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SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS

Chan Yong Hong, Nam Kyun Kim, and Yang Lee

Abstract. Y. Hirano introduced the concept of a quasi-Armendariz ring
which extends both Armendariz rings and semiprime rings. A ring R is
called quasi-Armendariz if aiRbj = 0 for each i, j whenever polynomials

f(x) =
Pm

i=0 aix
i, g(x) =

Pn
j=0 bjxj ∈ R[x] satisfy f(x)R[x]g(x) = 0. In

this paper, we first extend the quasi-Armendariz property of semiprime
rings to the skew polynomial rings, that is, we show that if R is a
semiprime ring with an epimorphism σ, then f(x)R[x; σ]g(x) = 0 im-
plies aiRσi+k(bj) = 0 for any integer k ≥ 0 and i, j, where f(x) =Pm

i=0 aix
i, g(x) =

Pn
j=0 bjxj ∈ R[x; σ]. Moreover, we extend this prop-

erty to the skew monoid rings, the Ore extensions of several types, and
skew power series ring, etc. Next we define σ-skew quasi-Armendariz
rings for an endomorphism σ of a ring R. Then we study several exten-
sions of σ-skew quasi-Armendariz rings which extend known results for
quasi-Armendariz rings and σ-skew Armendariz rings.

Throughout this paper R denotes an associative ring with identity. We
denote by R[x] the polynomial ring with an indeterminate x over R. Rege
and Chhawchharia [18] introduced the notion of an Armendariz ring. A ring
R is called Armendariz if whenever polynomials f(x) =

∑m
i=0 aix

i, g(x) =∑n
j=0 bjx

j ∈ R[x] satisfy f(x)g(x) = 0, then aibj = 0 for each i, j. The name
“Armendariz ring” was chosen from the fact that Armendariz [2, Lemma 1] had
showed that a reduced ring (i.e., a ring without nonzero nilpotent elements) sat-
isfies this condition. Many properties of Armendariz rings have been studied by
several authors [1, 8, 10, 11, 12]. Hirano [5] introduced a quasi-Armendariz ring
which is generalizing an Armendariz ring. A ring R is called quasi-Armendariz
if whenever polynomials f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x] satisfy

f(x)R[x]g(x) = 0, then aiRbj = 0 for each i, j. Hirano [5, Corollary 3.8]
proved that semiprime rings are quasi-Armendariz rings. Moreover, he showed
that the class of quasi-Armendariz rings is Morita stable [4, Theorem 3.12 and
Proposition 3.13], and that if R is a quasi-Armendariz ring, then some exten-
sions of R (e.g., the n-by-n upper triangular matrix ring, the polynomial ring)
are also quasi-Armendariz rings. But most of these properties are not stable
in Armendariz rings (for example, [10, Examples 1 and 3, etc.]).
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For a ring R with a ring endomorphism σ and an σ-derivation δ, the Ore
extension R[x; σ, δ] of R is the ring of polynomials in x over R with usual
addition and with multiplication subject to the rule xa = σ(a)x + δ(a) for any
a ∈ R. If δ = 0, then R[x; σ, δ] = R[x; σ] is called the skew polynomial ring.

On the other hand, Hong, Kim, and Kwak [6] introduced σ-skew Armendariz
for an endomorphism σ of a ring R. A ring R is called a σ-skew Armendariz
if for f(x) =

∑m
i=0 aix

i and g(x) =
∑n

j=0 bjx
j in R[x; σ], f(x)g(x) = 0 implies

aiσ
i(bj) = 0 for all 0 ≤ i ≤ m, and 0 ≤ j ≤ n. They proved that σ-rigid rings

are σ-skew Armendariz, where a ring R is σ-rigid if for an endomorphism σ
of R, aσ(a) = 0 implies a = 0. It can be easily shown that σ-rigid rings are
reduced. But by [6, Example 2], reduced rings are not σ-skew Armendariz in
general, even if σ is an automorphism of R. We also can find more results for
skew Armendariz rings in [3, 14].

Even though reduced rings are not σ-skew Armendariz, in Section 1, we show
that if R is a semiprime ring with an epimorphism σ, then f(x)R[x; σ]g(x) =
0 implies aiRσi+k(bj) = 0 for any integer k ≥ 0 and i, j, where f(x) =∑m

i=0 aix
i, g(x) =

∑n
j=0 bjx

j ∈ R[x; σ]. Moreover, we extend the quasi-Armen-
dariz property of semiprime rings to the skew monoid rings, the Ore extensions
of several types, and skew power series ring, etc.

Based on results in Section 1, we define σ-skew quasi-Armendariz rings for an
endomorphism σ of a ring R in Section 2. Then we study several extensions of σ-
skew quasi-Armendariz rings which extend known results for quasi-Armendariz
rings and σ-skew Armendariz rings.

1. Polynomial extensions of semiprime rings

Recall that a monoid G is called a unique product monoid (simply, u.p.-
monoid) if for any two nonempty finite subsets A,B ⊆ G there exists c ∈ G
uniquely presented in the form ab where a ∈ A and b ∈ B. The class of
u.p.-monoids is quite large and important (see [15] and [16] for details). For
example, this class includes the right or left ordered monoids, submonoids of a
free group, and torsion-free nilpotent groups.

Let R be a ring and G a u.p.-monoid. Assume that there is a monoid
homomorphism into the epimorphism monoid of R via the acting of G on R.
We denote by σg(r) the image of r ∈ R under g ∈ G. The skew monoid ring
R ∗G is a ring which as a left R-module is free with basis G and multiplication
defined by the rule gr = σg(r)g.

Theorem 1.1. Let R be a semiprime ring and G a u.p.-monoid. Then (a0g0 +
· · ·+ amgm)R ∗G(b0h0 + · · ·+ bnhn) = 0 with ai, bj ∈ R, gi, hj ∈ G if and only
if aiRσgi(σg(bj)) = 0 for any g ∈ G and 0 ≤ i ≤ m and 0 ≤ j ≤ n.

Proof. Suppose that (a0g0 + · · · + amgm)R ∗ G(b0h0 + · · · + bnhn) = 0 with
ai, bj ∈ R, gi, hj ∈ G. Then for any r ∈ R and g ∈ G, we have the following
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equation:

(∗) (a0g0 + · · ·+ amgm)gr(b0h0 + · · ·+ bnhn) = 0.

We will show that aiRσgi(σg(bj)) = 0 for any g ∈ G and 0 ≤ i ≤ m and
0 ≤ j ≤ n by using induction on m. If m = 0, then

0 = (a0g0)gr(b0h0 + · · ·+ bnhn)

= a0σg0(σg(rb0))g0gh0 + · · ·+ a0σg0(σg(rbn))g0ghn.

By [15, Lemma 1, p.119], gighu 6= g0ghv if u 6= v. Thus a0σg0(σg(rbj)) = 0
for all 0 ≤ j ≤ n and hence a0Rσg0(σg(bj)) = 0 since σg0 · σg is surjective.
Suppose that m ≥ 1. Since G is a u.p.-monoid, there exist p, q such that gpghq

is uniquely presented by considering two subsets A = {g0g, g1g, . . . , gmg} and
B = {h0, h1, . . . , hn} of G. After reordering if necessary, we may assume that
p = 0 and q = 0. Then from Eq.(∗), we have a0σg0(σg(rb0)) = 0. Moreover,
since σg0 · σg is surjective, a0Rσg0(σg(b0)) = 0. Thus for any s ∈ R, we have

0 = (a0g0 + · · ·+ amgm)grb0s(b0h0 + · · ·+ bnhn)

= (a1g1 + · · ·+ amgm)gr(b0sb0h0 + · · ·+ b0sbnhn).

