• Title/Summary/Keyword: algebraic solution

Search Result 217, Processing Time 0.025 seconds

Algorithm for Computational Age Dating of Nuclear Material for Nuclear Forensic Purposes

  • Park, Jaechan;Song, Jungho;Ju, Minsu;Chung, Jinyoung;Jeon, Taehoon;Kang, Changwoo;Woo, Seung Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.171-183
    • /
    • 2022
  • The parent and daughter nuclides in a radioactive decay chain arrive at secular equilibrium once they have a large half-life difference. The characteristics of this equilibrium state can be used to estimate the production time of nuclear materials. In this study, a mathematical model and algorithm that can be applied to radio-chronometry using the radioactive equilibrium relationship were investigated, reviewed, and implemented. A Bateman equation that can analyze the decay of radioactive materials over time was used for the mathematical model. To obtain a differential-based solution of the Bateman equation, an algebraic numerical solution approach and two different matrix exponential functions (Moral and Levy) were implemented. The obtained result was compared with those of commonly used algorithms, such as the Chebyshev rational approximation method and WISE Uranium. The experimental analysis confirmed the similarity of the results. However, the Moral method led to an increasing calculation uncertainty once there was a branching decay, so this aspect must be improved. The time period corresponding to the production of nuclear materials or nuclear activity can be estimated using the proposed algorithm when uranium or its daughter nuclides are included in the target materials for nuclear forensics.

Development of a Flow Analysis Code Using an Unstructured Grid with the Cell-Centered Method

  • Myong, Hyon-Kook;Kim, Jong-Tae
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2218-2229
    • /
    • 2006
  • A conservative finite-volume numerical method for unstructured grids with the cell-centered method has been developed for computing flow and heat transfer by combining the attractive features of the existing pressure-based procedures with the advances made in unstructured grid techniques. This method uses an integral form of governing equations for arbitrary convex polyhedra. Care is taken in the discretization and solution procedure to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. For both convective and diffusive fluxes the forms superior to both accuracy and stability are particularly adopted and formulated through a systematic study on the existing approximation ones. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are computed by using a linear reconstruction based on the divergence theorem. Momentum interpolation is used to prevent the pressure checkerboarding and a segregated solution strategy is adopted to minimize the storage requirements with the pressure-velocity coupling by the SIMPLE algorithm. An algebraic solver using iterative preconditioned conjugate gradient method is used for the solution of linearized equations. The flow analysis code (PowerCFD) developed by the present method is evaluated for its application to several 2-D structured-mesh benchmark problems using a variety of unstructured quadrilateral and triangular meshes. The present flow analysis code by using unstructured grids with the cell-centered method clearly demonstrate the same accuracy and robustness as that for a typical structured mesh.

Three Dimensional Volume Reconstruction of an Object from X-ray Iamges using Uniform and Simultaneous ART (USART 방법에 의한 X선 영상으로부터의 삼차원 물체의 형상 복원)

  • Roh, Young-Jun;Cho, Hyung-Suck;Kim, Hyeong-Cheol;Kim, Jong-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. A number of visual or optical technologies have been successfully applied to measure three-dimensional surfaces. However, those conventional visual or optical methods have inherent shortcomings such as occlusion and variant surface reflection. X-ray vision system can be a good solution to these conventional problems, since we can extract the volume information including both the surface geometry and the inner structure of any objects. In the x-ray system, the surface condition of an object, whether it is lambertian or specular, does not affect the inherent characteristics of its x-ray images. In this paper, we propose a three-dimensional x-ray imaging method to reconstruct a three dimensional structure of an object out of two dimensional x-ray image sets. To achieve this by the proposed method, two or more x-ray images projected from different views are needed. Once these images are acquired, the simultaneous algebraic reconstruction technique(SART) is usually utilized. Since the existing SART algorithms have several shortcomings such as low performance in convergence and different convergence within the reconstruction volume of interest, an advanced SART algorithm named as USART(uniform SART) is proposed to avoid such shortcomings and improve the reconstruction performance. Because, each voxel within the volume is equally weighted to update instantaneous value of its internal density, it can achieve uniform convergence property of the reconstructed volume. The algorithm is simulated on various shapes of objects such as a pyramid, a hemisphere and a BGA model. Based on simulation results the performance of the proposed method is compared with that of the conventional SART method.

