NOTES ON $\overline{WN_{n,0,0}}_{[2]}$ I

SEUL HEE CHOI

Abstract. The Weyl-type non-associative algebra $\overline{WN_{g_n,m,s_r}}$ and its subalgebra $\overline{WN_{n,m,s_r}}$ are defined and studied in the papers [8], [9], [10], [12].

We will prove that the Weyl-type non-associative algebra $\overline{WN_{n,0,0}}_{[2]}$ and its corresponding semi-Lie algebra are simple. We find the non-associative algebra automorphism group $Aut_{non}(\overline{WN_{1,0,0}}_{[2]})$.

1. Preliminaries

Let **N** be the set of all non-negative integers and **Z** be the set of all integers. Let **F** be a field of characteristic zero. Let **F** be the multiplicative group of non-zero elements of **F**. Let $\mathbf{F}[x_1, \dots, x_{m+s}]$ be the polynomial ring with the variables x_1, \dots, x_{m+s} . Let g_1, \dots, g_n be given polynomials in $\mathbf{F}[x_1, \dots, x_{m+s}]$. For $n, m, s \in \mathbf{N}$, let us define the commutative, associative **F**-algebra $F_{g_n,m,s} = \mathbf{F}[e^{\pm g_1}, \dots, e^{\pm g_n}, x_1^{\pm 1}, \dots, x_m^{\pm 1}, x_{m+1}, \dots, x_{m+s}]$ which is called a stable algebra in the paper [5] with the standard basis

$$\mathbf{B} = \{ e^{a_1 g_1} \cdots e^{a_n g_n} x_1^{i_1} \cdots x_{m+s}^{i_{m+s}} | a_1, \cdots, a_n, i_1, \cdots, i_m \in \mathbf{Z}, \\ i_{m+1}, \cdots, i_{m+s} \in \mathbf{N} \}$$

Received October 10, 2005. Accepted November 3, 2005.

2000 Mathematics Subject Classification: Primary 17B40, 17B56.

Key words and phrases: simple, non-associative algebra, semi-Lie algebra, automorphism, right identity, annihilator, Jacobian conjecture.

Supported by the '04 Sabbatical year program of Jeonju University Research Fund.

and with the obvious addition and the multiplication [5], [8] where we take appropriate g_1, \dots, g_n so that **B** can be the standard basis of $F_{g_n,m,s}$. ∂_w , $1 \leq w \leq m+s$, denotes the usual partial derivative with respect to x_w on $F_{g_n,m,s}$. For partial derivatives $\partial_u, \dots, \partial_v$ of $F_{g_n,m,s}$, the composition $\partial_u^{j_u} \circ \dots \circ \partial_v^{j_v}$ of them is denoted $\partial_u^{j_u} \dots \partial_v^{j_v}$ where $j_u, \dots, j_v \in \mathbb{N}$. Let us define the vector space $WN(g_n, m, s)$ over **F** which is spanned by the standard basis

(1)
$$\{e^{a_1g_1}\cdots e^{a_ng_n}x_1^{i_1}\cdots x_{m+s}^{i_{m+s}}\partial_u^{j_u}\cdots \partial_v^{j_v}|a_1,\cdots,a_n,i_1,\cdots,i_m\in \mathbb{Z},\ i_{m+1},\cdots,i_{m+s}\in\mathbb{N}, j_u,\cdots,j_v\in\mathbb{N}, 1\leq u,\cdots,v\leq m+s\}$$

Thus we may define the multiplication * on $WN(g_n, m, s)$ as follows:

for any basis elements $e^{a_{11}g_1}\cdots e^{a_{1n}g_n}x_1^{i_{11}}\cdots x_{m+s}^{i_{1,m+s}}\partial_u^{j_u}\cdots \partial_v^{j_v}$ and $e^{a_{21}g_1}\cdots e^{a_{2n}g_n}x_1^{i_{21}}\cdots x_{m+s}^{i_{2,m+s}}\partial_h^{j_h}\cdots \partial_w^{j_w}\in WN(g_n,m,s)$. Thus we can define the Weyl-type non-associative algebra $\overline{WN}_{g_n,m,s}$ with the multiplication * in (2) and with the set $WN(g_n,m,s)$ [1], [14]. For $r\in \mathbb{N}$, let us define the non-associative subalgebra $\overline{WN}_{g_n,m,s}$ of the non-associative algebra $\overline{WN}_{g_n,m,s}$ spanned by

