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SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS

CHAN YoNnG Hong, Nam Kyun KiMm, AND YANG LEE

ABSTRACT. Y. Hirano introduced the concept of a quasi-Armendariz ring
which extends both Armendariz rings and semiprime rings. A ring R is
called quasi-Armendariz if a; Rb; = 0 for each 4, j whenever polynomials
f(@) =37 aixt, g(z) = >0 bjzd € R[z] satisfy f(z)R[z]g(z) = 0. In
this paper, we first extend the quasi-Armendariz property of semiprime
rings to the skew polynomial rings, that is, we show that if R is a
semiprime ring with an epimorphism o, then f(z)R[z;olg(z) = 0 im-
plies aiRaiJrk(bj) = 0 for any integer £k > 0 and 4,j, where f(x) =
Sy aixt, glz) = o bzl € Rlz;c]. Moreover, we extend this prop-
erty to the skew monoid rings, the Ore extensions of several types, and
skew power series ring, etc. Next we define o-skew quasi-Armendariz
rings for an endomorphism o of a ring R. Then we study several exten-
sions of o-skew quasi-Armendariz rings which extend known results for
quasi-Armendariz rings and o-skew Armendariz rings.

Throughout this paper R denotes an associative ring with identity. We
denote by R[z] the polynomial ring with an indeterminate z over R. Rege
and Chhawchharia [18] introduced the notion of an Armendariz ring. A ring
R is called Armendariz if whenever polynomials f(z) = Y.I" a;2%, g(z) =
>0 bjal € R[z] satisfy f(x)g(x) = 0, then a;b; = 0 for each 4, j. The name
“Armendariz ring” was chosen from the fact that Armendariz [2, Lemma 1] had
showed that a reduced ring (i.e., a ring without nonzero nilpotent elements) sat-
isfies this condition. Many properties of Armendariz rings have been studied by
several authors [1, 8, 10, 11, 12]. Hirano [5] introduced a quasi-Armendariz ring
which is generalizing an Armendariz ring. A ring R is called quasi-Armendariz
if whenever polynomials f(z) = >21" aa’, g(x) = Y7_obja’ € Rlz] satisfy
f(z)R[z]g(x) = 0, then a;Rb; = 0 for each i,j. Hirano [5, Corollary 3.8]
proved that semiprime rings are quasi-Armendariz rings. Moreover, he showed
that the class of quasi-Armendariz rings is Morita stable [4, Theorem 3.12 and
Proposition 3.13], and that if R is a quasi-Armendariz ring, then some exten-
sions of R (e.g., the n-by-n upper triangular matrix ring, the polynomial ring)
are also quasi-Armendariz rings. But most of these properties are not stable
in Armendariz rings (for example, [10, Examples 1 and 3, etc.]).
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For a ring R with a ring endomorphism ¢ and an o-derivation J, the Ore
extension R[x;0,0] of R is the ring of polynomials in x over R with usual
addition and with multiplication subject to the rule za = o(a)z + d(a) for any
a € R. If 6 = 0, then R[z;0,d] = R[z; 0] is called the skew polynomial ring.

On the other hand, Hong, Kim, and Kwak [6] introduced o-skew Armendariz
for an endomorphism ¢ of a ring R. A ring R is called a o-skew Armendariz
if for f(z) =Y 1", a;z" and g(z) = Z?:o bjz? in Rlz;o], f(z)g(x) = 0 implies
a;0'(bj) =0 for all 0 < i <m, and 0 < j < n. They proved that o-rigid rings
are o-skew Armendariz, where a ring R is o-rigid if for an endomorphism o
of R, ac(a) = 0 implies a = 0. It can be easily shown that o-rigid rings are
reduced. But by [6, Example 2], reduced rings are not o-skew Armendariz in
general, even if o is an automorphism of R. We also can find more results for
skew Armendariz rings in [3, 14].