Reasoning through scheme (도형에 의한 추론 (Schematic Reasoning) : 통시적 사례 연구)

  • Cheong, Kye-Seop
    • Journal for History of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.63-80
    • /
    • 2006
  • Along with natural and algebraic languages, schema is a fundamental component of mathematical language. The principal purpose of this present study is to focus on this point in detail. Schema was already in use during Pythagoras' lifetime for making geometrical inferences. It was no different in the case of Oriental mathematics, where traces have been found from time to time in ancient Chinese documents. In schma an idea is transformed into something conceptual through the use of perceptive images. It's heuristic value lies in that it facilitates problem solution by appealing directly to intuition. Furthermore, introducing schema is very effective from an educational point of view. However we should keep in mind that proof is not replaceable by it. In this study, various schemata will be presented from a diachronic point of view, We will show with emaples from the theory of categories, Feynman's diagram, and argand's plane, that schema is an indispensable tool for constructing new knowledge.

  • PDF

Numerical analysis of turbulent recirculating flow in swirling combustor by non-orthogonal coordinate transformation (비직교 좌표변환에 의한 선회연소기내 난류재순환유동의 수치해석)

  • 신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1158-1174
    • /
    • 1988
  • A numerical technique is developed for the solution of fully developed turbulent recirculating flow in the passage of variable area using the non-orthogonal coordinate transformation. In the numerical analysis, primitive pressure-velocity finite difference equations were solved by SIMPLER algorithm with 2-equation turbulence model and algebraic stress model (ASM). QUICK scheme on the differencing of convective terms which is free from the inaccuracies of numerical diffusion has been applied to the variable grids and the results compared with those from HYBRID scheme. In order to test the effect of streamline curvatures on turbulent diffusion Lee and Choi streamline curvature correction model which has been obtained by modifying the Leschziner and Rodi's model is testes. The ASM was also employed and the results are compared to those from another turbulence model. The results show that difference of convective differencing schemes and turbulence models give significant differences in the prediction of velocity fields in the expansion region and outlet region of the combustor, however show little differences in the parallel flow region.

ON PETERSON'S OPEN PROBLEM AND REPRESENTATIONS OF THE GENERAL LINEAR GROUPS

  • Phuc, Dang Vo
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.643-702
    • /
    • 2021
  • Fix ℤ/2 is the prime field of two elements and write 𝒜2 for the mod 2 Steenrod algebra. Denote by GLd := GL(d, ℤ/2) the general linear group of rank d over ℤ/2 and by ${\mathfrak{P}}_d$ the polynomial algebra ℤ/2[x1, x2, …, xd] as a connected unstable 𝒜2-module on d generators of degree one. We study the Peterson "hit problem" of finding the minimal set of 𝒜2-generators for ${\mathfrak{P}}_d$. Equivalently, we need to determine a basis for the ℤ/2-vector space $$Q{\mathfrak{P}}_d:={\mathbb{Z}}/2{\otimes}_{\mathcal{A}_2}\;{\mathfrak{P}}_d{\sim_=}{\mathfrak{P}}_d/{\mathcal{A}}^+_2{\mathfrak{P}}_d$$ in each degree n ≥ 1. Note that this space is a representation of GLd over ℤ/2. The problem for d = 5 is not yet completely solved, and unknown in general. In this work, we give an explicit solution to the hit problem of five variables in the generic degree n = r(2t - 1) + 2ts with r = d = 5, s = 8 and t an arbitrary non-negative integer. An application of this study to the cases t = 0 and t = 1 shows that the Singer algebraic transfer of rank 5 is an isomorphism in the bidegrees (5, 5 + (13.20 - 5)) and (5, 5 + (13.21 - 5)). Moreover, the result when t ≥ 2 was also discussed. Here, the Singer transfer of rank d is a ℤ/2-algebra homomorphism from GLd-coinvariants of certain subspaces of $Q{\mathfrak{P}}_d$ to the cohomology groups of the Steenrod algebra, $Ext^{d,d+*}_{\mathcal{A}_2}$ (ℤ/2, ℤ/2). It is one of the useful tools for studying these mysterious Ext groups.

