• 제목/요약/키워드: X-Ring

검색결과 764건 처리시간 0.02초

WHEN THE NAGATA RING D(X) IS A SHARP DOMAIN

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제24권3호
    • /
    • pp.537-543
    • /
    • 2016
  • Let D be an integral domain, X be an indeterminate over D, D[X] be the polynomial ring over D, and D(X) be the Nagata ring of D. Let [d] be the star operation on D[X], which is an extension of the d-operation on D as in [5, Theorem 2.3]. In this paper, we show that D is a sharp domain if and only if D[X] is a [d]-sharp domain, if and only if D(X) is a sharp domain.

SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS

  • Hong, Chan-Yong;Kim, Nam-Kyun;Lee, Yang
    • 대한수학회지
    • /
    • 제47권5호
    • /
    • pp.879-897
    • /
    • 2010
  • Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if $a_iRb_j$ = 0 for each i, j whenever polynomials $f(x)\;=\;\sum_{i=0}^ma_ix^i$, $g(x)\;=\;\sum_{j=0}^mb_jx^j\;{\in}\;R[x]$ satisfy f(x)R[x]g(x) = 0. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew polynomial rings, that is, we show that if R is a semiprime ring with an epimorphism $\sigma$, then f(x)R[x; $\sigma$]g(x) = 0 implies $a_iR{\sigma}^{i+k}(b_j)=0$ for any integer k $\geq$ 0 and i, j, where $f(x)\;=\;\sum_{i=0}^ma_ix^i$, $g(x)\;=\;\sum_{j=0}^mb_jx^j\;{\in}\;R[x,\;{\sigma}]$. Moreover, we extend this property to the skew monoid rings, the Ore extensions of several types, and skew power series ring, etc. Next we define $\sigma$-skew quasi-Armendariz rings for an endomorphism $\sigma$ of a ring R. Then we study several extensions of $\sigma$-skew quasi-Armendariz rings which extend known results for quasi-Armendariz rings and $\sigma$-skew Armendariz rings.

ANNIHILATORS IN ONE-SIDED IDEALS GENERATED BY COEFFICIENTS OF ZERO-DIVIDING POLYNOMIALS

  • Kwak, Tai Keun;Lee, Dong Su;Lee, Yang
    • 대한수학회지
    • /
    • 제51권3호
    • /
    • pp.495-507
    • /
    • 2014
  • Nielsen and Rege-Chhawchharia called a ring R right McCoy if given nonzero polynomials f(x), g(x) over R with f(x)g(x) = 0, there exists a nonzero element r ${\in}$ R with f(x)r = 0. Hong et al. called a ring R strongly right McCoy if given nonzero polynomials f(x), g(x) over R with f(x)g(x) = 0, f(x)r = 0 for some nonzero r in the right ideal of R generated by the coefficients of g(x). Subsequently, Kim et al. observed similar conditions on linear polynomials by finding nonzero r's in various kinds of one-sided ideals generated by coefficients. But almost all results obtained by Kim et al. are concerned with the case of products of linear polynomials. In this paper we examine the nonzero annihilators in the products of general polynomials.

SOME REMARKS ON PRIMAL IDEALS

  • Kim, Joong-Ho
    • 대한수학회보
    • /
    • 제30권1호
    • /
    • pp.71-77
    • /
    • 1993
  • Every ring considered in the paper will be assumed to be commutative and have a unit element. An ideal A of a ring R will be called primal if the elements of R which are zero divisors modulo A, form an ideal of R, say pp. If A is a primal ideal of R, P is called the adjoint ideal of A. The adjoint ideal of a primal ideal is prime [2]. The definition of primal ideals may also be formulated as follows: An ideal A of a ring R is primal if in the residue class ring R/A the zero divisors form an ideal of R/A. If Q is a primary idel of a ring R then every zero divisor of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal ideal need not be primary, is shown by an example in [2]. Let R[X], and R[[X]] denote the polynomial ring and formal power series ring in an indeterminate X over a ring R, respectively. Let S be a multiplicative system in a ring R and S$^{-1}$ R the quotient ring of R. Let Q be a P-primary ideal of a ring R. Then Q[X] is a P[X]-primary ideal of R[X], and S$^{-1}$ Q is a S$^{-1}$ P-primary ideal of a ring S$^{-1}$ R if S.cap.P=.phi., and Q[[X]] is a P[[X]]-primary ideal of R[[X]] if R is Noetherian [1]. We search for analogous results when primary ideals are replaced with primal ideals. To show an ideal A of a ring R to be primal, it sufficies to show that a-b is a zero divisor modulo A whenever a and b are zero divisors modulo A.

  • PDF

SKEW LAURENT POLYNOMIAL EXTENSIONS OF BAER AND P.P.-RINGS

  • Nasr-Isfahani, Alireza R.;Moussavi, Ahmad
    • 대한수학회보
    • /
    • 제46권6호
    • /
    • pp.1041-1050
    • /
    • 2009
  • Let R be a ring and ${\alpha}$ a monomorphism of R. We study the skew Laurent polynomial rings R[x, x$^{-1}$; ${\alpha}$] over an ${\alpha}$-skew Armendariz ring R. We show that, if R is an ${\alpha}$-skew Armendariz ring, then R is a Baer (resp. p.p.-)ring if and only if R[x, x$^{-1}$; ${\alpha}$] is a Baer (resp. p.p.-) ring. Consequently, if R is an Armendariz ring, then R is a Baer (resp. p.p.-)ring if and only if R[x, x$^{-1}$] is a Baer (resp. p.p.-)ring.

