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A conservative finite-volume numerical method for unstructured grids with the cell-centered
method has been developed for computing flow and heat transfer by combining the attractive
features of the existing pressure-based procedures with the advances made in unstructured grid
techniques. This method uses an integral form of governing equations for arbitrary convex
polyhedra. Care is taken in the discretization and solution procedure to avoid formulations that
are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all
dependent variables such as pressure and velocity are stored at cell centers. For both convective
and diffusive fluxes the forms superior to both accuracy and stability are particularly adopted
and formulated through a systematic study on the existing approximation ones. Gradients re-
quired for the evaluation of diffusion fluxes and for second-order-accurate convective operators
are computed by using a linear reconstruction based on the divergence theorem. Momentum
interpolation is used to prevent the pressure checkerboarding and a segregated solution strategy
is adopted to minimize the storage requirements with the pressure-velocity coupling by the
SIMPLE algorithm. An algebraic solver using iterative preconditioned conjugate gradient
method is used for the solution of linearized equations. The flow analysis code (PowerCFD)
developed by the present method is evaluated for its application to several 2-D structured-mesh
benchmark problems using a variety of unstructured quadrilateral and triangular meshes. The
present flow analysis code by using unstructured grids with the cell-centered method clearly
demonstrate the same accuracy and robustness as that for a typical structured mesh.
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creasingly popular in the computational fluid dy-

1. Introduction namics (CFD) research field over the last two de-

cades, since these methods have two main advan-

Unstructured grid methods have become in-  tages: the ease of grid generation for complex, re-
alistic geometries, and the ability to dynamically
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2006) In addition to geometric flexibilities, a stable

ible. They need not be changed when the grid is
locally refined, or when control volumes (CVs)
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implementation of physical models is equally im-
portant when developing a CFD code. In this as-
pect; pressure-based finite volume methods with a
primitive variable approach have been the most
popular ones for incompressible flows over the
last three decades. The combined use of a finite
volume discretization with a segregated solution
strategy and pressure-velocity coupling by means
of a pressure correction equation make algorithms
such as SIMPLE (Patankar, 1980) and its exten-
sions among the most efficient approaches for in-
compressible flows. However, an extension of this
well-known methodology to unstructured grids
has been hampered by two main difficulties. Stag-
gered storage of the velocity and pressure com-
ponents, necessary to avoid a checkerboarding, is
not straightforward. Also, gradient determination
becomes complicated by the absence of a line
structure. This leads to difficulties in discretiza-
tion of the diffusion fluxes and the development
of higher-order schemes.

Recently, several unstructured cell-centered fi-
nite volume approaches have begun to appear (Jiang
and Przekwas., 1994 ; Demirdzic and Muzaferija,
1995 ; Mathur and Murthy, 1997 ; Davison, 1996 ;
Lien, 2000), which are more closely related to
traditional methods for structured body-fitted
meshes (Peric, 1985). Here, conservation is en-
forced on the basic cell itself, and all the transport
variables are stored at cell centers. This arrange-
ment is preferred over a node-based storage for
several reasons. With the cell-based storage, con-
servation can be ensured for arbitrary control
volumes with nonconforming interfaces without
special interpolation techniques, and singularity
points do not exist since the boundaries of calcu-
lation domain are composed of surfaces (or line)
of control volume. In addition, since the gradient
determination does not employ element-specific
shape functions, these methods have the potential
for a use with arbitrary polyhedral meshes.

In the present paper, we develop a pressure-
based finite volume scheme for unstructured meshes
similar in philosophy to the previous ones (Jiang
and Przekwas., 1994 ; Demirdzic and Muzaferija,
1995 ; Mathur and Murthy, 1997 ; Davison, 1996 ;
Lien, 2000) . This method admits arbitrary convex

polyhedra. Cell-centered, collocated storage is
preferred without the use of an element-specific
shape function. For both convective and diffusive
fluxes the forms superior to both accuracy and
stability are adopted and formulated through a
systematic study on the existing approximation
forms. Higher—order convective fluxes as well as
secondary diffusion terms are computed by using
a linear reconstruction. To minimize the storage
requirements, a segregated solution strategy is
adopted with the pressure-velocity coupling by
the SIMPLE algorithm. An algebraic solver using
iterative preconditioned conjugate gradient meth-
od is used for the solution of linearized equations.
The present method thus combines the attractive
features of the pressure-based procedures with
the advances made in other unstructured grid
techniques.