AMG-CG method for numerical analysis of high-rise structures on heterogeneous platforms with GPUs

  • Li, Zuohua;Shan, Qingfei;Ning, Jiafei;Li, Yu;Guo, Kaisheng;Teng, Jun
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.93-105
    • /
    • 2022
  • The degrees of freedom (DOFs) of high-rise structures increase rapidly due to the need for refined analysis, which poses a challenge toward a computationally efficient method for numerical analysis of high-rise structures using the finite element method (FEM). This paper presented an efficient iterative method, an algebraic multigrid (AMG) with a Jacobi overrelaxation smoother preconditioned conjugate gradient method (AMG-CG) used for solving large-scale structural system equations running on heterogeneous platforms with parallel accelerator graphics processing units (GPUs) enabled. Furthermore, an AMG-CG FEM application framework was established for the numerical analysis of high-rise structures. In the proposed method, the coarsening method, the optimal relaxation coefficient of the JOR smoother, the smoothing times, and the solution method for the coarsest grid of an AMG preconditioner were investigated via several numerical benchmarks of high-rise structures. The accuracy and the efficiency of the proposed FEM application framework were compared using the mature software Abaqus, and there were speedups of up to 18.4x when using an NVIDIA K40C GPU hosted in a workstation. The results demonstrated that the proposed method could improve the computational efficiency of solving structural system equations, and the AMG-CG FEM application framework was inherently suitable for numerical analysis of high-rise structures.

연계(連繫)된 전력계통(電力系統)의 최적(最適) 부하주파수(負荷周波數) 제어(制御)

  • Han, Man-Chun;Jang, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1979.08a
    • /
    • pp.119-120
    • /
    • 1979
  • A linear state equation of the first order differential form relating the load-frequency dynamic characteristics of interconnected power systems was derived for use in computer simulation. A now solution of the algebraic matrix riccati equation for application in quadratic optimal controllor and least-square state estimator dermination was developed. The program for a dynamic state equation for two interconnected control areas was developed. The optimized load-frequency deviation was analysed and a numerical analysis was tried based on the computer simulation. It was shown that the dynamic response of th loed-frequency could be optimized with weighting factors IR and Q. The result was that the load-frequency and the tie-line deviation were visibly reduced.

  • PDF

Numerical solving of initial-value problems by Rbf basis functions

  • Gotovac, Blaz;Kozulic, Vedrana
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.263-285
    • /
    • 2002
  • This paper presents a numerical procedure for solving initial-value problems using the special functions which belong to a class of Rvachev's basis functions $R_{bf}$ based on algebraic and trigonometric polynomials. Because of infinite derivability of these functions, derivatives of all orders, required by differential equation of the problem and initial conditions, are used directly in the numerical procedure. The accuracy and stability of the proposed numerical procedure are proved on an example of a single degree of freedom system. Critical time step was also determined. An algorithm for solving multiple degree of freedom systems by the collocation method was developed. Numerical results obtained by $R_{bf}$ functions are compared with exact solutions and results obtained by the most commonly used numerical procedures for solving initial-value problems.

A Study on the Improvement of Numeric Integration Algorithm for the Dynamic Behavior Analysis of Flexible Machine Systems (탄성기계 시스템의 동적 거동 해석을 위한 수치 적분 알고리즘 개선에 관한 연구)

  • Kim, Oe-Jo;Kim, Hyun-chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.87-94
    • /
    • 2001
  • In multibody dynamics, differential and algebraic equations which can satisfy both equation of motion and kinematic constraint equation should be solved. To solve this equation, coordinate partitioning method and constraint stabilization method are commonly used. The coordinate partitioning method divides the coordinate into independent and dependent coordinates. The most typical coordinate partitioning method arc LU decomposition, QR decomposition, projection method and SVD(sigular value decomposition).The objective of this research is to find a efficient coordinate partitioning method in flexible multibody systems and a hybrid decomposition algorithm which employs both LU and projection methods is proposed. The accuracy of the solution algorithm is checked with a slider-crank mechanism.

  • PDF