By the induction hypothesis, aiσgi(σg(rb0sbj)) = 0 for any 1 ≤ i ≤ m and
0 ≤ j ≤ n. Then

0 = aiσgi(σg(rb0sb0)) = aiσgi(σg(r))σgi(σg(b0))σgi(σg(s))σgi(σg(b0)).

Since σgi · σg is surjective for any 1 ≤ i ≤ m, aiRσgi(σg(b0))Rσgi(σg(b0)) = 0.
Since R is semiprime, aiRσgi(σg(b0)) = 0 for any 1 ≤ i ≤ m. Consequently, we
have aiRσgi(σg(b0)) = 0 for any 0 ≤ i ≤ m. Thus Eq.(∗) becomes

(a0g0 + · · ·+ amgm)gr(b1h1 + · · ·+ bnhn) = 0.

Continuing the process as above, we can get

aiσgi(σg(rbj)) = 0,

and so
aiRσgi(σg(bj)) = 0

for any g ∈ G and 0 ≤ i ≤ m and 0 ≤ j ≤ n. ¤

A skew (Laurent) polynomial ring R[x; σ] (R[x, x−1; σ]) with an epimor-
phism (an automorphism) σ over R is a skew monoid ring R ∗ G with G =
{1, x, x2, . . .} (G = {. . . , x−2, x−1, 1, x, x2, . . .}) and σx(r) = σ(r) for r ∈ R.
We denote by Z the ring of integers.

Corollary 1.2. Let R be a semiprime ring with an epimorphism σ and f(x) =∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x; σ]. Then f(x)R[x; σ]g(x) = 0 if and only

if aiRσi+k(bj) = 0 for any integer k ≥ 0, 0 ≤ i ≤ m and 0 ≤ j ≤ n.
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Corollary 1.3. Let R be a semiprime ring with an automorphism σ. Then
for f(x) =

∑n
i=m aix

i, g(x) =
∑l

j=s bjx
j ∈ R[x, x−1; σ], where n, m, s, l ∈ Z,

f(x)R[x, x−1;σ]g(x) = 0 if and only if aiRσi+t(bj) = 0 for any i, j and integer
t.

From Corollary 1.2, we may conjecture that the condition “σ is an epimor-
phism of R” can be replaced by “σ is a monomorphism of R”. But the following
example erases the possibility.

Example 1.4. We refer the example of [13, Example 3.7]. Let R be a subset
of N× N matrices over a field K defined as follows

R = {M | M =
n∑

i,j=1

aijeij + a

∞∑

i=n+1

eii for some n ∈ N and aij , a ∈ K},

where {eij}i,j∈N denotes the set of matrix units. Then R is a prime ring. The
map σ : R → R defined by

σ(
n∑

i,j=1

aijeij + a

∞∑

i=n+1

eii) = ae11 +
n∑

i,j=1

aije(i+1)(j+1) + a

∞∑

i=n+2

eii

is a monomorphism of R. Note that e11σ(R) = Ke11. Therefore, for any integer
t ≥ 0, we have e11xRxte11 = Ke11e(2+t)(2+t)x

t+1 = 0, and so e11xR[x; σ]e11 =
0. But e11Rσ(e11) 6= 0.

However, we have the following on a reduced ring (i.e., a ring has no nonzero
nilpotent elements) with an endomorphism.

Remark 1. Let R be a reduced ring with an endomorphism σ and f(x) =∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x; σ]. Then f(x)R[x; σ]g(x) = 0 if and only

if aiRσi+t(bj) = 0 for any integer t ≥ 0 and 0 ≤ i ≤ m, 0 ≤ j ≤ n.

Proof. Suppose that f(x)R[x; σ]g(x) = 0, where f(x) =
∑m

i=0 aix
i and g(x) =∑n

j=0 bjx
j in R[x; σ]. Equivalently, for any r ∈ R and integer t ≥ 0,

(1) (a0 + a1x + · · ·+ amxm)xtr(b0 + b1x + · · ·+ bnxn) = 0.

We claim that aiRσi+t(bj) = 0 for any 0 ≤ i ≤ m, 0 ≤ j ≤ n. We proceed
by induction on i + j. If i + j = 0, then a0σ

t(b0) = 0 and so a0Rσt(b0) = 0
since R is reduced. Suppose that our claim is true for i + j = k − 1, where
1 ≤ k ≤ m + n. This implies that aiRσi+t(bj) = 0 for i + j = 0, 1, . . . , k − 1.
Then we have

(2) a0σ
t(rbk) + a1σ

1+t(rbk−1) + · · ·+ akσk+t(rb0) = 0.

We first replace r by b0 in Eq.(2). Then from Eq.(2), 0 = a0σ
t(b0bk) +

a1σ
1+t(b0bk−1)+· · ·+akσk+t(b0b0) = akσk+t(b0b0). Thus akσk+t(b0)σk+t(b0) =

0. Since R is reduced, akσk+t(b0) = 0 and moreover akRσk+t(b0) = 0. Thus
Eq.(2) becomes

(3) a0σ
t(rbk) + a1σ

1+t(rbk−1) + · · ·+ ak−1σ
k−1+t(rb1) = 0.
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We next replace r by b1 in Eq.(3). Then from Eq.(3), we have ak−1σ
k−1+t(b1b1)

= 0 and so ak−1Rσk−1+t(b1) = 0 by the same method as above. Continuing
this process, we have aiRσi+t(bj) = 0 for any i + j = k. Consequently we have
aiRσi+t(bj) = 0 for any integer t ≥ 0 and 0 ≤ i ≤ m, 0 ≤ j ≤ n. ¤

Now we extend Corollary 1.2 and Remark 1 to the Ore extension R[x; σ, δ]
over a semiprime ring R.

Lemma 1.5. Let R be a semiprime ring and consider R[x;σ, δ] with an auto-
morphism σ and σ-derivation δ over R. Then we have the following assertions:

(1) If aRσn(b) = 0 for some a, b ∈ R and all integer n ≥ 0, then aRδm(b) = 0
for all integer m ≥ 0.

(2) If aRσn(b) = 0 for some a, b ∈ R and all integer n ≥ 0, then aRσn1δm1

· · ·σntδmt(b) = 0 for all integers mi, nj ≥ 0.

Proof. (1) Suppose that aRσn(b) = 0 for some a, b ∈ R and all integer n ≥ 0.
We will proceed by induction on m to show aRδm(b) = 0 for all integer m ≥ 0.
For m = 0, it is trivial. We now suppose m ≥ 1. Since σ is an automorphism
of R, a = σ(a′) for some a′ ∈ R and so a′Rσn(b) = 0 for all n ≥ 0 from
σ(a′Rσn(b)) = aRσn+1(b) = 0. Thus we obtain a′Rδm−1(b) = 0 by induction
hypothesis. From δ(a′Rδm−1(b)) = 0, we have σ(a′)Rδm(b) = −δ(a′R)δm−1(b).
Note that by the induction hypothesis, aRδm−1(b) = 0 and so δm−1(b)Ra =
0 since R is semiprime. Then (aRδm(b)R)2 = σ(a′)Rδm(b)RaRδm(b)R =
−δ(a′R)(δm−1(b)Ra)Rδn(b)R = 0. Since R is semiprime, aRδm(b) = 0.