$$\{e^{a_1g_1}\cdots e^{a_ng_n}x_1^{i_1}\cdots x_s^{i_s}\partial_u^{j_u}\cdots\partial_v^{j_v}|a_1,\cdots,a_n,i_1,\cdots,i_m\in\mathbf{Z},$$

$$i_{m+1},\cdots,i_s\in\mathbf{N},j_u,\cdots,j_v\in\mathbf{N},$$

$$j_u+\cdots+j_v\leq r,1\leq u,\cdots,v\leq m+s\}$$

The non-associative subalgebra $\overline{WN_{g_n,m,s}}_1$ of the non-associative algebra $\overline{WN_{g_n,m,s}}$ is the the non-associative algebra $\overline{N_{g_n,m,s}}$ in the paper [1]. There is no left or right identity of $\overline{WN_{g_n,m,s}}$. The the non-associative

algebra $\overline{WN_{g_n,m,s}}$ is \mathbf{Z}^n -graded as follows:

(4)
$$\overline{WN_{g_n,m,s}} = \bigoplus_{(a_1,\cdots,a_n)} WN_{(a_1,\cdots,a_n)}$$

where $WN_{(a_1,\dots,a_n)}$ is the vector subspace of $\overline{WN_{g_n,m,s}}$ with the basis

$$\{e^{a_1g_1} \cdots e^{a_ng_n} x_1^{i_1} \cdots x_{m+s}^{i_{m+s}} \partial_u^{j_u} \cdots \partial_v^{j_v} | i_1, \cdots, i_m \in \mathbf{Z}, \\ i_{m+1}, \cdots, i_{m+s}, j_u, \cdots, j_v \in \mathbf{N}, 1 \le u, \cdots, v \le m+s\}.$$

An element in $WN_{(a_1,\dots,a_n)}$ is called an (a_1,\dots,a_n) -homogenous element and $WN_{(a_1,\dots,a_n)}$ is called the (a_1,\dots,a_n) -homogeneous component. For any basis element $e^{a_1g_1}\dots e^{a_ng_n}x_1^{i_1}\dots x_{m+s}^{i_{m+s}}\ \partial_t$ of $\overline{WN_{g_n,m,s}}$, let us define the homogeneous degree $deg_N(e^{a_1g_1}\dots e^{a_ng_n}x_1^{i_1}\dots x_{m+s}^{i_{m+s}}\partial_u^{j_u}\dots \partial_v^{j_v})$ of it as follows:

$$deg_N(e^{a_1g_1}\cdots e^{a_ng_n}x_1^{i_1}\cdots x_{m+s}^{i_{m+s}}\partial_u^{j_u}\cdots \partial_v^{j_v}) = \sum_{u=1}^{m+s} |i_u|$$

where $|i_u|$ is the absolute value of i_u , $1 \leq u \leq m+s$. Throughout this paper, for any basis element $e^{a_\mu g_\mu} \cdots e^{a_\nu g_\nu} x_\lambda^{i_\lambda} \cdots x_\sigma^{i_\sigma} \partial_u^{j_u} \cdots \partial_v^{j_v}$, we write it such that $1 \leq \mu \leq \cdots \leq \nu \leq n$, $1 \leq \lambda \leq \cdots \leq \sigma \leq m$, and $1 \leq u \leq \cdots \leq v \leq m+s$. For any element $l \in \overline{WN_{g_n,m,s}}$, we may define $deg_N(l)$ as the highest homogeneous degree of the basis terms of l. Thus for any basis elements l_1 and l_2 of $\overline{WN_{0,0,s}}$, we may write $l_1 + l_1$ or $l_2 + l_1$ well orderly with unambiguity. For any element $l \in \overline{WN_{0,0,s}}$, we may define $deg_N(l)$ as the highest homogeneous degree of each monomial of l. For any $l \in \overline{WN_{g_n,m,s}}$, let us define #(l) as the number of different homogeneous components of l. $\overline{WN_{n,m,s}}$ (resp. $\overline{WN_{g_n,m,s_r}}$) has the subalgebra WT (resp. WT_r) spanned by $\{\partial_u^{j_u} \cdots \partial_v^{j_v} | (resp. j_u + \cdots + j_v \leq r,) \quad j_u, \cdots, j_v \in \mathbb{N}, 1 \leq u, v \leq s_1\}$ which is the right annihilator of $\overline{WN_{g_n,m,s}}$ (resp. $\overline{WN_{g_n,m,s_r}}$). Let us define the non-associative subalgebra $\overline{WN_{n,0,0}}_{[2]}$ of the non-associative algebra $\overline{WN_{g_n,m,s}}$ is spanned by $\{e^{a_1x_1} \cdots e^{a_nx_n} \partial_u^2 | 1 \leq u \leq n\}$. The