The next two sections present the governing
equations and the details of the numerical meth-
od, respectively. For the sake of clarity, only the
steady, laminar, and incompressible flows of a
constant property fluid are considered, although
the method is easily extended to unsteady, com-
pressible, and turbulent regimes.

2. Numerical Methods

2.1 Discretization of a scalar transport
equation
Consider the differential equation for the trans-
port of a scalar quantity ¢. All the governing
equations can be cast into the following integral
form with the appropriate choice of ¢, I' and
S¢ :

[lopu—Lve)-dS= [ Quav (1)

In order to obtain discrete counterparts of Eq.
(1), the solution domain is discretized into a fi-
nite number of contiguous arbitrary unstructur-
ed convex polyhedra called control volume (CV)
or cell. The computational nodes (points) are
placed at the center of each CV, while boundary
nodes, needed for the specification of boundary
conditions, reside at the center of the boundary
cell-faces. The control volume is defined by the
coordinates of its vertices and can be of an arbi-
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Fig. 1 Control volume of an arbitrary polyhedral
shape

trary polyhedral shape, i.e. it can have an arbi-
trary number of cell-faces. Thus, a discretization
about the CV B, having volume Vp, and divided
faces S; (j=1,N;) as shown in Fig. 1 yields

; [J;¢3 —D;l :;[Cf—DJ‘] =(Q¢v) p, Ve, (2)

where J; is the mass flow rate (defined to be
positive if flow is leaving cell B), C; and D; are
the transports due to convection and diffusion
through the face j, respectively, and the summa-
tions are over the faces of the control volume.

2.2 Convection term

The mass flow rate J; is in general assumed to
be known from the solution of the momentum
and continuity equations (see the following sec-
tion). The task of an evaluation of the convective
flux thus reduces to determining the face value,
@}. A simple and stable method is the following
first-order approximation using the value at the
upwind cell.

¢;=¢§0=¢upwmd (3)

Although a higher-order accuracy is achieved by
employing a linear interpolation or a bigger sten-
cil along the appropriate grid line in structured
grid methods, this is not possible in the case of
unstructured grids. Attempts have been made which
mimic the bigger stencil by creating local line
structures and interpolating the values from neigh-
boring cells (Jiang and Przekwas., 1994} These
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can be quite expensive and are also cell-shape-
specific. However, if a shape-independent formu-
lation for the cell gradients can be devised, a
second-order value at the face can be obtained.
At present, several forms with the second-order
accuracy are proposed for the face value, ¢}
(Demirdzic and Muzaferija, 1995 ; Mathur and
Murthy, 1997 ; Muzaferija, 1994 ; Ferziger and
Peric, 2002). Recently, one of the authors (Myong,
2006a) has studied systematically on the existing
approximation forms for the second-order accu-
rate face value used in unstructured cell-centered
finite volume method, and found that the form
proposed by Demirdzic and Muzaferija (1995)
has more accurate prediction performance than
the other ones. Thus, in the present study we adopts
this form for ¢, which is expressed as follows :

b1 =45"=1 [($r,+ Vb, dre)
+ (¢P,+V¢P,'QP,)]

where Vp, and V¢p, are the gradients at cells B
and P}, respectively (see the section below) . Here,
cell P; is the neighboring cell of cell By with

(4)

which it shares a common face 7, and drp, and
dve, are ¥;—vp, and 7;— #p,, Tespectively, which
are the vectors directed from the centroid of either
cell holding the face j in common to the cell-face
center.