(2) Suppose that aRσn(b) = 0 for some a, b ∈ R and all integer n ≥ 0.
Equivalently, aRσi(σnt(b)) = 0 for all integers i, nt ≥ 0. Then by (1), we have
aRδmt−1(σnt(b)) = 0 for all mt−1 ≥ 0. Moreover, since a′Rσn(b) = 0 for all
n ≥ 0 as in the proof of (1), a′Rδm(b) = 0 by (1) and so aRσ(δm(b)) = 0 for
all m ≥ 0, where σ(a′) = a. Also since a′′Rσn(b) = 0 for all n ≥ 0 similarly
(where σ2(a′′) = a), a′′Rδm(b) = 0 by (1) and so aRσ2(δm(b)) = 0 for all
m ≥ 0. Continuing this process, we have aRσn1δm1 · · ·σntδmt(b) = 0 for all
integers mi, nj ≥ 0. ¤
Theorem 1.6. Let R be a semiprime ring with an automorphism σ of finite
order. Then for f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x; σ, δ],

f(x)R[x;σ, δ]g(x) = 0 if and only if aiRσn1δm1 · · ·σntδmt(bj) = 0

for all integers mu, nv ≥ 0 and 0 ≤ i ≤ m, 0 ≤ j ≤ n.

Proof. It is enough to show the necessity. Suppose that f(x)R[x; σ, δ]g(x) = 0.
Then for any r ∈ R and integer t ≥ 0, we have

(∗) (a0 + a1x + · · ·+ amxm)rxt(b0 + b1x + · · ·+ bnxn) = 0.

By Lemma 1.5, it suffices to show that aiRσl(bj) = 0 for any integer l ≥ 0
and 0 ≤ i ≤ m, 0 ≤ j ≤ n. We proceed by induction on i + j. If i + j = 0,
then a0rx

tb0 = 0 and so a0Rσt(b0) = 0 for any integer t ≥ 0. Suppose that
i + j ≥ 1. From Eq.(∗), we have amσm(r)σm+t(bn) = 0. Since σ has a finite
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order, amRσl(bn) = 0 for any integer l ≥ 0. Hence from f(x)R[x; σ, δ]g(x) = 0,
for any r, s ∈ R, we have

0 = (a0 + · · ·+ amxm)rxtσ−(m+t)(am)s(b0 + · · ·+ bnxn)

= (a0 + · · ·+ amxm)rxt(σ−(m+t)(am)sb0 + · · ·+ σ−(m+t)(am)sbn−1x
n−1).

Then amσm(r)σm+t(σ−(m+t)(am)sbn−1) = 0 and so amRamRσm+t(bn−1) = 0.
Since R is semiprime, we have amRσm+t(bn−1) = 0 and hence amRσl(bn−1) =
0 for any integer l ≥ 0. Continuing this process, we have amRσl(bj) = 0 for
any integer l ≥ 0 and 0 ≤ j ≤ n. Thus by Lemma 1.5, Eq.(∗) becomes

(a0 + a1x + · · ·+ am−1x
m−1)rxt(b0 + b1x + · · ·+ bnxn) = 0.

By the induction hypothesis, we have aiRσl(bj) = 0 for any integer l ≥ 0,
0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n. In the above, amRσl(bj) = 0 for any integer
l ≥ 0 and 0 ≤ j ≤ n. Therefore aiRσl(bj) = 0 for any integer l ≥ 0, 0 ≤ i ≤ m
and 0 ≤ j ≤ n. ¤

Corollary 1.7. Let R be a semiprime ring. Then f(x)R[x; δ]g(x) = 0 for
f(x) =

∑m
i=0, g(x) =

∑n
j=0 ∈ R[x; δ] if and only if aiRδl(bj) = 0 for any

integer l ≥ 0, 0 ≤ i ≤ m and 0 ≤ j ≤ n.

The following example shows that the condition “σ has a finite order” is
essential in Theorem 1.6.

Example 1.8. We refer the example of [9, Example 4.3]. Let F be a field and
Fi = F for i ∈ Z. Let R be a F -subalgebra of

∏
i∈Z Fi generated by ⊕i∈ZFi

and 1Q
i∈Z Fi

. Then

R = {(ai) ∈
∏

i∈Z
Fi | ai is eventually constant}.

Let σ be an automorphism of R defined by σ((ai)) = (ai+1). Then σ does not
have a finite order. Let e1 = (ai) ∈ R with a1 = 1 and ai = 0 for all i 6= 1. Then
e1xR[x; σ]e1x = 0, but e1Re1 6= 0. In spite of this fact, since R is semiprime,
by Corollary 1.2, f(x)R[x; σ]g(x) = 0 if and only if aiRσi+kσ(bj) = 0 for any
integer t ≥ 0 and i, j, where f(x) =

∑m
i=0 aix

i, g(x) =
∑n

j=0 bjx
j ∈ R[x;σ].

For skew power series rings, we already obtained the following result using
a similar method as in the proof of Remark 1.

Remark 2 ([7, Lemma 4]). Let R be a semiprime ring with an epimorphism σ.
Then for f(x) =

∑∞
i=0 aix

i, g(x) =
∑∞

j=0 bjx
j ∈ R[[x; σ]], f(x)R[[x;σ]]g(x) = 0

if and only if aiRσi+t(bj) = 0 for all t, i, j ≥ 0.

2. Skew quasi-Armendariz rings

Based on Corollary 1.2, σ-skew Armendariz rings in [6] and quasi-Armendariz
rings in [5], we define the following.
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Definition 2.1. Let σ be an endomorphism of a ring R. A ring R is called a
σ-skew quasi-Armendariz ring if for f(x) =

∑m
i=0 aix

i and g(x) =
∑n

j=0 bjx
j

in R[x;σ], f(x)R[x; σ]g(x) = 0 implies aiRσi(bj) = 0 for all 0 ≤ i ≤ m, and
0 ≤ j ≤ n.

Remark 3. Let R be a σ-skew quasi-Armendariz ring with f(x)R[x;σ]g(x) = 0.
Then f(x)xtR[x; σ]g(x) = 0 for any integer t ≥ 0 and so aiRσi+t(bj) = 0.
Therefore, comparing with Corollary 1.2, Definition 2.1 makes sense.

By Remark 1, if R is a reduced ring, then R is σ-skew quasi-Armendariz
when σ is an endomorphism of R. But reduced rings are not σ-skew Armendariz
even if σ is an automorphism (see Example 2.2(1) below). We also note that if
R is a σ-skew Armendariz ring, then R is σ-skew quasi-Armendariz when σ is
an epimorphism of R. Moreover, by Corollary 1.2, semiprime rings are also σ-
skew quasi-Armendariz when σ is an epimorphism of R. However, semiprime
rings are not σ-skew quasi-Armendariz when σ is a monomorphism of R by
Example 1.4. Therefore σ-skew quasi-Armendariz rings extend both σ-skew
Armendariz rings and semiprime rings when σ is an epimorphism of R. We
note that the semiprimenesses of R and R[x; σ] do not depend on each other
by [9, Example 4.3] and [17, Theorem 2.2].

The following examples show that σ-skew quasi-Armendariz rings strictly
contain σ-skew Armendariz rings and semiprime (so reduced) rings in spite of
σ being bijective.

Example 2.2. (1) Let R = F ⊕F , where F is a field, and let σ : R → R be an
automorphism of R defined by σ((a, b)) = (b, a). Then by [6, Example 2], R is
not σ-skew Armendariz. By Remark 1, reduced rings with any endomorphism
σ are always σ-skew quasi-Armendariz.