Even though reduced rings are not o-skew Armendariz, in Section 1, we show
that if R is a semiprime ring with an epimorphism o, then f(z)R[z;0]g(z) =
0 implies a;Ro*™*(b;) = 0 for any integer k > 0 and i,j, where f(z) =
Simgaia’,g(x) = Y7o bja? € Rlx;a]. Moreover, we extend the quasi-Armen-
dariz property of semiprime rings to the skew monoid rings, the Ore extensions
of several types, and skew power series ring, etc.

Based on results in Section 1, we define o-skew quasi-Armendariz rings for an
endomorphism o of aring R in Section 2. Then we study several extensions of o-
skew quasi-Armendariz rings which extend known results for quasi-Armendariz
rings and o-skew Armendariz rings.

1. Polynomial extensions of semiprime rings

Recall that a monoid G is called a unique product monoid (simply, u.p.-
monoid) if for any two nonempty finite subsets A, B C G there exists ¢ € G
uniquely presented in the form ab where a € A and b € B. The class of
u.p.-monoids is quite large and important (see [15] and [16] for details). For
example, this class includes the right or left ordered monoids, submonoids of a
free group, and torsion-free nilpotent groups.

Let R be a ring and G a u.p.-monoid. Assume that there is a monoid
homomorphism into the epimorphism monoid of R via the acting of G on R.
We denote by o4(r) the image of € R under g € G. The skew monoid ring
R+ G is a ring which as a left R-module is free with basis G and multiplication
defined by the rule gr = o4(r)g.

Theorem 1.1. Let R be a semiprime ring and G a u.p.-monoid. Then (aggo—+
ot amgm )R+ G(boho + - - -+ byhy) = 0 with a;,b; € R, g;, h; € G if and only
if a;Rog,(04(bj)) =0 forany g€ G and 0 <i<m and 0 < j <n.

Proof. Suppose that (aggo + -+ + amgm)R * G(boho + -+ + byh,) = 0 with
ai,b; € R, gi;,hj € G. Then for any 7 € R and g € G, we have the following
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equation:
(*) (aogo + -+ + amgm)gr(boho + - -+ + byhy) = 0.
We will show that a;Rog,(04(b;)) = 0 for any g € G and 0 < i < m and
0 < j < n by using induction on m. If m = 0, then
0 = (a0go)gr(boho + -+ -+ bphy)
= ag0g,(04(rbo))gogho + - -+ + aoog, (04(rbn))goghn.
By [15, Lemma 1, p.119], gighy # gogh, if u # v. Thus agog,(o4(rb;)) = 0
for all 0 < j < n and hence agRog,(04(b;)) = 0 since oy, - 04 is surjective.
Suppose that m > 1. Since G is a u.p.-monoid, there exist p, ¢ such that g,gh,
is uniquely presented by considering two subsets A = {gog, 919, -.,9mg} and
B = {hg,h1,...,h,} of G. After reordering if necessary, we may assume that
=0 and ¢ = 0. Then from Eq.(x), we have agog,(c4(rby)) = 0. Moreover,
since oy, - 04 is surjective, agRog,(04(by)) = 0. Thus for any s € R, we have
0= (aogo + -+ amgm)grbos(boho + - - - + buhy)
= (algl + -+ amgm)gr(bOSbOhO R bOSbnhn)
By the induction hypothesis, a;04, (04(rbosb;)) = 0 for any 1 < ¢ < m and
0 <j <n. Then
0= a;jog,(04(rbosbo)) = a;og,(04(r))og,(o4(bo))og, (o4(s))og, (4(bo)).
Since gy, - 04 is surjective for any 1 < i < m, a;Rog,(04(by))Rog,(04(bo)) = 0.
Since R is semiprime, a;Rog, (04(bg)) = 0 for any 1 < ¢ < m. Consequently, we
have a;Rog,(04(bo)) = 0 for any 0 < ¢ < m. Thus Eq.(*) becomes
(aogo + -+ + amgm)gr(bihy + - + byhy,) = 0.
Continuing the process as above, we can get
a;0g,(04(rb;)) =0,
and so
aiRggi (Ug(bj)) =0
foranyge Gand 0 <i<mand 0 <j <n. O
A skew (Laurent) polynomial ring R[z;o] (R[z,z7';0]) with an epimor-
phism (an automorphism) o over R is a skew monoid ring R * G with G =

{Lw,22,...} (G ={...,2 2,27 1,x,2%,...}) and o,(r) = o(r) for r € R.
We denote by Z the ring of integers.