ON g(x)-INVO CLEAN RINGS

  • El Maalmi, Mourad;Mouanis, Hakima
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.455-468
    • /
    • 2020
  • An element in a ring R with identity is called invo-clean if it is the sum of an idempotent and an involution and R is called invoclean if every element of R is invo-clean. Let C(R) be the center of a ring R and g(x) be a fixed polynomial in C(R)[x]. We introduce the new notion of g(x)-invo clean. R is called g(x)-invo if every element in R is a sum of an involution and a root of g(x). In this paper, we investigate many properties and examples of g(x)-invo clean rings. Moreover, we characterize invo-clean as g(x)-invo clean rings where g(x) = (x-a)(x-b), a, b ∈ C(R) and b - a ∈ Inv(R). Finally, some classes of g(x)-invo clean rings are discussed.

SOME RESULTS ON PP AND PF-MODULES

  • KHAKSARI, AHMAD
    • 호남수학학술지
    • /
    • 제28권3호
    • /
    • pp.377-386
    • /
    • 2006
  • For a commutative ring with unity R, it is proved that R is a PF-ring if and only if the annihilator, $ann_R(a)$, for each $a{\in}R$ is a pure ideal in R. Also it is proved that the polynomial ring, R[x], is a PF-ring if and only if R is a PF-ring. Finally, we prove that M as an R-module is PF-module if and only if M[x] is a PF R[x]-module. Also M is a PP R-module if and only if M[x] is a PP R[x]-module.

  • PDF

ON RADICALLY-SYMMETRIC IDEALS

  • Hashemi, Ebrahim
    • 대한수학회논문집
    • /
    • 제26권3호
    • /
    • pp.339-348
    • /
    • 2011
  • A ring R is called symmetric, if abc = 0 implies acb = 0 for a, b, c ${\in}$ R. An ideal I of a ring R is called symmetric (resp. radically-symmetric) if R=I (resp. R/$\sqrt{I}$) is a symmetric ring. We first show that symmetric ideals and ideals which have the insertion of factors property are radically-symmetric. We next show that if R is a semicommutative ring, then $T_n$(R) and R[x]=($x^n$) are radically-symmetric, where ($x^n$) is the ideal of R[x] generated by $x^n$. Also we give some examples of radically-symmetric ideals which are not symmetric. Connections between symmetric ideals of R and related ideals of some ring extensions are also shown. In particular we show that if R is a symmetric (or semicommutative) (${\alpha}$, ${\delta}$)-compatible ring, then R[x; ${\alpha}$, ${\delta}$] is a radically-symmetric ring. As a corollary we obtain a generalization of [13].

THE ZERO-DIVISOR GRAPH UNDER A GROUP ACTION IN A COMMUTATIVE RING

  • Han, Jun-Cheol
    • 대한수학회지
    • /
    • 제47권5호
    • /
    • pp.1097-1106
    • /
    • 2010
  • Let R be a commutative ring with identity, X the set of all nonzero, nonunits of R and G the group of all units of R. We will investigate some ring theoretic properties of R by considering $\Gamma$(R), the zero-divisor graph of R, under the regular action on X by G as follows: (1) If R is a ring such that X is a union of a finite number of orbits under the regular action on X by G, then there is a vertex of $\Gamma$(R) which is adjacent to every other vertex in $\Gamma$(R) if and only if R is a local ring or $R\;{\simeq}\;\mathbb{Z}_2\;{\times}\;F$ where F is a field; (2) If R is a local ring such that X is a union of n distinct orbits under the regular action of G on X, then all ideals of R consist of {{0}, J, $J^2$, $\ldots$, $J^n$, R} where J is the Jacobson radical of R; (3) If R is a ring such that X is a union of a finite number of orbits under the regular action on X by G, then the number of all ideals is finite and is greater than equal to the number of orbits.

NOTES ON SYMMETRIC SKEW n-DERIVATION IN RINGS

  • Koc, Emine;Rehman, Nadeem ur
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1113-1121
    • /
    • 2018
  • Let R be a prime ring (or semiprime ring) with center Z(R), I a nonzero ideal of R, T an automorphism of $R,S:R^n{\rightarrow}R$ be a symmetric skew n-derivation associated with the automorphism T and ${\Delta}$ is the trace of S. In this paper, we shall prove that S($x_1,{\ldots},x_n$) = 0 for all $x_1,{\ldots},x_n{\in}R$ if any one of the following holds: i) ${\Delta}(x)=0$, ii) [${\Delta}(x),T(x)]=0$ for all $x{\in}I$. Moreover, we prove that if $[{\Delta}(x),T(x)]{\in}Z(R)$ for all $x{\in}I$, then R is a commutative ring.