(2) We consider the ring

R =
{(

a t
0 a

)
| a ∈ Z, t ∈ Q

}
,

where Q is the set of all rational numbers, respectively. Let σ : R → R be an
automorphism defined by σ (( a t

0 a )) =
(

a t/2
0 a

)
. Then R is σ-skew Armendariz by

[6, Example 1], and so R is σ-skew quasi-Armendariz. But R is not semiprime
(so not reduced) obviously.

We thereafter investigate the extensions, that is, matrix rings, polynomial
rings, homomorphic images and classical quotient rings over a σ-skew quasi-
Armendariz ring.

We first study several types of matrix rings over σ-skew quasi-Armendariz
rings. The n× n full (or upper triangular) matrix ring over quasi-Armendariz
ring is quasi-Armendariz [5, Theorem 3.12]. We extends these results to σ-
skew quasi-Armendariz rings. We denote the n × n full matrix ring over R
by Mn(R). Recall that if σ is an endomorphism of a ring R, then the map
σ̄ : Mn(R) → Mn(R) defined by σ̄((aij)) = (σ(aij)) is an endomorphism of
Mn(R) and clearly this map extends σ.
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Theorem 2.3. Let σ be an endomorphism of a ring R and fix n ≥ 2. Then R
is σ-skew quasi-Armendariz if and only if Mn(R) is σ̄-skew quasi-Armendariz.

Proof. We present only the case when n = 2, the general case can be proved
by the same method. Note that Mn(R)[x; σ̄] ∼= Mn(R[x;σ]). Then f, g ∈
Mn(R)[x; σ̄] can be expressed by the following forms:

f(x) =
p∑

i=0

(
ai11 ai12

ai21 ai22

)
xi =

(
f11 f12

f21 f22

)
,

g(x) =
q∑

j=0

(
bj11 bj12

bj21 bj22

)
xj =

(
g11 g12

g21 g22

)
,

where fst =
∑p

i=0 aist
xi and guv =

∑q
j=0 bjuv

xj . Suppose that
(

f11 f12

f21 f22

)
M2(R[x;σ])

(
g11 g12

g21 g22

)
= 0.

Then for any rij ∈ R and integers wij ≥ 0,

(∗)
(

f11 f12

f21 f22

)(
r11x

w11 r12x
w12

r21x
w21 r22x

w22

)(
g11 g12

g21 g22

)
= 0.

If we take rij ’s are zero when i 6= t or j 6= u in Eq.(∗), then we have
fstrtuxwtuguv = 0 for each 1 ≤ t, u ≤ 2. Consequently, fstR[x; σ]guv = 0
for any 1 ≤ s, t, u, v ≤ 2. Since R is σ-skew quasi-Armendariz, we have
aistRσi(bjuv ) = 0 for any 0 ≤ i ≤ p and 0 ≤ j ≤ q. Therefore, from the
fact

σ̄i

((
bj11 bj12

bj21 bj22

))
=

(
σi(bj11) σi(bj12)
σi(bj21) σi(bj22)

)
,

we have (
ai11 ai12

ai21 ai22

)
M2(R)σ̄i

((
bj11 bj12

bj21 bj22

))
= 0

for any 0 ≤ s ≤ p and 0 ≤ t ≤ q. ThereforeM2(R) is σ̄-skew quasi-Armendariz.
The converse can be easily checked using diagonal matrices. ¤

The class of quasi-Armendariz rings is Morita stable by [5, Theorem 3.12 and
Proposition 3.13]. By the same way as in [5, Proposition 3.13], we also have the
following result. Let σ be an endomorphism of a ring R and e an idempotent of
R such that σ(e) = e. Then we have an endomorphism σ̄ : eRe → eRe defined
by σ̄(ere) = eσ(r)e. We note that there exists a σ-skew quasi-Armendariz ring
with idempotent which is not fixed by σ (see Example 2.2(1)).

Proposition 2.4. Let σ be an endomorphism of a ring R and e2 = e ∈ R
with σ(e) = e. If R is σ-skew quasi-Armendariz, then eRe is σ̄-skew quasi-
Armendariz.

We denote the n×n upper triangular matrix ring over a ring R by UMn(R).
By the same method as in the proof of Theorem 2.3, we obtain the following.
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Theorem 2.5. Let σ be an endomorphism of a ring R and fix n ≥ 2. Then R is
σ-skew quasi-Armendariz if and only if UMn(R) is σ̄-skew quasi-Armendariz.

For a ring R, let

Rw = {M ∈ UMw(R) | M =
w∑

i=1

aeii +
∑

1≤i<j≤w

aijeij},

where est’s are matrix units in UMw(R). For an endomorphism σ of R, if R
is σ-rigid (equivalently, R[x; σ] is reduced by [6, Proposition 3]), then R2 and
R3 are σ̄-skew Armendariz rings by [7, Proposition 17]. But Rw are not σ̄-
skew Armendariz for w ≥ 4 even if σ is an automorphism by [6, Example 18].
However, we show that if R is semiprime, then Rw is a σ̄-skew quasi-Armendariz
ring for any integer w ≥ 2 when σ is an epimorphism of R.

Theorem 2.6. Let σ be an epimorphism of a ring R. If R is semiprime, then
Rw is σ̄-skew quasi-Armendariz for any integer w ≥ 2.

Proof. Suppose that fRw[x; σ̄]g = 0 for f, g ∈ Rw[x; σ̄]. Let S = R[x;σ] and
note that Rw[x; σ̄] ∼= R[x; σ]w = Sw for any integer w ≥ 2. Then f and g can
be expressed by the following forms:

f =
n∑

u=0

Auxu =
w∑

i=1

f11eii +
∑

1≤i<j≤w

fijeij ,

g =
m∑

v=0

Bvxv =
w∑

s=1

g11ess +
∑

1≤s<t≤w

gstest,

where Au = (au
ij), Bv = (bv

st) ∈ Rw and fij , gst ∈ R[x;σ]. We will show that
fijSgst = 0 for all 1 ≤ i, j, s, t ≤ w. We will proceed by induction on w. Let

f =
(

f11 f12

0 f11

)
, g =

(
g11 g12

0 g11

)

such that fS2g = 0. Then
(

f11 f12

0 f11

)(
h11 h12

0 h11

)(
g11 g12

0 g11

)
= 0

for any
(

h11 h12
0 h11

) ∈ S2. Then we have the following:

f11h11g11 = 0;(1)

f11h11g12 + f11h12g11 + f12h11g11 = 0.(2)
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By Eq.(1), f11Sg11 = 0 and so Eq.(2) becomes f11rx
pg12 + f12rx

pg11 = 0 for
any r ∈ R and integer p ≥ 0. Then we have

a0
11rσ

p(b0
12) + a0

12rσ
p(b0

11) = 0;(3)

a0
11rσ

p(b1
12) + a1

11σ(r)σ1+p(b0
12) + a0

12rσ
p(b1

11) + a1
12σ(r)σ1+p(b0

11) = 0;(4)
...

an
11σ

n(r)σn+p(bm
12) + an

12σ
n(r)σn+p(bm

11) = 0.(5)

Since f11Sg11 = 0, by Corollary 1.2, we have

au
11Rσu+p(bv

11) = 0(6)

for any integer p ≥ 0, 0 ≤ u ≤ n and 0 ≤ v ≤ m. If we multiply sσp(b0
11)

(where s ∈ R) on the right side of Eq.(3), then a0
12rσ

p(b0
11)sσ

p(b0
11) = 0 and so

a0
12Rσp(b0

11)Rσp(b0
11) = 0. Since R is semiprime, we have

a0
12Rσp(b0

11) = 0 and so a0
11Rσp(b0

12) = 0(7)

for any integer p ≥ 0. If we multiply sσ1+p(b0
11) (where s ∈ R) on the right

side of Eq.(4), using Eqs.(6), (7) and the fact that p is any integer, then
a1
12Rσ1+p(b0