In order to assure a stable procedure, the face
value, @] is also usually calculated by blending
the second-order accurate formula (4) with some
small amount of the first-order value (3)

67 =87+ 70 ($3°—4]°) (5)
where 7, is the blending factor with a value
between zero and one, thus combining the accu-
racy of a second-order scheme and the stability
of a first-order one. It is important to mention
that SO scheme is implemented according to the
‘deferred-correction’ practice, i.e. the first term in
Eq. (5) is treated implicitly and the second term is
included explicitly.

2.3 Gradient computation

In the unstructured grid, the distribution of
a dependent variable ¢ has to be assumed in
order to evaluate the values of its derivatives at
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both the cell center and the cell face, which can-
not usually be written in terms of cell values by
using the one-dimensional Taylor series expan-
sions. Here, the following linear spatial di
-tribution is employed.

¢(7) =dp,+Vp, (r—7p,) (6)

Interpolation methods such as least squares (Demirdzic
and Muzaferija, 1995) can be used to calculate the
gradient of ¢ at point F,. However, these tech-
niques can be quite expensive and are cell-shape-
specific. In the present study, we use the diver-
gence (or Gauss) theorem providing a technique
that is independent of the cell shape : the gradient
for cell B is estimated as

VD) r=] [, TDrdV |/ Ve,

A ™
=32(¢+8)/ Vi,

where the summation is over all the faces of
the cell. The face value of ¢, ¢ is obtained by a
weighted averaging of the values at the neigh-
boring cells (Demirdzic and Muzaferija, 1995).
Note that Mathur and Murthy (1997) used an
arithmetic averaging for it.

2.4 Diffusion term
The diffusion term at the face is

D;=I4,(V$)}-S; (8)

Here, we would like to express D; in terms of
the values of ¢ at two neighboring cells P and
P;. The usual method by a transformation from
physical coordinates to computational coordi-
nates, which is typical in the case of a structured
grid system, requires the use of face tangents and
nodes. In a structured grid formulation the face
node values are typically found by averaging the
values at the cell centers and the face tangent
gradient component is treated explicitly. Similar
treatment is easily possible in two dimensions
for unstructured meshes. However, extending this
methodology to three dimensional polyhedra of
an arbitrary shape is not straightforward, since
there are no unique face tangential directions
and nodes that can be employed to write an equi-
valent form in three dimensions. Another method
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to avoid the use of face tangents and nodes is
to use dp (=¢p,—¢p,) in the direction of ds;
(=7p,—7p,) as a primary diffusion term and to
use the difference between the total diffusion and
primary component as secondary {or cross) dif-
fusion term (Demirdzic and Muzaferija, 1995
Mathur and Murthy, 1997 ; Muzaferija, 1994 ;
Ferziger and Peric, 2002), which is generally
expressed as follows :

D;=T3,[1(¢p,— bp,)
+ (V) ;+S;—~1: (V) ;+ds;) ]

where the first term in the brackets represents
the primary diffusion and the second term within
() is the cross—diffusion. Terms f; are geometri-

9)

cal factors. Several forms are proposed for both
f; and the gradient of ¢ at the face, (V¢);
{Demirdzic and Muzaferija, 1995 ; Mathur and
Murthy, 1997 ; Davison, 1996 ; Lien, 2000). Re-
cently, one of the authors (Myong, 2006b) has
clarified the existing approximation forms of dif-

fusion term to have indefinite expressions in se-
veral respects through a systematic study, and has
proposed a new diffusion term with the second-
order accuracy even on irregular grid, similar in
form to Eq. (9), which is expressed as follows :

D=6, ST, [(1-0) O8la, 0T )
= (10)

L [(V)ey (1=22) + (V) (12, 1) dff 7

where # is the outward unit normal vector to the

cell face and the interpolation factor is expressed
as follows:

;== re )/ (7p,— 7p,)] (11)

where 7; is the position vector at the intersection
of the cell face and the straight line connecting
cell points Py and P;. Note here that this line may
not pass through the cell face center. As discussed
in the above section, Gauss theorem is used to
determine the cell derivative of ¢, V¢ in a manner
independent of the cell shape. The formulation
above is applicable without any modification to
the three-dimensional configurations. It is noted
that, for stability the primary term in Eq. (10) is
included implicitly and the remaining terms ex-
plicitly.
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Here, it is valuable to briefly comment on a
new approximation form for diffusion term, Eq.
(10). First, it points out that the proper form
for the geometrical factors, f; in Eq.(9) is as
follows :

S;

ds; it

L (12)

which is superior to the numerical stability as-
pect when the straight line connecting cell points
Py and P; is non-orthogonal to the cell face.
Second, when the straight line connecting cell
points By and P; passes through the cell face
center, its form coincides that of Eq. (9), but the
gradient of ¢ at the face, (V¢) ;, which is usually
taken to be the interpolated value of the deriva-

tives at the two adjacent cells, should be calcu-
lated as follows :

(Vé),=(1~w;) (V@) po+w; (V) p, (13)
which is a new form different from the existing
ones. Third, Eq. (10) is directly applicable to the
calculation of the boundary diffusion flux (see the
following section), while most of the existing
ones have logically problems. The more detailed
analysis between Eq.(10) and existing approxi-
mation forms of Eq.(9) is referred to Myong
(2006b) .

2.5 Boundary conditions

In addition to cell centers, ¢ is also stored at
the boundary face centers. The boundary diffu-
sion flux can then be linearized in the same man-
ner as an interior face, i.e., using Eq. (10). For the
boundary face, this yields

Dy= (¢Pb‘ ¢PD>%”§L' 7l
ase
S (14)
L, [(V8) 5y Sot (Vh)r,rde) | 2
where ¢p, is the value at the boundary and dss is
the vector from the cell centroid to the boundary
face centroid.

In the case of the Dirichlet boundary condi-
tions, the primary term is included implicitly and
the secondary term explicitly. For the Neumann
boundary conditions the specified flux can be add-
ed directly to the control volume balance ; Eq.
(14) is employed to compute the boundary value,

¢p,, for a postprocessing. Other boundary spec-
ifications, for example, convection and/or radia-
tion conditions at the wall for the energy equa-
tion, are easily accommodated within this frame-
work.

2.6 Discretized equations

The above discretization procedure yields the
following linear system of equations which links
the value of the dependent variable ¢ at the CV
center with those values at the centers of the
neighboring cells :

nnb
AP0¢P0+;AP,¢P,:b¢ (15)

Here the summation is over all the neighbors
nnb of cell Fy. The source term by contains any
of the volumetric sources of ¢, the second-order
contributions for the convective flux, as well as
the secondary diffusion fluxes. Flux contributions
at boundaries are also included in by. Equation
(15) is underrelaxed in the manner described in
the reference (Patankar, 1980).

2.7 Linear solver

The resulting set of coupled nonlinear algebraic
equations is solved by employing a segregated ap-
proach, leading to a decoupled set of linear alge-
braic equations for each dependent variable, with
a sparse diagonally dominant coefficient matrix.
These equations are solved by an iterative pre-
conditioned conjugate gradient solver such as
the CGSTAB (CG STABilized) method with an
incomplete Cholesky preconditioning which re-
tains the sparsity of the coefficient matrix, thus
achieving a very efficient use of computer re-
sources.

There is no need to solve Eq. (15) to a tight
tolerance since the coefficients and sources are
only approximated (based on the values of de-
pendent variables from the previous iteration)
and a reduction of the sum of absolute residuals
for one order of magnitude normally suffices.