Corollary 1.2. Let R be a semiprime ring with an epimorphism o and f(x) =
Sisgaia’,g(x) = Y1y bjal € Rlz;o]. Then f(x)Rlz;olg(x) = 0 if and only
if a;Ro*tk(b;) = 0 for any integer k>0, 0<i<m and 0 < j < n.
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Corollary 1.3. Let R be a semiprime ring with an automorphism o. Then
for f(x) = Y0, aixt,g(x) = Zé‘:s bzl G_R[Jc,x_l;a], where n,m,s,l € Z,
f(@)R[z, 21 0lg(z) = 0 if and only if a;Ro*+'(b;) = 0 for any i, j and integer
t.

From Corollary 1.2, we may conjecture that the condition “o is an epimor-
phism of R” can be replaced by “o is a monomorphism of R”. But the following
example erases the possibility.

Example 1.4. We refer the example of [13, Example 3.7]. Let R be a subset
of N x N matrices over a field K defined as follows

n oo
R:{M|M: ZaijeijJra Z € forsomenGNandaij,aeK},
ij=1 i=n+1
where {eij}i’jeN denotes the set of matrix units. Then R is a prime ring. The
map o : R — R defined by

o Z aijeij +a Z €ii) = aein + Z @ij€(i+1)(j+1) T @ Z Cii

ij=1 i=n+1 i,j=1 i=n+2

is a monomorphism of R. Note that ej;0(R) = Keq1. Therefore, for any integer
t >0, we have ey;zRa’er; = Kepieaqne4na'™ =0, and so ey1zR[z;0ler; =
0. But 611RO’(611) 7é 0.

However, we have the following on a reduced ring (i.e., a ring has no nonzero
nilpotent elements) with an endomorphism.

Remark 1. Let R be a reduced ring with an endomorphism ¢ and f(x) =
Sigaia’,g(x) = Y7 bjxl € Rla;o]. Then f(z)R[x;olg(x) = 0 if and only
if a; Ro***(b;) = 0 for any integer t > 0 and 0 <i < m, 0 < j <n.

Proof. Suppose that f(z)R[z;0]g(z) = 0, where f(z) = >"1",a;z" and g(z) =
Z?:o bjz? in R[z;o]. Equivalently, for any r € R and integer ¢ > 0,

(1) (a0 + a1z + -+ + apa™)z'r(bg + bz + - - - + byx™) = 0.

We claim that a; Ro**(b;) = 0 for any 0 < i < m, 0 < j < n. We proceed
by induction on i + j. If i +j = 0, then ago’(by) = 0 and so agRo’(by) = 0
since R is reduced. Suppose that our claim is true for ¢ + j = k — 1, where
1 < k < m+n. This implies that a;Ro**(b;) =0 for i +j =0,1,...,k — 1.
Then we have

(2) oo’ (rby) + a0 (rbg_1) + -+ + ago" i (rbg) = 0.

We first replace r by by in Eq.(2). Then from Eq.(2), 0 = ago’(bobr) +
a101+t(b0bk71)+' . -+akak+t(b0b0) = akaH(bobo). Thus ak0k+t(b0)0k+t(bo) =
0. Since R is reduced, aro®**(by) = 0 and moreover ayRo*+t(by) = 0. Thus
Eq.(2) becomes

(3) aoat(rbk) + a101+t(rbk,1) +oee 4 ak,lak_lﬂ(rbl) =0.
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We next replace r by by in Eq.(3). Then from Eq.(3), we have ay_10% 1+ (b;b)
= 0 and so ay_1 Ro* " 1*(b;) = 0 by the same method as above. Continuing
this process, we have aiRai”(bj) = 0 for any i+ j = k. Consequently we have
a;Ro™(b;) = 0 for any integer t > 0 and 0 <i <m, 0 < j <n. O

Now we extend Corollary 1.2 and Remark 1 to the Ore extension R[z;0, ]
over a semiprime ring R.