non-associative algebra $\overline{WN_{n,0,0}}_{[2]}$ is \mathbf{Z}^n -graded as follows:

(5)
$$\overline{WN_{n,0,0}}_{[2]} = \bigoplus_{(a_1,\dots,a_n)} N_{(a_1,\dots,a_n)}$$

where $N_{(a_1,\dots,a_n)}$ is the vector subspace of $\overline{WN_{n,0,0}}_{[2]}$ with the basis $\{e^{a_1x_1}\cdots e^{a_nx_n}\partial_v^2|1\leq v\leq n\}$. The non-associative algebra $\overline{WN_{q_n,m,s}}$ contains the matrix ring $M_n(\mathbf{F})$ [1]. A non-associative algebra A is simple, if it has no proper two sided ideal which is not zero ideal [14]. For any element l in a non-associative algebra A, l is full, if the ideal < l > generated by l is A. Generally, the algebra $\overline{WN_{0,0,s}}_r$ or $\overline{WN_{0,0,s}}$ is not Lie admissible [1], [8], since the Jacobi identity does not hold using the commutator of the non-associative algebra $\overline{WN_{0,0,s}}_r$ or the non-associative algebra $\overline{WN_{0,0,s}}$ for r>1. For any F-algebra A and an element $l \in A$, an element $l_1 \in A$ is a left (resp. right) stabilizing element of l, if $l_1 * l = cl$ (resp. $l * l_1 = cl$) where $c \in \mathbf{F}$. For any element $l_1 \in A$, $l \in A$ is a locally left (resp. right) unity of $l_1 \in A$, if $l * l_1 = l_1$ (resp. $l_1 * l = l_1$) holds and throughout the paper, we read it as that l is a left unity of l_1 , etc.. The Weyl-type non-associative algebra $\overline{WN_{g_n,m,s_r}}$ and its subalgebra $\overline{WN_{n,m,s}}_r$ contains the matrix ring $M_s(\mathbf{F})$, i.e., $x_u\partial_v$ in The Weyl-type non-associative algebra $\overline{WN_{g_n,m,s_r}}$ or its subalgebra $\overline{WN_{n,m,s}}_r$ corresponds e_{uv} where e_{uv} is the unit matrix of $M_s(\mathbf{F})$ such that its uv-entry is one and its other terms are zero.

2. Simplicity of $\overline{WN_{n,0,0}}_{[2]}$

Even if the non-associative algebra $\overline{WN_{n,0,0}}_{[2]}$ has right annihilators, we have the following results. The non-associative algebra $\overline{WN_{n,0,0}}_{[2]}$ has no idempotent.

Remark 1. An (non-associative, Lie, or associative) algebra A is simple if and only if every element of the (non-associative, Lie, or associative) algebra A is full.

Lemma 1. For any ∂_u^2 , $1 \le u \le n$, in the non-associative algebra $\overline{WN_{n,0,0}}_{[2]}$, ∂_u^2 is full.

Proof. Let I be a non-zero ideal of the non-associative algebra $\overline{WN_{n,0,0}}_{[2]}$ which contains ∂_u in the lemma. For any basis element $e^{a_1x_1}\cdots e^{a_nx_n}\partial_v^2$ of $\overline{WN_{n,0,0}}_{[2]}$ with $a_u \neq 0$,

$$\partial_n^2 * e^{a_1 x_1} \cdots e^{a_n x_n} \partial_n^2 = a_n^2 e^{a_1 x_1} \cdots e^{a_n x_n} \partial_n^2 \in I$$

This implies that $\overline{WN_{n,0,0}}_{[2]} \subset I$, i.e., $\overline{WN_{n,0,0}}_{[2]} = I$. This implies that ∂_u is full. Therefore we have proven the lemma.