11)Rσ1+p(b0
11) = 0. Since R is semiprime, a1

12Rσ1+p(b0
11) = 0 for

any integer p ≥ 0. Then Eq.(4) becomes

a0
11rσ

p(b1
12) + a1

11σ(r)σ1+p(b0
12) + a0

12rσ
p(b1

11) = 0.(4’)

If we replace r in Eq.(4′) by rσp(b1
11)s (where s ∈ R), then a0

12rσ
p(b1

11)sσ
p(b1

11)
= 0 and so a0

12Rσp(b1
11) = 0 for any integer p ≥ 0. Continuing the above

processes, from Eq.(4′) we have a1
11Rσ1+p(b0

12) = 0 and a0
11Rσp(b1

12) = 0.
Inductively, we have

au
11Rσu+p(bv

12) = 0 and au
12Rσu+p(bv

11) = 0(8)

for any integer p ≥ 0, 0 ≤ u ≤ n and 0 ≤ v ≤ m. Consequently, from Eq.(8)
we have

f11Sg11 = 0, f11Sg12 = 0, f12Sg11 = 0.

Assume that our claim is true for w = k − 1. Let f = (fij), g = (gst) ∈ Sk

with fSkg = 0. Note that we can imbed Sk−1 into Sk via
k−1∑

i=1

αeii +
∑

1≤i<j≤k−1

αijeij 7→
k∑

i=1

αeii +
∑

1≤i<j≤k

αijeij ,

where αik = 0 for any 1 ≤ i ≤ k− 1. Since fSkg = 0, we have fSk−1g = 0. By
the induction hypothesis, we have

fijSgst = 0(9)

for any 1 ≤ i, j, s, t ≤ k − 1. Now from the fact that f(hij)g = 0 for any
(hkl) ∈ Sk, the (k − 1, k)-entry,

f11h11g(k−1)k + (f11h(k−1)k + f(k−1)kh11)g11 = 0.



SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS 889

Since f11Sg11 = 0 by Eq.(9), we have

f11rx
tg(k−1)k + f(k−1)krxtg11 = 0(10)

for any r ∈ R and integer t ≥ 0. Repeating the computation from (3) to (8)
on Eq.(10), we have

f(k−1)kSg11 = 0, f11Sg(k−1)k = 0.(11)

From Eqs.(9), (11) and the (k − 2, k)-entry is zero, we have

f11h11g(k−2)k + f(k−2)(k−1)h11g(k−1)k + f(k−2)kh11g11 = 0.

After we repeat the similar computation as above, we have

f11Sg(k−2)k = 0, f(k−2)(k−1)Sg(k−1)k = 0, f(k−2)kSg11 = 0.

Continuing this process, we have fijSgst = 0 for any 1 ≤ i, j, s, t ≤ k. Therefore
Rw is σ̄-skew quasi-Armendariz for any w ≥ 2. ¤

We also consider the following subring of Rn. Let

Vn(R) = {M ∈ Rn | M =
∑

1≤i≤j≤n

aijeij , where aij = a(i+1)(j+1)}.

By the same method as in the proof of Theorem 2.6, we have the following.

Theorem 2.7. Let σ be an epimorphism of a ring R. If R is semiprime, then
Vn is σ̄-skew quasi-Armendariz for any integer n ≥ 2.

For an integer n ≥ 2, let RA = {rA | r ∈ R} for any A ∈ Mn(R) and
V =

∑n−1
i=1 ei(i+1). Then by [11], Vn(R) = RIn + RV + · · ·+ RV n−1, where In

is the n × n identity matrix, and the map ρ : Vn(R) → R[x]/〈xn〉 defined by
ρ(a0In + a1V + · · ·+ an−1V

n−1) = a0 + a1x + · · ·+ an−1x
n−1 + 〈xn〉 is a ring

isomorphism. So we have the following.

Corollary 2.8. Let σ be an epimorphism of a ring R. If R is semiprime, then
R[x]/〈xn〉 is σ̄-skew quasi-Armendariz for any integer n ≥ 2.

From Theorem 2.6, one may suspect that Rw may be also a σ̄-skew quasi-
Armendariz ring for any integer w ≥ 2 when R is σ-skew quasi-Armendariz for
an epimorphism σ of R. But the following example erases the possibility.

Example 2.9. Let S be any semiprime ring and R = {( a b
0 a ) | a, b ∈ S}. Then

R is an ĪS-skew quasi-Armendariz ring by Theorem 2.6, where IS is the identity
map of S. Let R2 = {( A B

0 A ) | A,B ∈ R} and

f(x) =
(

e12 0
0 e12

)
+

(
e12 −(e11 + e22)
0 e12

)
x

and

g(x) =
(

e12 0
0 e12

)
+

(
e12 e11 + e22

0 e12

)
x

in R2[x; ¯̄IS ], where eij ’s are the matrix units inM2(S). Then f(x)R2[x; ¯̄IS ]g(x)
= 0, but

(
e12 0
0 e12

)
R2

(
e12 e11+e22
0 e12

) 6= 0.
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Remark 4. Recently, Hashemi [4] defined M -quasi-Armendariz rings as follows:
for a monoid M , a ring R is called M -quasi-Armendariz if whenever α =
a1g1 + · · · + angn, β = b1h1 + · · · + bmhm ∈ R[M ] satisfy αR[M ]β = 0, then
aiRbj = 0 for each i, j. Then he asserted that if a ring R is reduced and
M -Armendariz, then R is M -quasi-Armendariz. However, we note that M -
Armendariz rings are M -quasi-Armendariz. For, suppose that αR[M ]β = 0.
Then αrβ = 0 for any r ∈ R and so αβ′ = 0, where β′ = rb1h1 + · · ·+ rbmhm.
Since R is M -Armendariz, airbj = 0 for each i, j, and therefore aiRbj = 0.

Moreover, in [4, Proposition 1.2], he proved that if R is a M -Armendariz
and reduced ring, then Rn is M -quasi-Armendariz for each n ≥ 2. However,
using the same method as in the proof of Theorem 2.6, we can show that if R
is a M -quasi-Armendariz and semiprime ring, then Rn is M -quasi-Armendariz
for each n ≥ 2.

We next study the polynomial ring and the Laurent polynomial ring over a
σ-skew quasi-Armendariz ring. If R is quasi-Armendariz, then the polynomial
ring R[x] is quasi-Armendariz [4, Theorem 3.16]. We extend this result to σ-
skew quasi-Armendariz rings. Recall that if σ is an endomorphism of a ring
R, then the map σ̄ : R[x] → R[x] defined by σ̄(

∑m
i=0 aix

i) =
∑m

i=0 σ(ai)xi is
an endomorphism of the polynomial ring R[x] and clearly this map extends σ.
The Laurent polynomial ring R[x, x−1] with an indeterminate x, consists of all
formal sums

∑n
i=k aix

i, where ai ∈ R and k, n are (possibly negative) integers.
The map σ̄ : R[x, x−1] → R[x, x−1] defined by σ̄(

∑n
i=k aix

i) =
∑n

i=k σ(ai)xi

extends σ and is also an endomorphism of R[x, x−1].