Lemma 1.5. Let R be a semiprime ring and consider R[x; o, ] with an auto-
morphism o and o-derivation 6 over R. Then we have the following assertions:
(1) IfaRo™(b) = 0 for some a,b € R and all integer n > 0, then aRO™(b) =0
for all integer m > 0.
(2) If aRo™(b) = 0 for some a,b € R and all integer n > 0, then aRo™ 6™
g™ §™(b) =0 for all integers m;,n; > 0.

Proof. (1) Suppose that aRo™(b) = 0 for some a,b € R and all integer n > 0.
We will proceed by induction on m to show aRd6"™(b) = 0 for all integer m > 0.
For m = 0, it is trivial. We now suppose m > 1. Since ¢ is an automorphism
of R, a = o(a’) for some o’ € R and so a’Ro™(b) = 0 for all n > 0 from
o(a’Ro™(b)) = aRo™ 1 (b) = 0. Thus we obtain a’ R§™~1(b) = 0 by induction
hypothesis. From 6(a’R6™~1(b)) = 0, we have o(a’) R6™(b) = —(a’ R)6™1(b).
Note that by the induction hypothesis, aR6™~1(b) = 0 and so 6™ 1(b)Ra =
0 since R is semiprime. Then (aRS™(b)R)? = o(a’)R6™(b)RaRS™(b)R =
—8(a’R) (6™~ 1(b)Ra)R6™(b)R = 0. Since R is semiprime, aR6™(b) = 0.

(2) Suppose that aRo™(b) = 0 for some a,b € R and all integer n > 0.
Equivalently, aRo®(c™ (b)) = 0 for all integers i,n; > 0. Then by (1), we have
aRé™=1(o™ (b)) = 0 for all my_1 > 0. Moreover, since a’Ro™(b) = 0 for all
n > 0 as in the proof of (1), a’R6™(b) = 0 by (1) and so aRo(6™(b)) = 0 for
all m > 0, where o(a’) = a. Also since a” Ro™(b) = 0 for all n > 0 similarly
(where o2(a”) = a), a”R6™(b) = 0 by (1) and so aRo?(6™(b)) = 0 for all
m > 0. Continuing this process, we have aRo™ ™! --- g™ §™t(b) = 0 for all
integers my;, n; > 0. O

Theorem 1.6. Let R be a semiprime ring with an automorphism o of finite

order. Then for f(z) = >21" aix’, g(x) = Y bja’ € Rlz;0,9],
f(z)R[z;0,0]g(x) =0 if and only if a;Ro™ ™ --- o™ 6™ (b;) =0

for all integers my,my >0 and 0 <i<m, 0<j<n.

Proof. Tt is enough to show the necessity. Suppose that f(z)R[z;0,d]g(z) = 0.

Then for any r € R and integer ¢ > 0, we have

(%) (ap + a1z + - + ama™)rat(bg + byw + - - + byz™) = 0.

By Lemma 1.5, it suffices to show that a;Ro'(b;) = 0 for any integer [ > 0
and 0 < i <m, 0 <j < n. We proceed by induction on 7 4+ j. If i + 7 = 0,
then agraztby = 0 and so agRot(by) = 0 for any integer ¢ > 0. Suppose that
i+j > 1. From Eq.(x), we have a,,0™(r)c™ t(b,) = 0. Since o has a finite
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order, a,, Ro'(b,) = 0 for any integer [ > 0. Hence from f(x)R[z;0,d]g(z) = 0,
for any r, s € R, we have
0=(ap+ 4 amz™)rzto” " (a,,)s(bg + - - - + bpa™)
= (ap+ - 4 amz™)rzt (6" (ay,)sbo + - - + 0~ " (4, ) sbp 12",
Then a,,0™(r)o™ (e~ "+ (a,,)sb,_1) = 0 and so amRamRam“(b 1) =0.
Since R is semiprime, we have a,, Ro™+t(b,_1) = 0 and hence a,, Ro'(b,_1) =
0 for any integer [ > 0. Continuing this process, we have a,, Ro'(b;) = O for
any integer [ > 0 and 0 < j < n. Thus by Lemma 1.5, Eq.(*) becomes
(ao + a1z + -+ am_12™ Drat(bo + bz 4 - - + bpx™) = 0.