Theorem 1. The non-associative algebra $\overline{WN_{n,0,0}}_{[2]}$ is simple.

Proof. Let I be a non-zero ideal of the non-associative algebra $\overline{WN_{n,0,0}}_{[2]}$. Let l be any non-zero element in I. Let us prove the theorem by induction on #(l) of l. If #(l) = 1, then there is nothing to prove by Lemma 1. Let us assume that we have proven the theorem #(l) = k where k is a positive integer. If l has at least two different partial derivatives ∂_u^2 and ∂_v^2 , then we have that

$$\#(l * e^{a_u x_u} \partial_u^2) \le k - 1$$

This implies that we have proven the theorem by induction. Let us assume that l has only one partial derivative, say ∂_u^2 . Without loss of generality, we may assume that l has two different basis terms i.e. $e^{a_1x_1}\cdots e^{a_nx_n}\partial_u^2$ and $e^{b_1x_1}\cdots e^{b_nx_n}\partial_v^2$ such that $a_1\neq b_1$. This implies that

$$\#(\partial_1^2 * (e^{-a_1x_1}\partial_1 * l)) \le k-1$$

This implies that $(\partial_1^2 * (e^{-a_1x_1} \partial_1^2 * l)) \in I$ and $\#(\partial_1^2 * (e^{-a_1x_1} \partial_1^2 * l)) \leq k-1$. Thus we have that $I = \overline{WN_{n,0,0}}_{[2]}$ by induction. Therefore we have proven the theorem.

Corollary 1. The non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$ is simple.

Proof. The proof of the corollary is straightforward by Theorem 1. Thus let us omit the proof of the corollary. \Box

Theorem 2. The semi-Lie algebra $\overline{WN_{n,0,0}}_{[2]_{[.]}}$ is simple.

Proof. Since every element of the semi-Lie algebra $\overline{WN_{n,0,0}}_{[2]_{[,]}}$ is full, the proof of the theorem is straightforward by Theorem 1. So let omit it.

Corollary 2. The Lie algebra $\overline{WN_{0,0,n}}_{1[,]}$ is simple.

Proof. Since the Lie algebra $\overline{WN_{n,0,0}}_{1[,]}$ is isomorphic to the Lie algebra $\overline{WN_{0,0,n}}_{1[,]}$, the Lie algebra $\overline{WN_{0,0,n}}_{1[,]}$ is simple.

The semi-Lie algebra $\overline{WN_{0,0,n}}_{[2]_{[,]}}$ is called the Witt type semi-Lie algebra [13]. $WN_{1,0,0_{r[,]}}$ is self-centralizing [7].

3. Automorphism group $Aut_{non}(\overline{WN_{1,0,0}}_{[2]})$

For any non-associative algebras A and B, an additive \mathbf{F} -map θ from A to B is an algebra homomorphism, if $\theta(l_1*l_2)=\theta(l_1)*\theta(l_2)$ holds for any $l_1, l_1 \in A$. For any algebra homomorphism from A to B is a monomorphism, if θ is injective. For any algebra homomorphism from A to B is a endomorphism, if θ is surjective. Note that by Corollary 1, the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$ spanned by $\{e^{ax}\partial^2|a\in\mathbf{Z}\}$ is simple. For any Lie algebras L_1 over \mathbf{F} , an \mathbf{F} -map θ from L_1 to L_2 is Lie homomorphism, if $\theta([l_1,l_2])=[\theta(l_1),\theta(l_2)]$ holds for any $l_1,l_2\in L_1$. For the Lie homomorphism θ , from L_1 to L_2 (resp. L_1) if it is bijective, then we call it isomorphism (resp. automorphism) etc.. The matrix ring $M_m(\mathbf{F})$ is not imbedded in the the non-associative algebra $\overline{WN_{n,0,0}}_{[2]}$

as **F**-algebras, since any subalgebra A of the non-associative algebra $\overline{WN_{n,0,0}}_{[2]}$ does not have the identity element of A such that the dimension of A is greater than 3.