2.8 Discretization of the momentum equa-
tion

In the momentum equation, the diffusive flux

contains a few more terms than does the corre-
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sponding term in the generic conservation equa-
tion, e.g. for u;:

D}Z]s‘juVui'ﬁj—i—fsjng: ﬁ]d\i} (16)
The underlined term is absent in the generic con-
servation equation. If p and u are constant, the
sum of the underlined terms over all the CV faces
is zero by virtue of the continuity equation. If o
and p are not constant, they vary smoothly except
near shocks and the integral of the underlined
terms over the whole CV surface is smaller than
the integral of the principal term. For this reason,
the underlined term is usually treated explicitly.
As shown above, the derivatives are also easily
calculated at the cell face by using the derivatives
at the CV center. By the way, when the first term
is calculated by Eq. (9) or Eq.(10), the under-
lined term is an additional term treated explicit-
ly. In the present paper, thus, we calculate the
diffusive flux dire(;tly from the stress tensor as
follows.

i— [ d-dS;~-S (17)

The final form of the diffusive flux in the mo-
mentum equation is as follows :

D]‘f:(u' —up(,) a';uJSJ
as;-
_ S, (18)
+| 55— ((Va) ds) 5 ~|

And the source term in the momentum equation
contains the discretized pressure gradient term.
Irrespective of how this term is approximated, one
can write :

Qu,VzQZ,V'i"Qze,V:Q;,V_ (Vp) Py VPO (19)
2.9 Discretization of the continuity equation
The discrete continuity equation is written as

;szgpﬁf’&:() (20)

Since the pressure and velocity components are
stored at the cell centers, computing the face mass
flow rate by averaging the cell velocity is prone to
a checkerboarding. To avoid this, a scheme simi-
lar to that of Rhie and Chow (1983) is used. For
the face 7, the fluid velocity is written as

v =v;+8v; (21)

where the first term is the spatially interpolated

velocity defined as follows :
U= (1—w;) vp,+ W;ve; (22)

while the second term is a third-order pressure
diffusion term, defined as

o (Vo [te,=pr, VDirds] S;
an=Dii=—(7) | di dga g P

where Ay is the coefficient Ap, in the momentum

equation and Vp; is the interpolated pressure
gradient at cell face j. This term smooths out
oscillatory the pressure velocity profile, and at the
same time introduces a pressure into the continu-
ity equation in a manner that a pressure-correc-
tion equation can be easily constructed (only the
explicit pressure difference across the face in Eq.
(23) is treated implicitly), and the predictor-cor-
rector procedure defined by the SIMPLE algo-
rithm can be established.

2.10 Pressure—correction equation

The SIMPLE algorithm (Patankar, 1980) is
used for a pressure-velocity coupling. According-
ly, we require that

;fj:; i (v} +v5) '§j:§]j* +Ji=0 (24)

where J;* is the flow rate computed from the ve-
locities satisfying the discrete momentum equa-
tions. We define the velocity correction v; as

F I/O p}j—ﬁ;’o. Sj
vr—(An) S Tsr @
Thus,
S;
Jix—o o), '; '| (th,~tp)  (26)

Substituting Eq. (26) into Eq. (24
sure correction equation :

) yields the pres-

nnb
ArDpy+ ; Ap,p>,=bp, (27)
where
nnb
APOZ - ; Apj (28)

The term bp, is the net mass inflow into the cell,
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and the summation is over all the cells neigh-
boring cell B

Once the corrections p’ are available, the cell
pressure, cell velocity and face mass flow rate are
corrected by using,

p=p"tapt (29)
v=p =y V), (30)
Py

=]t ]i=]+ A, tF,~ Ar,pb, 30

Here, p* and v”* are the values prevailing after the
solution of the momentum equations, ¢, is the
underrelaxation factor for the pressure. The face
pressure correction p; is computed by a weighted
averaging of the p values of the cells neighboring
face 7.

3. Results

In this section, we apply the flow analysis code
(PowerCFD) using the method developed above
to a number of benchmark problems in the litera-
ture. These tests seek to establish the accuracy and
convergence characteristics of the method, and to
demonstrate that a variety of mesh topology can
be used. In particular, care is taken to use truly
unstructured meshes when making comparisons
with the structured~mesh benchmarks, This is cri-
tical because unstructured meshes created, for ex-
ample, by triangulating an underlying structured
mesh are not good indicators of a performance for
realistic industrial applications.