By the induction hypothesis, we have a;Ro!(b;) = 0 for any integer [ > 0,
0<i<m-—1and 0<j <mn. In the above, amRal(bj) = 0 for any integer
[ >0 and 0 < j <n. Therefore aiRal(bj) =0 for any integer [ > 0,0<i<m

and 0 < j <n. O
Corollary 1.7. Let R be a semiprime ring. Then f(x)R[z;0]g(x) = 0 for
flx) = X%, 9(x) = Xi_y € R[x;0] if and only if a;iRS'(bj) = 0 for any

integer 1 >0,0<1<m andogjgn

The following example shows that the condition “o has a finite order” is
essential in Theorem 1.6.

Example 1.8. We refer the example of [9, Example 4.3]. Let F be a field and
F, = F for i € Z. Let R be a F-subalgebra of [[.., F; generated by ®;czF;
and 11—11EZ r,- Then

<yA

R={(w) € H F; | a; is eventually constant}.
€T

Let o be an automorphism of R defined by o((a;)) = (@;4+1). Then o does not
have a finite order. Let e; = (a;) € Rwitha; = 1and a; = 0 for alli # 1. Then
eixR[x;ole;x = 0, but e;Rey # 0. In spite of this fact, since R is semiprime,
by Corollary 1.2, f(z)R[z;0]g(x) = 0 if and only if a;Ro*™*a(b;) = 0 for any
integer ¢t > 0 and i, j, where f(z) = >21" a;a’, g(x) = X7_o bja’ € Rlz;0].

For skew power series rings, we already obtained the following result using
a similar method as in the proof of Remark 1.

Remark 2 ([7, Lemma 4]). Let R be a semiprime ring with an epimorphism o.
Then for f(2) = Y% it g(x) = Y200 byat € R{; o)), f(@)Rl[z; ollg(x) = 0
if and only if a;Ro™(b;) = 0 for all ¢,4,5 > 0.

2. Skew quasi-Armendariz rings

Based on Corollary 1.2, o-skew Armendariz rings in [6] and quasi-Armendariz
rings in [5], we define the following.
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Definition 2.1. Let o be an endomorphism of a ring R. A ring R is called a
o-skew quasi-Armendariz ring if for f(z) = 32" a;z’ and g(z) = 3°7_ bz’
in R[z;0], f(z)R[z;0]g(x) = 0 implies a;Ro?(b;j) = 0 for all 0 < i < m, and
0<j5<n.

Remark 3. Let R be a o-skew quasi-Armendariz ring with f(z)R[x;olg(z) =
Then f(x)z'R[x;olg(x) = 0 for any integer ¢ > 0 and so a;Ro™™(b;) =
Therefore, comparing with Corollary 1.2, Definition 2.1 makes sense.

0.
0.

By Remark 1, if R is a reduced ring, then R is o-skew quasi-Armendariz
when o is an endomorphism of R. But reduced rings are not o-skew Armendariz
even if o is an automorphism (see Example 2.2(1) below). We also note that if
R is a o-skew Armendariz ring, then R is o-skew quasi-Armendariz when o is
an epimorphism of R. Moreover, by Corollary 1.2, semiprime rings are also o-
skew quasi-Armendariz when o is an epimorphism of R. However, semiprime
rings are not o-skew quasi-Armendariz when ¢ is a monomorphism of R by
Example 1.4. Therefore o-skew quasi-Armendariz rings extend both o-skew
Armendariz rings and semiprime rings when o is an epimorphism of R. We
note that the semiprimenesses of R and R[x; o] do not depend on each other
by [9, Example 4.3] and [17, Theorem 2.2].