Theorem 2.10. Let σ be an endomorphism of a ring R and σt = IR for some
positive integer t. Then the following statements are equivalent:

(1) R is σ-skew quasi-Armendariz.
(2) R[x] is σ̄-skew quasi-Armendariz.
(3) R[x, x−1] is σ̄-skew quasi-Armendariz.

Proof. We only give the proof of (1)⇔(3) since (1)⇔(2) can be proved by the
same method.

(1)⇒(3): We refer the proof of [3, Proposition 7].
Suppose f(y)R[x, x−1][y; σ̄]g(y) = 0, where f(y) = f0(x) + f1(x)y + · · · +

fm(x)ym, g(y) = g0(x) + g1(x)y + · · · + gn(x)yn ∈ R[x, x−1][y; σ̄]. We also
let fi(x) =

∑pi

u=si
auxu, gj(x) =

∑qj

v=kj
bvxv for each 0 ≤ i ≤ m and 0 ≤

j ≤ n, where asi , . . . , api , bkj , . . . , bqj ∈ R and si, pi, kj , qj ∈ Z. Take positive
integers s, k such that s = max{|si| | i = 0, 1, . . . , m} and k = max{|kj | | j =
0, 1, . . . , n}. Let f ′(y) = xsf(y) = f ′0(x) + f ′1(x)y + · · ·+ f ′m(x)ym and g′(y) =
xkg(y) = g′0(x) + g′1(x)y + · · · + g′n(x)yn, where f ′i(x) = fi(x)xs and g′j(x) =
gj(x)xk. Now we take a positive integer l such that l >

∑m
i=0 deg(f ′i(x)) +∑n

j=0 deg(g′j(x)). Let f ′(x) = f ′0(x
t) + f ′1(x

t)xtl+1 + · · · + f ′m(xt)xmtl+m and
g′(x) = g′0(x

t) + g′1(x
t)xtl+1 + · · ·+ g′n(xt)xntl+n. Then we claim that

f ′(x)R[x; σ]g′(x) = 0,
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equivalently, f ′(x)rxwg′(x) = 0 for any integer w ≥ 0. Since

f(y)R[x, x−1][y; σ̄]g(y) = 0,

f ′(y)R[x, x−1][y; σ̄]g′(y) = 0 and so f ′(y)rywg′(y) = 0 for any integer w ≥ 0.
Thus

f ′0(x)rσ̄w(g′0(x)) = 0;

f ′0(x)rσ̄w(g′1(x)) + f ′1(x)σ̄(r)σ̄w+1(g′0(x))) = 0;
...

f ′m(x)σ̄m(r)σ̄m+w(g′n(x)) = 0.

Using these equations, we have f ′(x)rxwg′(x) = 0 for any integer w ≥ 0. Thus

(as0xt(s0+s) + · · ·+ ap0xt(p0+s) + · · ·+ asmxt(sm+s+ml)+m + · · ·+ apmxt(pm+s+ml)+m)

rxw(bk0xt(k0+k) + · · ·+ bq0xt(q0+k) + · · ·+ bknxt(kn+k+nl)+n + · · ·+ bqnxt(qn+k+nl)+n)

= 0.

Since R is σ-skew quasi-Armendariz and σt is the identity map, we have
aαiRσi(bβj ) = aαiRσt(αi+s+il)+i(bβj ) = 0 for any αi ∈ {si, . . . , pi} and βj ∈
{kj , . . . , qj}, where 0 ≤ i ≤ m and 0 ≤ j ≤ n. Therefore

fi(x)R[x, x−1]σ̄i(gj(x)) = 0.

(3)⇒(1): Let f(y) = a0 + a1y + · · ·+ amym, g(y) = b0 + b1y + · · ·+ bnyn ∈
R[y; σ] such that f(y)R[y; σ]g(y) = 0. Now let f(u) = a0 + a1u + · · · +
amum and g(u) = b0 + b1u + · · · + bnun ∈ R[x, x−1][u; σ̄]. We claim that
f(u)R[x, x−1][u; σ̄]g(u) = 0, equivalently, f(u)rxkusg(u) = 0 for any r ∈ R
and k, s ∈ Z with s ≥ 0. Since f(y)R[y; σ]g(y) = 0, f(y)rysg(y) = 0. Then we
have

f(u)rxkusg(u)

= (a0rx
k + a1σ̄(rxk)u + · · ·+ amσ̄m(rxk)um)us(b0 + b1u + · · ·+ bnun)

= (a0rx
k + a1σ(r)xku + · · ·+ amσm(r)xkum)us(b0 + b1u + · · ·+ bnun)

= xk(a0 + a1u + · · ·+ amum)rus(b0 + b1u + · · ·+ bnun) = 0.

Since R[x, x−1] is σ̄-skew quasi-Armendariz, we have aiR[x, x−1]σ̄i(bj) = 0 for
all i, j and so aiRσi(bj) = 0. Therefore R is σ-skew quasi-Armendariz. ¤

We now consider the homomorphic images of σ-skew quasi-Armendariz rings.
For an ideal I of R, if σ(I) ⊆ I, then σ̄ : R/I → R/I defined by σ̄(a + I) =
σ(a) + I is an endomorphism of a factor ring R/I. We now note that the
homomorphic image of σ-skew quasi-Armendariz rings need not to be so in
general.
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Example 2.11. We use the argument in [6, Example 7]. Let Z4 be the ring
of integers modulo 4. Consider the ring

R =
{(

a b̄
0 a

)
| a ∈ Z, b̄ ∈ Z4

}
.

Let σ : R → R be an automorphism defined by σ
((

a b̄
0 a

))
=

(
a −b̄
0 a

)
. Then R

is σ-skew Armendariz by [6, Example 7], and so R is σ-skew quasi-Armendariz
because R is commutative. Let I =

{(
a 0̄
0 a

) | a ∈ 4Z
}
. Then σ(I) = I and the

factor ring R/I ∼=
{(

ā b̄
0 ā

) | ā, b̄ ∈ Z4

}
is not σ-skew quasi-Armendariz. In fact,

((
2̄ 0̄
0 2̄

)
+

(
2̄ 1̄
0 2̄

)
x

)
(R/I)[x; σ̄]

((
2̄ 0̄
0 2̄

)
+

(
2̄ 1̄
0 2̄

)
x

)
= 0.

But
(

2̄ 1̄
0 2̄

)
(R/I) σ̄

((
2̄ 0̄
0 2̄

)) 6= 0.

However, we obtain the following result referring the method in the proof of
[9, Lemma 3.6].

Proposition 2.12. Let σ be an endomorphism of a ring R and I an ideal of
R with σ(I) = I. If R is σ-skew quasi-Armendariz, then R/rR(I) is σ̄-skew
quasi-Armendariz.

Moreover, we may ask that R is an σ-skew quasi-Armendariz ring if for a
nonzero proper ideal I of R with σ(I) = I, R/I is σ̄-skew quasi-Armendariz
and I is σ-skew quasi-Armendariz as a ring. However, we also have a coun-
terexample to this situation as in the following.

Example 2.13. Consider the ring

R =
{(

ā b̄
0 ā

)
| ā, b̄ ∈ Z4

}
.

Let σ : R → R be an automorphism defined by σ
((

ā b̄
0 ā

))
=

(
ā −b̄
0 ā

)
. By

the argument of Example 2.11, R is not σ-skew quasi-Armendariz. Let I ={(
0̄ b̄
0 0̄

) | b̄ ∈ Z4

}
. Then σ(I) = I and the factor ring R/I ∼= Z4 is σ̄-skew

quasi-Armendariz. Moreover, I is σ-skew quasi-Armendariz as a ring.