Proposition 1. For any non-associative algebra endomorphism θ of $\overline{WN_{1,0,0}}_{[2]}$, if θ is non-zero, then θ is injective.

Proof. Let θ be a non-associative algebra endomorphism θ of $\overline{WN_{1,0,0}}_{[2]}$. $Ker(\theta)$ is an ideal of $\overline{WN_{1,0,0}}_{[2]}$. By Corollary 1, either $Ker(\theta) = 0$ holds or $Ker(\theta) = \overline{WN_{1,0,0}}_{[2]}$ holds. Since θ is not the zero map, $Ker(\theta) = 0$. This implies that θ is injective. So we have proven the proposition. \square

Note 1. For any basis element $e^{ax}\partial$ of $\overline{WN_{1,0,0}}_{[2]}$, if we define F-linear maps θ_{+,d_1} and θ_{-,d_2} of $\overline{WN_{1,0,0}}_{[2]}$, as follows:

$$\theta_{+,d_1}(e^{kx}\partial^2) = d_1^k e^{kx}\partial^2$$

and

$$\theta_{-,d_2}(e^{kx}\partial^2) = d_2^k e^{-kx}\partial^2$$

then θ_{+,d_1} and θ_{-,d_2} can be linearly extended to non-associative algebra automorphisms of $\overline{WN_{1,0,0}}_{[2]}$ where $d_1,d_2\in \mathbf{F}^{\bullet}$.

Lemma 2. For any non-associative algebra automorphism θ of $\overline{WN_{1,0,0}}_{[2]}$, $\theta(\partial^2) = c\partial^2$ holds where c is a non-zero scalar.

Proof. Let θ be the non-associative algebra automorphism θ of $\overline{WN_{1,0,0}}_{[2]}$ in the lemma. Since ∂ is a basis of the right annihilator of $\overline{WN_{1,0,0}}_{[2]}$, ∂ is invariant under any automorphism of $\overline{WN_{1,0,0}}_{2}[2]$. This implies that $\theta(\partial^2) = c\partial^2$ holds where c is a non-zero scalar.

Lemma 3. For any θ in the non-associative algebra automorphism group $Aut_{non}(\overline{WN_{1,0,0}}_{[2]})$ of $\overline{WN_{1,0,0}}_{[2]}$ is θ is either θ_{+,d_1} or θ_{-,d_2} where $d_1, d_2 \in \mathbf{F}$.

Proof. Let θ be the non-associative algebra automorphism of $\overline{WN_{1,0,0}}_{[2]}$ in the lemma. By Lemma 3, $\theta(\partial^2) = c\partial^2$ holds where c is a non-zero scalar. By Lemma 3 and $\theta(\partial^2 * e^x \partial^2) = \theta(e^x \partial^2)$, we have that

(6)
$$c\partial^2 * \theta(e^x \partial^2) = \theta(e^x \partial^2)$$

 $\theta(e^x\partial^2)$ can be written as follows:

(7)
$$\theta(e^x \partial^2) = C(b_1)e^{b_1 x} \partial^2 + \dots + C(b_t)e^{b_t x} \partial^2$$

where $C(b_1), \dots, C(b_t) \in \mathbf{F}$ and $b_1 > \dots > b_t$. By (6) and (7), we have that $cb_1^2 = 1$. If $c \neq 1$, then $b_1 \notin \mathbf{N}$. This implies that c = 1 and $b_1 = \pm 1$. Case I. Let us assume that c = 1 and $b_1 = -1$ hold. Since $\theta(e^{-x}\partial^2 * e^x\partial^2) = \theta(\partial^2)$, we may put $\theta(\partial^2) = \partial^2$ and $\theta(e^x\partial^2) = d_1e^{-x}\partial^2$ where $d_1 \in \mathbf{F}^{\bullet}$. We also have that