The following examples show that o-skew quasi-Armendariz rings strictly
contain o-skew Armendariz rings and semiprime (so reduced) rings in spite of
o being bijective.
Example 2.2. (1) Let R = F @ F, where F is a field, and let 0 : R — R be an
automorphism of R defined by o((a,b)) = (b,a). Then by [6, Example 2], R is
not o-skew Armendariz. By Remark 1, reduced rings with any endomorphism
o are always o-skew quasi-Armendariz.

(2) We consider the ring

r={(s )ieezoca),

where Q is the set of all rational numbers, respectively. Let ¢ : R — R be an
automorphism defined by o ((& ¢)) = ( o té ). Then R is o-skew Armendariz by
[6, Example 1], and so R is o-skew quasi-Armendariz. But R is not semiprime
(so not reduced) obviously.

We thereafter investigate the extensions, that is, matrix rings, polynomial
rings, homomorphic images and classical quotient rings over a o-skew quasi-
Armendariz ring.

We first study several types of matrix rings over o-skew quasi-Armendariz
rings. The n x n full (or upper triangular) matrix ring over quasi-Armendariz
ring is quasi-Armendariz [5, Theorem 3.12]. We extends these results to o-
skew quasi-Armendariz rings. We denote the n x n full matrix ring over R
by M, (R). Recall that if o is an endomorphism of a ring R, then the map
7 : Mp(R) — M, (R) defined by ((a;;)) = (o(a;;)) is an endomorphism of
M, (R) and clearly this map extends o.
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Theorem 2.3. Let o be an endomorphism of a ring R and fitn > 2. Then R
is o-skew quasi-Armendariz if and only if M,,(R) is 7-skew quasi-Armendariz.

Proof. We present only the case when n = 2, the general case can be proved
by the same method. Note that M, (R)[x;5] = M, (R[x;0]). Then f,g €
M, (R)[x; &] can be expressed by the following forms:

~ (a; a; i Jui o fiz
=3 (o o)e= (B0 )
o)=Y (b )= (o 92)
= bjoy  Djas 921 922)
where fo =30 ai, 2" and gy, = >7_(bj,, 7. Suppose that

S fi2 gi1 912
My (R|z; 0 =0

(f21 fa2 2( [ ]) g21  g22
Then for any r;; € R and integers w;; > 0,
(%) fir o fi2) (ruxtt orpa®?) (g gie -0

for faz) \r212¥2 roow™?? ) \go1  g2o

If we take r;;’s are zero when ¢ # t or j # u in Eq.(x), then we have
fstrenx® gy, = 0 for each 1 < ¢,u < 2. Consequently, fs;R[z;0]guy = 0

for any 1 < s,t,u,v < 2. Since R is o-skew quasi-Armendariz, we have
a;,,Ro'(b;,,) = 0 for any 0 < i < p and 0 < j < q. Therefore, from the

fact ‘ .
&t <(bj11 bj12>> — <O—Z.(bj11) JZ‘(bjm))
b.j21 bj22 Jz(bjm) Ul(bjzz) ’
Qi G312 —q bju bjlz _
<ai21 aizz) MQ(R)U (<bj21 bjzz)) 0
for any 0 < s < pand 0 <t < q. Therefore My(R) is -skew quasi-Armendariz.
The converse can be easily checked using diagonal matrices. O

we have

The class of quasi-Armendariz rings is Morita stable by [5, Theorem 3.12 and
Proposition 3.13]. By the same way as in [5, Proposition 3.13], we also have the
following result. Let o be an endomorphism of a ring R and e an idempotent of
R such that o(e) = e. Then we have an endomorphism & : eRe — eRe defined
by &(ere) = eo(r)e. We note that there exists a o-skew quasi-Armendariz ring
with idempotent which is not fixed by o (see Example 2.2(1)).

