3 and 6(8? * e6%) = 6(e®9?), we have that
(6) c0? x §(e®9?) = 0(e0?)
0(e®8?%) can be written as follows:

(7) 0(e"0%) = C(b)e?*®8? + - .- + C(b)e"*5?

where C(by),---,C(b;) € F and b; > --- > b;. By (6) and (7), we have
that cb? = 1. If ¢ # 1, then b, ¢ N. This implies that ¢ = 1 and b; = +1.
Case 1. Let us assume that ¢ = 1 and b; = —1 hold. Since 8(e=%5? «
e9%) = 0(8?), we may put 8(8%) = 02 and 0(e*5%) = d1e~*9® where
dy € F*. We also have that

(8) 0(e™*0%) = d;te =02

By 6(e%0? * €*8?%) = €?*9?, we have that

(9) 0(e?*0%) = d2e2*?

By (8) and (9), we may assume that 6(e**0?) = d¥e**92 holds by in-
duction on k € N of €*°62. By 0(e*9? x €k29?) = ke(**+1252  we have
that §(e®+179?) = d¥*+1ek+1292 This proves that 6(ek*9?) = dkehep?
holds for any £ € N. Symmetrically, we can prove that

(10) 0(e**9?%) = dbek=9?

holds for any negative integer k& by (8). This implies that 6 is the non-
associative algebra automorphism 6, 4, which is defined in Note 1.
Case II. Let us assume that ¢ = 1 and b; = —1 hold. Without loss of
generality, we may put 6(0%) = 6% and 6(e*0?) = dye 82 where dy € F.
By 6(e%0? x e%9%) = %82, we have that

(11) 8(e**6?) = die~225?

By induction on k € N of €82, we can prove that

(12) 0(e**6?) = dke~*=9?
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By 0(e™%8?% x €20?) = 9%, we have that 6(e=20%) x dye~*9%) = §2. This
implies that 8(e~29%) = d;'e*0%. By induction on k € N of 5292, we

can prove that
(13) (e *°6%) = dy*er"5?

This implies that # is the non-associative algebra automorphism 6_ 4,
which is defined in Note 1. By Case I and Case II, we have proven the

lemma. O

Theorem 3. The non-associative algebra automorphism group Aut,,
(WN1,0,0[2]) of WN1,0,0[2] is generated by 6, 4, and 0_ 4, where dy,dy €
Fe.

Proof. Let 6 be the non-associative algebra automorphism of W N 1,00(9)-
By Lemma 3, § is either 6 4, or §_ 4, where d;,ds € F.
So AUtnon(WNl,O,O[Q]) of WN1,0,0[2] is generated by 9+,d1 and 0_ 4,

Therefore we have proven the theorem. O

Corollary 3. The non-associative algebra automorphism group Auty,,
(WNl,o,o[Q]) of the non-associative algebra WN170,0[2] is a non-abelian
group.

Proof. By Theorem 3, The non-associative algebra automorphism
group Autpon(WN1,0,05)) of the non-associative algebra W10 I8
generated by 6, 4 and 0_ 4, where di,dp € F*. Thus it is enough to
check that 0, 4, 0 0_ 4, # 0_4, 0 04 4, where o is the composition of
the non-associative algebra automorphisms 6, 4, and 6_ 4,. But it is
trivial to check the inequality by taking some basis element of the non-
associative algebra WTLO,OQ]' So let omit its proof. This completes the

proof of the corollary. O

Proposition 2. The non-associative algebra WNLO»O[?] is not iso-
morphic to the non-associative algebra WN0,1,0[2] as non-associative al-

gebras.
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Proof. Since the non-associative algebra WNOJ,O[Q] has a right unity
and the non-associative algebra WN110,0[2] does not have a right unity,
the proof of the proposition is straightforward. .

Another proof of Proposition 2 can be proved by reviewing Theorem 2
and Theorem 1 in the paper [8], since they have different non-associative

algebra automorphism groups.

Since WN1,0,01[,] is self-centralizing, the semi-Lie algebra WN110,01[,]
has similar semi-Lie automorphisms 6, 4, and 6_ 4, as the non-associative
algebra W Nigp, in Note 1. Thus we have the following theorem and
leu us omit its proof because of the proof of Theorem 3 and the above

comments.

Theorem 4. The semi-Lie algebra automorphism group Aut semi— Lie
(WN1,0,0
Fe.

{]) ofWNl,oyo[Q]” is generated by 0, 4, and 6_ 4, whered;,dy €

Proposition 3. The semi-Lie algebra WNI,O,O[Q]H (resp. the non-

associative algebra WNOJ,O[Q]) does not hold its Jacobian conjecture.

Proof. Tt is easy to define a non-zero endomorphism 6 of WNLO’O[?][]

(resp. WN071,0[2]) which is not surjective. This completes its proof. [
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