Proposition 2.14. For an endomorphism σ of a ring R, suppose that R/I is
a σ̄-skew quasi-Armendariz ring for an ideal I of R. If I is semiprime as a
ring, then R is σ-skew quasi-Armendariz.

Proof. Let f(x) = a0 +a1x+ · · ·+anxn, g(x) = b0 + b1x+ · · ·+ bmxm ∈ R[x; σ]
such that f(x)R[x; σ]g(x) = 0. Then f̄(x)(R/I)[x; σ̄]ḡ(x) = 0̄, where ā = a + I
and f̄(x) = ā0 + ā1x + · · ·+ ānxn, ḡ(x) = b̄0 + b̄1x + · · ·+ b̄mxm ∈ (R/I)[x; σ̄].
Since R/I is σ̄-skew quasi-Armendariz, aiRσi(bj) ⊆ I for all i, j. Moreover, we
can get

aiRσi+s(bj) ⊆ I(1)

for any integer s ≥ 0. We proceed by the induction on degf(x) = n with
n ≥ 0. If n = 0, then we are done. Suppose that n ≥ 1. We first claim that
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a0Rσt(bj) = 0 for all integer t ≥ 0 and 0 ≤ j ≤ m. Assume that there exists
bj such that a0Rσt1(bj) 6= 0 for some t1. Then we can take k in {1, 2, . . . , m}
such that k is the smallest one with respect to the property a0Rσt2(bk) 6= 0
for some t2. So for j ∈ {0, 1, . . . , k − 1}, a0Rσt(bj) = 0 for any t. Note
that σt(bj)Ia0 = 0. Indeed, (σt(bj)Ia0R)2 = σt(bj)I(a0Rσt(bj))Ia0R = 0.
Since σt(bj)Ia0R ⊆ I and I is semiprime as a ring, σt(bj)Ia0R = 0 and so
σt(bj)Ia0 = 0. Now we note that

(ak−jRσt(bj))(Ra0Rσt2(bk))2 = (ak−jRσt(bj))(Ra0Rσt2(bk)R)(a0Rσt2(bk))

⊆ (ak−jRσt(bj))I(a0Rσt2(bk))

= ak−jR(σt(bj)Ia0)Rσt2(bk) = 0

by Eq.(1). The coefficient of the term xk+t2 in f(x)R[x; σ]g(x) = 0 is

0 = a0rσ
t2(bk) + a1σ(r)σt2+1(bk−1) + · · ·+ akσk(r)σt2+k(b0)(2)

for any r ∈ R. Multiplying (Ra0Rσt2(bk))2 to Eq.(2) on the right side, we have

0 = (a0rσ
t2(bk) + a1σ(r)σt2+1(bk−1) + · · ·+ akσk(r)σt2+k(b0))(Ra0Rσt2(bk))2

= a0rσ
t2(bk)(Ra0Rσt2(bk))2

and so (Ra0Rσt2(bk))3 = 0. Since Ra0Rσt2(bk) ⊆ I by Eq.(1) and I is
semiprime as a ring, we have a0Rσt2(bk) = 0, which is a contradiction. Con-
sequently, a0Rσt(bj) = 0 for all j ∈ {0, 1, . . . , m} and thus we have that
f1(x)R[x; σ]g(x) = 0, where f1(x) = a1 + a2x + · · · + anxn−1. But the de-
gree of f1(x) is less than n. By the induction hypothesis, we get aiRσi(bj) = 0
for all 0 ≤ i ≤ n and 0 ≤ j ≤ m. Therefore R is σ-skew quasi-Armendariz. ¤

We consider the classical left quotient ring Q(R) of a σ-skew quasi-Armen-
dariz ring R. Recall that a ring R is left Ore if there exists the classical left
quotient ring Q(R) of R. Let σ be an automorphism of a left Ore ring R.
Then for any b−1a ∈ Q(R) where a, b ∈ R with b regular, the induced map σ̄ :
Q(R) → Q(R) defined by σ̄(b−1a) = σ(b)−1σ(a) extends to an automorphism
of Q(R).

Theorem 2.15. Let R be a left Ore ring with an automorphism σ of R. If R
is σ-skew quasi-Armendariz, then Q(R) is σ̄-skew quasi-Armendariz.

Proof. Let Q(R) = Q and f(x) =
∑m

i=0 αix
i, g(x) =

∑n
j=0 βjx

j ∈ Q[x] such
that f(x)Q[x; σ̄]g(x) = 0. We may assume that αi = u−1ai, βj = v−1bj with
ai, bj ∈ R and regular elements u, v ∈ R. Since f(x)Q[x; σ̄]g(x) = 0, we have
u−1(a0 + a1x + · · ·+ amxm)Qxkv−1(b0 + b1x + · · ·+ bnxn) = 0 for any integer
k ≥ 0. For each k ≥ 0, note that Qσk(v)−1 = Q and also Q = Qv−1. Thus we
have

0 = (a0 + a1x + · · ·+ amxm)Qxk(b0 + b1x + · · ·+ bnxn)

= (a0 + a1x + · · ·+ amxm)Qv−1Rxk(b0 + b1x + · · ·+ bnxn)
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for any k ≥ 0. Let t−1s ∈ Q, sv−1 = v′−1
s′ and t−1v′−1 = t′−1. Then

0 = (a0 + a1x + · · ·+ amxm)t−1sv−1Rxk(b0 + b1x + · · ·+ bnxn)

= (a0 + a1x + · · ·+ amxm)t′
−1

s′Rxk(b0 + b1x + · · ·+ bnxn)

= (a0t
′−1

s′ + a1σ̄(t′
−1

s′)x + · · ·+ amσ̄m(t′
−1

s′)xm)Rxk(b0 + b1x + · · ·+ bnxn)

= (a0t
′−1

s′ + a1σ(t′)−1σ(s′)x + · · ·+ amσm(t′)−1σm(s′)xm)

×Rxk(b0 + b1x + · · ·+ bnxn).

We now let aiσ
i(t′)−1 = w−1a′i. Then we have w−1(a′0s

′ + a′1σ(s′)x + · · · +
amσm(s′)xm)Rxk(b0 + b1x + · · · + bnxn) = 0 and so (a′0s

′ + a′1σ(s′)x + · · · +
amσm(s′)xm)Rxk(b0+b1x+· · ·+bnxn)=0. Since R is σ-skew quasi-Armendariz,

(∗) a′iσ
i(s′)Rσi(bj) = 0 and so w−1a′iσ

i(s′)Rσi(bj) = 0

for any 1 ≤ i ≤ m, 1 ≤ j ≤ n. We now will show that u−1aiQσi(v−1bj) = 0.
From Eq.(∗) and the same argument as above, we have (a0 + a1x + · · · +
amxm)t−1sv−1bj = 0 for any t−1s ∈ Q and 1 ≤ j ≤ n, and so (u−1a0+u−1a1x+
· · · + u−1amxm)Qv−1bj = 0 for any 1 ≤ j ≤ n. Hence u−1aiQσi(v−1bj) = 0
for any 1 ≤ i ≤ m, 1 ≤ j ≤ n. Therefore Q is σ̄-skew quasi-Armendariz. ¤

Hirano [5, Proposition 3.4] proved that a ring R is quasi-Armendariz if and
only if Φ : Γ → ∆ is bijective with Φ(A) = AR[x], where Γ = {rR(U) |
U is an ideal of R} and ∆ = {rR(V ) | V is an ideal of R[x]}.