(8)
$$\theta(e^{-x}\partial^2) = d_1^{-1}e^{-x}\partial^2$$

By $\theta(e^x\partial^2 * e^x\partial^2) = e^{2x}\partial^2$, we have that

(9)
$$\theta(e^{2x}\partial^2) = d_1^2 e^{2x}\partial^2$$

By (8) and (9), we may assume that $\theta(e^{kx}\partial^2) = d_1^k e^{kx}\partial^2$ holds by induction on $k \in \mathbb{N}$ of $e^{kx}\partial^2$. By $\theta(e^x\partial^2 * e^{kx}\partial^2) = ke^{(k+1)x}\partial^2$, we have that $\theta(e^{(k+1)x}\partial^2) = d_1^{k+1}e^{(k+1)x}\partial^2$. This proves that $\theta(e^{kx}\partial^2) = d_1^k e^{kx}\partial^2$ holds for any $k \in \mathbb{N}$. Symmetrically, we can prove that

(10)
$$\theta(e^{kx}\partial^2) = d_1^k e^{kx}\partial^2$$

holds for any negative integer k by (8). This implies that θ is the non-associative algebra automorphism θ_{+,d_1} which is defined in Note 1.

Case II. Let us assume that c=1 and $b_1=-1$ hold. Without loss of generality, we may put $\theta(\partial^2)=\partial^2$ and $\theta(e^x\partial^2)=d_2e^{-x}\partial^2$ where $d_2\in \mathbf{F}$. By $\theta(e^x\partial^2*e^x\partial^2)=e^{2x}\partial^2$, we have that

(11)
$$\theta(e^{2x}\partial^2) = d_2^2 e^{-2x}\partial^2$$

By induction on $k \in \mathbb{N}$ of $e^{kx}\partial^2$, we can prove that

(12)
$$\theta(e^{kx}\partial^2) = d_2^k e^{-kx}\partial^2$$

By $\theta(e^{-x}\partial^2 * e^x\partial^2) = \partial^2$, we have that $\theta(e^{-x}\partial^2) * d_2e^{-x}\partial^2 = \partial^2$. This implies that $\theta(e^{-x}\partial^2) = d_2^{-1}e^x\partial^2$. By induction on $k \in \mathbb{N}$ of $e^{kx}\partial^2$, we can prove that

(13)
$$\theta(e^{-kx}\partial^2) = d_2^{-k}e^{kx}\partial^2$$

This implies that θ is the non-associative algebra automorphism θ_{-,d_2} which is defined in Note 1. By Case I and Case II, we have proven the lemma.

Theorem 3. The non-associative algebra automorphism group Aut_{non} $(\overline{WN_{1,0,0}}_{[2]})$ of $\overline{WN_{1,0,0}}_{[2]}$ is generated by θ_{+,d_1} and θ_{-,d_2} where $d_1, d_2 \in \mathbf{F}^{\bullet}$.

Proof. Let θ be the non-associative algebra automorphism of $\overline{WN_{1,0,0}}_{[2]}$. By Lemma 3, θ is either θ_{+,d_1} or θ_{-,d_2} where $d_1,d_2\in \mathbf{F}$. So $Aut_{non}(\overline{WN_{1,0,0}}_{[2]})$ of $\overline{WN_{1,0,0}}_{[2]}$ is generated by θ_{+,d_1} and θ_{-,d_2} . Therefore we have proven the theorem.

Corollary 3. The non-associative algebra automorphism group Aut_{non} $(\overline{WN_{1,0,0}}_{[2]})$ of the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$ is a non-abelian group.

Proof. By Theorem 3, The non-associative algebra automorphism group $Aut_{non}(\overline{WN_{1,0,0}}_{[2]})$ of the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$ is generated by θ_{+,d_1} and θ_{-,d_2} where $d_1,d_2 \in \mathbf{F}^{\bullet}$. Thus it is enough to check that $\theta_{+,d_1} \circ \theta_{-,d_2} \neq \theta_{-,d_2} \circ \theta_{+,d_1}$ where \circ is the composition of the non-associative algebra automorphisms θ_{+,d_1} and θ_{-,d_2} . But it is trivial to check the inequality by taking some basis element of the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$. So let omit its proof. This completes the proof of the corollary.

Proposition 2. The non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$ is not isomorphic to the non-associative algebra $\overline{WN_{0,1,0}}_{[2]}$ as non-associative algebras.

Proof. Since the non-associative algebra $\overline{WN_{0,1,0}}_{[2]}$ has a right unity and the non-associative algebra $\overline{WN_{1,0,0}}_{[2]}$ does not have a right unity, the proof of the proposition is straightforward.