The solution is in general considered converged
when all scaled residuals fall below 107, For the
differential equation for the transport of a scalar
quantity ¢, the scaled residual is defined as

c§s APO¢P0~’§APj¢Pj~b¢
R= 7

where My is a normalization factor and the in-
flow rate of ¢ is usually used as the default value.

(32)

In case of no inflow/outflow boundaries like the
below benchmark problems, however, the resid-
ual for each variable is normalized by its maxi-
mum value in the first 10 iterations and the so-
jution is considered converged when all scaled
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residuals fall below 1077

3.1 Flow in a skewed lid-driven cavity

Demirdzic et al. (1992) have published bench-
mark solutions for a lid-driven flow in a skewed
cavity, as shown in Fig. 2. We consider here the
case #=30°, at a Reynolds number Re(= UL/
v) =1,000. This case is challenging for structur-
ed quadrilateral meshes because of the extreme
skewness of the cavity. We solve the problem by
using both unstructured guadrilateral and trian-
gular meshes. The objective of the calculation is
(1) to compare the computed results with those of
Demirdzic et al. {(1992) and to establish an accu-
racy and convergence to a mesh-independent so-
lution, and (2) to compare the performance of
unstructured quadrilateral and unstructured tri-
angular cells.

Fig. 3 Segments of the grid used for the flow in a
skewed lid-driven cavity (§=30°). (a) Seg-
ments of the grid used for the flow in a skew-
ed lid-driven cavity (£=30°). (a) quadrila-
teral mesh, (b) triangular meshQuadrilateral

mesh, (b) Triangular mesh
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To establish a convergence of the scheme to a
mesh-independent solution, flow in the cavity is
computed using an unstructured quadrilateral mesh
of 20X20, 4040, 80X80 and 160X 160 cells.
The 20 X 20 mesh is shown in Fig. 3(a). The finer
meshes are created by subdividing each cell into
four. The velocity on the centerline CL1 is shown
in Fig. 4, along with the tabulated benchmark
values from Demirdzic et al.(1992) obtained by
using 320X 320 quadrilateral cells. The y velocity
on the centerline CL2 is shown in Fig. 5, along

1.0
08 r .
06 F Present (PowerCFD) |
———- 20 x20CV
y s 40 x40 CV
0.4 s 80 X 80 CV .
160 X 160 CV
02 Demirdzic et al.(1992) A
o 320x320CV
OO i 1 i L i
-0.2 00 02 04 06 0810
U
Fig. 4 Variation of the centerline U-velocity profiles
on CL1 for the skewed lid-driven cavity flow
at Re=1000 as a function of the grid fineness
(quadrilateral mesh, §=30°)
03 T T T T T
Present (PowerCFD)
02 F - 20x20cv ’
e 40 x 40 CV
0.1 F e 80 x 80 CV _
—— 160x160CVY ______ 4
V0.0 =% ' .
\\//‘
-0.1 + Demirdzic et al.(1892) g
© 320x320CV
0.2 F .
_03 L i i i
00 02 04 06 08 1.0

X
Fig. 5 Variation of the centerline V-velocity profiles
on CL2 in a skewed lid-driven cavity flow
at Re=1000 as a function of grid fineness
(quadrilateral mesh, §=30°)
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with the benchmark values. We find that the so-
lutions for mesh densities greater than 80X80
cells are indistinguishable from the benchmark
and from each other. This rate of convergence to
a mesh-independent solution is similar to that of
the second-order structured mesh scheme used in
Demirdzic et al.(1992).