Finally, we introduce a similar result for skew quasi-Armendariz rings. Let
A be an ideal of a ring R and suppose that i = i(A) is a nonnegative integer
depending on A. Define

A′ = {axk | a ∈ A, k ≥ i = i(A)} ⊆ R[x; σ].

Note A′ = ∪∞t=0Axi+t. Moreover rR[x;σ](A′) and rR(A′) = rR[x;σ](A′) ∩ R are
ideals of R[x; σ] and R, respectively. For, let f(x) ∈ rR[x;σ](A′) and g(x) =∑n

i=0 bix
i ∈ R[x; σ]. For any axk ∈ A′, axkg(x)f(x) =

∑n
i=0 aσk(bi)xk+if(x)

= 0 since aσk(bi) ∈ A and aσk(bi)xk+i ∈ A′. Thus g(x)f(x) ∈ rR[x;σ](A′) and
so rR[x;σ](A′) is an ideal of R[x; σ], entailing that rR(A′) is an ideal of R.

Given ideals Aj (j ∈ I) of R, rR[x;σ](∪jA
′
j) = ∩jrR[x;σ](A′j); hence rR(∪jA

′
j)

= rR[x;σ](∪jA
′
j)∩R and rR[x;σ](∪jA

′
j) are ideals of R and R[x;σ] respectively,

with the help of the preceding computation.
Let

Γ = {rR(∪jB
′
j) | Bj is an ideal of R for j ∈ I}

and
∆ = {rR[x;σ](V ) | V is an ideal of R[x; σ]}.

Then we obtain an injective map Φ : Γ → ∆ defined by Φ(rR(∪jB
′
j)) =

rR(∪jB
′
j)R[x;σ] as in the proof of Theorem 2.16 below.

Theorem 2.16. Let σ be an epimorphism of R. Then the following statements
are equivalent:
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(1) R is σ-skew quasi-Armendariz.
(2) Φ : Γ → ∆ is bijective with Φ(rR(∪jB

′
j)) = rR(∪jB

′
j)R[x; σ].

Proof. We first claim that Φ is well-defined. For rR(∪jB
′
j) ∈ Γ, let g(x) =

b0 + b1x + · · ·+ bmxm ∈ rR(∪jB
′
j)R[x; σ]. Then b0, b1, . . . , bm ∈ rR(∪jB

′
j) and

so b`x
` ∈ rR[x;σ](∪jB

′
j) for each `, entailing g(x) ∈ rR[x;σ](∪jB

′
j). Conversely,

let f(x) = a0 +a1x+ · · ·+anxn ∈ rR[x;σ](∪jB
′
j). Then 0 = bxk(a0 +a1x+ · · ·+

anxn) = bxka0 + bxka1x + · · · + bxkanxn for all bxk ∈ ∪jB
′
j . If bxkat 6= 0 for

some t, then bσk(at) 6= 0 and so bxkatx
t = bσk(at)xk+t 6= 0; hence bxkf(x) 6= 0,

a contradiction. Thus aj ∈ rR(∪jB
′
j) and we get f(x) ∈ rR(∪jB

′
j)R[x; σ].

Consequently rR(∪jB
′
j)R[x; σ] = rR[x;σ](∪jB

′
j) and so we obtain

rR(∪jB
′
j)R[x; σ] = rR[x;σ](∪jB

′
j) = rR[x;σ]((∪jB

′
j)R[x; σ])

= rR[x;σ](R[x; σ](∪jB
′
j)R[x;σ]),

determining the map Φ : Γ → ∆ with Φ(rR(∪jB
′
j)) = rR(∪jB

′
j)R[x; σ].

Next we show that Φ is injective. Put Φ(rR(∪sA
′
s)) = Φ(rR(∪tA

′
t)). Then

rR(∪sA
′
s)R[x; σ] = rR(∪tA

′
t)R[x;σ] and rR[x;σ](∪sA

′
s) = rR[x;σ](∪tA

′
t)

by the result above. It then follows

rR(∪sA
′
s) = rR[x;σ](∪sA

′
s) ∩R = rR[x;σ](∪tA

′
t) ∩R = rR(∪tA

′
t),

proving that Φ is injective.
(1)⇒(2): It suffices to show that Φ is surjective. Let V be an ideal of R[x; σ]

and f(x) = a0 + a1x + · · · + anxn ∈ V . If g(x) = b0 + b1x + · · · + bmxm ∈
rR[x;σ](f(x)R[x; σ]), then f(x)R[x; σ]g(x) = 0 and f(x)xtR[x;σ]g(x) = 0 for all
nonnegative integer t. Since R is σ-skew quasi-Armendariz, we have aiRσi+t(bj)
= 0 for each 0 ≤ i ≤ n, 0 ≤ j ≤ m. Then for any 0 ≤ j ≤ m, we
have bj ∈ rR(aiRxi+t) = rR(RaiRxi+t) for each 0 ≤ i ≤ n; hence bj ∈
∩n

i=0rR(RaiRxi+t) = rR(∪n
i=0RaiRxi+t). Set Ai = RaiR for i = 0, 1, . . . , n.

Then A′i = {dxj | d ∈ Ai, j ≥ i} = ∪∞t=0RaiRxi+t with i = i(Ai). So
g(x) ∈ rR(∪n

i=0A
′
i)R[x; σ] and hence rR[x;σ](f(x)R[x; σ]) ⊆ rR(Mf )R[x; σ],

where Mf = ∪n
i=0A

′
i. Conversely, let g(x) ∈ rR(Mf )R[x; σ] = rR[x;σ](Mf ).

Since every term of polynomials in f(x)R[x;σ] is a sum of monomials con-
tained in Mf , we get f(x)R[x; σ]g(x) = 0 and thus g(x) ∈ rR[x;σ](f(x)R[x; σ]),
concluding rR[x;σ](f(x)R[x; σ]) = rR(Mf )R[x; σ]. Consequently

rR[x;σ](V ) =
⋂

f(x)∈V

rR[x;σ](f(x)R[x; σ]) =
⋂

f(x)∈V

rR[x;σ](Mf )

= rR[x;σ](
⋃

f(x)∈V

Mf ) = rR[x;σ](MV )

= rR[x;σ](∪jB
′
j) = rR(∪jB

′
j)R[x;σ] = Φ(rR(∪jB

′
j)),

where MV = ∪ij(RaijR)′ and aij runs over the set of all coefficients of poly-
nomials in V . Thus Φ is surjective.
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(2)⇒(1): Let f(x) = a0 + a1x + · · ·+ anxn, g(x) = b0 + b1x + · · ·+ bmxm ∈
R[x;σ] with f(x)R[x; σ]g(x) = 0. Since Φ is surjective,

rR[x;σ](R[x; σ]f(x)R[x;σ]) = rR(∪jB
′
j)R[x; σ]

for some rR(∪jB
′
j) ∈ Γ. Note rR(∪jB

′
j)R[x;σ] = rR[x;σ](∪jB

′
j), so (∪jB

′
j)g(x)

= 0. Then for any dxk ∈ ∪jB
′
j we get dxk(b0 + b1x + · · ·+ bmxm) = 0; hence

dxkbj = 0 for all j = 0, 1, . . . ,m by the same computation as above. Conse-
quently bj ∈ rR[x;σ](∪jB

′
j) = rR[x;σ](R[x; σ]f(x)R[x; σ]) for any j = 0, 1, . . . ,m.

Especially (a0 + a1x + · · · + anxn)Rbj = 0 for any j = 0, 1, . . . ,m. Now from
the hypothesis that σ is surjective, we get aiRσi(bj) = 0 for all i, j. Therefore
R is σ-skew quasi-Armendariz. ¤
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