Another proof of Proposition 2 can be proved by reviewing Theorem 2 and Theorem 1 in the paper [8], since they have different non-associative algebra automorphism groups.

Since $WN_{1,0,0_{1[,]}}$ is self-centralizing, the semi-Lie algebra $WN_{1,0,0_{1[,]}}$ has similar semi-Lie automorphisms θ_{+,d_1} and θ_{-,d_2} as the non-associative algebra $WN_{1,0,0_1}$ in Note 1. Thus we have the following theorem and leu us omit its proof because of the proof of Theorem 3 and the above comments.

Theorem 4. The semi-Lie algebra automorphism group $Aut_{semi-Lie}$ $(\overline{WN_{1,0,0}}_{[2][,]})$ of $\overline{WN_{1,0,0}}_{[2][,]}$ is generated by θ_{+,d_1} and θ_{-,d_2} where $d_1, d_2 \in \mathbf{F}^{\bullet}$.

Proposition 3. The semi-Lie algebra $\overline{WN_{1,0,0}}_{[2]_{[,]}}$ (resp. the non-associative algebra $\overline{WN_{0,1,0}}_{[2]}$) does not hold its Jacobian conjecture.

Proof. It is easy to define a non-zero endomorphism θ of $\overline{WN_{1,0,0}}_{[2]_{[,]}}$ (resp. $\overline{WN_{0,1,0}}_{[2]}$) which is not surjective. This completes its proof.

References

- Mohammad H. Ahmadi, Ki-Bong Nam, and Jonathan Pakinathan, Lie admissible non-associative algebras, Algebra Colloquium, Vol. 12, No. 1, World Scientific, (March) 2005, 113-120.
- [2] Seul Hee Choi and Ki-Bong Nam, The Derivation of a Restricted Weyl Type Non-Associative Algebra, Vol. 28, No. 3, Hadronic Journal, 2005, 287-295.
- [3] Seul Hee Choi and Ki-Bong Nam, Derivations of a restricted Weyl Type Algebra I, Rocky Mountain Math. Journal, Appear, 2005.

- [4] T. Ikeda, N. Kawamoto and Ki-Bong Nam, A class of simple subalgebras of Generalized W algebras, Proceedings of the International Conference in 1998 at Pusan (Eds. A. C. Kim), Walter de Gruyter Gmbh Co. KG, 2000, 189-202.
- [5] V. G. Kac, Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom, 38, 1974, 832-834.
- [6] I. Kaplansky, The Virasoro algebra, Comm. Math. Phys., 86 (1982), no 1., 49-54.
- [7] Naoki Kawamoto, Atsushi Mitsukawa, Ki-Bong Nam, and Moon-Ok Wang, The automorphisms of generalized Witt type Lie algebras, Journal of Lie Theory, 13 Vol(2), Heldermann Verlag, 2003, 571-576.
- [8] Ki-Bong Nam, On Some Non-Associative Algebras Using Additive Groups, Southeast Asian Bulletin of Mathematics, Vol. 27, Springer Verlag, 2003, 493-500.
- [9] Ki-Bong Nam and Seul Hee Choi, On Evaluation Algebras, Southeast Asian Bulletin of Mathematics, Vol. 29, Springer Verlag, 2005, 381-385.
- [10] Ki-Bong Nam and Seul Hee Choi, On the Derivations of Non-Associative Weyltype Algebras, Appear, Southeast Asian Bull. Math., 2005.
- [11] Ki-Bong Nam and Moon-Ok Wang, Notes on Some Non-Associative Algebras, Journal of Applied Algebra and Discrete Structured, Vol 1, No. 3, 159-164.
- [12] Ki-Bong Nam, Yanggon Kim and Moon-Ok Wang, Weyl-type Non-Associative Algebras I, IMCC Proceedings, 2004, SAS Publishers, 147-155.
- [13] A. N. Rudakov, Groups of Automorphisms of Infinite-Dimensional Simple Lie Algebras, Math. USSR-Izvestija, 3, 1969, 707-722.
- [14] R. D. Schafer, Introduction to nonassociative algebras, Dover, 1995, 128-138.

Seul Hee Choi
Dept. of Mathematics
Jeonju University
Chon-ju 560-759, Korea
Email: chois@jj.ac.kr