A similar test of the mesh independence is done
by using unstructured triangular meshes as well.
We start with a coarse mesh of 396 triangles,
shown in Fig. 3(b). This mesh is approximately

1.0
0.8

Present (PowerCFD)

----- 396 cells

——— 1558 cells
........... 6298 Ce”S ~
—— 25446 cells

Demirdzic et al.(1992) -
o 320x320CV

06+

y
0.4

0.2 r

0.0 —
-0.2 0.0 02 04 06 081.0

U
Fig. 6 Variation of the centerline U-velocity profiles
on CL1 in a skewed lid-driven cavity flow at
Re=1000 as a function of grid fineness (tri-

angular mesh, §=30°)
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-0.1 + Demirdzic et al (1992) -
©  320x320CV

01F

-0.2

1
L

-0.3 - : .
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X
Fig. 7 Variation of the centerline V-velocity profiles
on CL2 in a skewed lid-driven cavity flow at
Re=1000 as a function of grid fineness (tri-
angular mesh, §=30°)
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equivalent to the 20X 20 quadrilateral mesh used
above. Computations are doneafor 1,558, 6,298
and 25,446 cells, respectively. The x velocity on
the centerline CL1 is shown in Fig. 6 and the
y velocity on the centerline CL2 is shown in Fig.
7. Mesh-independent solutions are obtained for
mesh densities greater than 6,298 cells, similar to
the quadrilaterals. The rate of convergence to a
mesh-independent solution is also similar to that
observed for the quadrilaterals.

3.2 Flow and heat transfer in a skewed buoy-
ancy-driven cavity

Demirdzic et al.(1992) have also published
benchmark solutions for a buoyancy-driven flow
in a skewed cavity, as shown in Fig. 2. The inclin-
ed walls are kept at constant temperatures Ty and
T¢, respectively, while the horizontal walls are
assumed adiabatic. We consider here the case =
45° at a Rayleigh number Ra(=p?gBL*A TPt/
12)=10% with Pr=0.1 and 10. Gravity acts in
the vertical direction. This case is also challeng-
ing for heat transfer calculations using structured
quadrilateral meshes, since the flow is driven by
a buoyancy as well as the extreme skewness of
the cavity, and, in addition to the Navier-Stokes
equations, an equation for the temperature has to
be solved. The temperature is coupled with the
velocity field through the convection terms, and
the velocity field is coupled with the temperature
through the buoyancy term which acts as a source
of momentum. We solve the problem by using
an unstructured quadrilateral mesh of 224 X192,
The Boussinesq approximation is used to model
the buoyancy. The objective of the calculation is
to compare the computed results with those of
Demirdzic et al.(1992). Local Nusselt number
distributions on the cold wall at Pr=0.1 and 10
are shown in Figs. 8(a) and (b), respectively,
along with the tabulated benchmark values from
Demirdzic et al.(1992) obtained by using the
224X 192 structured quadrilateral cells. We find
that the solutions are indistinguishable from the
benchmark for both Prandtl numbers.

The predicted flow patterns for the two Prandtl
numbers are shown in Fig. 9. It is obvious that
the Prandtl number has a significant influence on
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Fig. 8 Local Nusselt numbers on the cold wall for
the flow in a buoyancy~-driven cavity at Ra=
10% (224 X192 CV)

the flow and heat transfer. The results show that
for Pr=10, the flow is directed along the walls
and it stays attached to them, forming a single
roll, while in the case of Pr=0.1, the main current
in the recirculating region tends to separate from
the horizontal walls. And another big difference
is shown in that for Pr==0.1, a large region of
slowly moving fluid is formed in the central part
of the cavity, including two free stagnation points
and a counterrotating eddy in the center, while,
in the case of Pr=10 one free stagnation point
exists in the cavity center, but there are no coun-
terrotating eddies. The results are very consistent
with the figured benchmark ones from Demirdzic
et al.(1992).
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(b) Pr=10
Fig. 9 Predicted streamlines for the flow in a buoy-
ancy-driven cavity at Ra=10% (224X 192 CV)

3.3 Natural convection in a cavity

Here we compute another flow and heat trans-
fer due to a heated cylinder in a square cavity, as
shown in Fig. 10. The cylinder center is displaced
from the center of the cavity by 8. The Rayleigh
number based on the cylinder diameter is 10%, and
the Prandtl number is 0.1. 8/L=0.1 and d/L=
0.4 are used. The Boussinesq approximation is
used to model the buoyancy. A benchmark solu-
tion for this configuration has been published by
Demirdzic et al.{1992) by using a structured mesh
of 256 X 128 cells. The objective of this computa-
tion is to compare the computed results with those
of Demirdzic et al.{1992) and to establish an
accuracy and convergence to a mesh-independent
solution.

To establish the convergence of the scheme to
a mesh-independent solution, the flow and heat
transfer are computed by using an unstructured
quadrilateral mesh of 16 X8, 32X16, 64X 32, 128X
64 and 256 X 128 cells. The 64 X 32 mesh is shown
in the left half of Fig. 11. The finer meshes are
created by subdividing each cell into four. Plots
of the local Nusselt numbers {defined as Nu=
g"L/{B{(Tw—T:) ], where ¢” is the local heat
flux} along the vertical cold wall and the hot
cylinder wall are shown in Fig. 12, along with
the tabulated benchmark values from Demirdzic
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g A d
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\‘\«%,—MLM
' I
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Schematic diagram of the natural convection
in the cavity with a cylinder

Fig. 10

—-~f0,163 m/s

Fig. 11 Left: computational mesh used for the nat-
ural convection around a cylinder in a
square duct, right : velocity vector plots at
Pr=0.1, Ra=10° {64 %32 CV)

et al.(1992) obtained using the 256X 128 quad-
rilateral cells. We find that the solutions for mesh
densities greater than 128 X64 cells are indistin-
guishable from the benchmark and from each
other. This rate of convergence to a mesh~inde-
pendent solution is similar to that of the second~
order structured mesh scheme used in Demirdzic
et al.{1992).

The right half of Fig. 11 shows the velocity vec-
tor plot. It captures the hot plume rising around
the cylinder, and the downward flowing stream at
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Fig. 12 Comparison of the Nusselt number

distributions at Pr=0.1, Ra=10°

the cold wall, and it is very consistent with the
figured benchmark one from Demirdzic et al.
(1992).

Finally, it is noted here that the more detailed
evaluation of the flow analysis code (PowerCFD)
developed by the present method for its applica-
tion to several 2-D or 3-D benchmark problems
using a variety of unstructured quadrilateral, tri-
angular and hybrid meshes are referred to Myong
et al. (2005), Myong (2005) and Myong (2005c,
d).

4. Conclusions

A conservative pressure-based finite-volume
numerical method for unstructured meshes has
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been developed for computing flow and heat
transfer by combining the attractive features of
the pressure-based procedures with the advances
made in existing unstructured grid techniques.
The method uses an integral form of governing
equations for arbitrary convex polyhedra. Care is
taken in the discretization and solution procedure
to avoid formulations that are cell-shape-specific.
A collocated variable arrangement formulation
is developed, i.e. all dependent variables such as
pressure and velocity are stored at cell centers.
For both convective and diffusive fluxes the forms
superior to both accuracy and stability are adopt-
ed and formulated through a systematic study
on their existing approximation ones. Gradients
required for the evaluation of diffusion fluxes and
for second-order-accurate convective operators
are computed by using a linear reconstruction
based on the divergence theorem. Momentum in-
terpolation is used to prevent a pressure checker-
boarding and the SIMPLE algorithm is used for
a pressure-velocity coupling. The resulting set of
coupled nonlinear algebraic equations is solved
by employing a segregated approach, leading to a
decoupled set of linear algebraic equations for
each dependent variable, with a sparse diagonally
dominant coefficient matrix. These equations are
solved by an iterative preconditioned conjugate
gradient solver which retains the sparsity of the
coefficient matrix, thus achieving a very efficient
use of computer resources. The flow analysis code
(PowerCFD) developed by the present method
is evaluated for its application to several 2-D
structured-mesh benchmark problems by using a
variety of unstructured quadrilateral and triangu-
lar unstructured meshes. The present pressure-
based cell-centered numerical method for an un-
structured mesh clearly demonstrate the same ac-
curacy and robustness as that for a typical struc-
tured mesh.
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