Proposition 2.4. Let o be an endomorphism of a ring R and e2 = e € R
with o(e) = e. If R is o-skew quasi-Armendariz, then eRe is 7-skew quasi-
Armendariz.

We denote the n x n upper triangular matrix ring over a ring R by UM, (R).
By the same method as in the proof of Theorem 2.3, we obtain the following.
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Theorem 2.5. Let o be an endomorphism of a ring R and firn > 2. Then R is
o-skew quasi-Armendariz if and only if UM, (R) is d-skew quasi-Armendariz.

For a ring R, let

Ry ={M € UM (R) | M = Zae”Jr Z aijeij},

1<i<j<w

where eg’s are matrix units in UM, (R). For an endomorphism o of R, if R
is o-rigid (equivalently, R[z;0] is reduced by [6, Proposition 3]), then Ry and
R3 are g-skew Armendariz rings by [7, Proposition 17]. But R, are not g-
skew Armendariz for w > 4 even if ¢ is an automorphism by [6, Example 18].
However, we show that if R is semiprime, then R,, is a 6-skew quasi-Armendariz
ring for any integer w > 2 when o is an epimorphism of R.

Theorem 2.6. Let o be an epimorphism of a ring R. If R is semiprime, then
Ry, is d-skew quasi-Armendariz for any integer w > 2.

Proof. Suppose that fRy[x;5]g = 0 for f,g € Ry[z;5]. Let S = R[x; 0] and
note that Ry [x;d] & R[z; 0], = S, for any integer w > 2. Then f and g can
be expressed by the following forms:

f:ZAumu: Zfllezz+ Z fljelj7
u=0

1<i<j<w
m w
g = ZBUJTU = Zglles‘; + Z 9stCst,
v=0 1<s<t<w
where A, = (af}), By = (by;) € Ry and fij, gst € Rlx;0]. We will show that

fij9gst = 0 for all 1 § i,7,8,t < w. We will proceed by induction on w. Let
= )= (5 o)
such that fSog = 0. Then
(fn f12> (hu h12> (gn 912) -0
0 fi 0 hn 0 gn
for any ("' 112) € S,. Then we have the following:

(1) fiihi1g11 = 0;
(2) fithi1g12 + fithi2gi1 + fizhi1g11 = 0.
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By Eq.(1), f11.5911 = 0 and so Eq.(2) becomes fi172Pg12 + fiarzPgi; = 0 for
any r € R and integer p > 0. Then we have

(3) ad,ro® (bYy) + adyra? (b);) = 0;

0
(4)  abyroP(biy) + alyo(r)o TP (bYy) + alyro? (b)) + ajpo (r)o TP (b)) = O;

3

(5) aty o™ (r)a" TP (by) + afya™ (1) TP (bT]) = 0.
Since f11.5¢11 = 0, by Corollary 1.2, we have
(6) a71l1RUu+p(blf1) =0

for any integer p > 0, 0 < u < n and 0 < v < m. If we multiply so?(b};)
(where s € R) on the right side of Eq.(3), then a%5ra?(b9;)soP(b};) = 0 and so
adyRo? (b9, )RoP (b)) = 0. Since R is semiprime, we have

(7) a%yRo?(b9;) = 0 and so a¥; Ra?(b),) = 0

for any integer p > 0. If we multiply so'™P(b9;) (where s € R) on the right
side of Eq.(4), using Egs.(6), (7) and the fact that p is any integer, then
ato, Ro1 TP (B )Ro1P(b),) = 0. Since R is semiprime, al, Ro'P(b};) = 0 for
any integer p > 0. Then Eq.(4) becomes

(4) a170” (b1y) + ajy0(r)o P (bY,) + ajyra® (by;) = 0.

If we replace r in Eq.(4') by 7o? (b1, )s (where s € R), then alyra®(bl;)so?(bl;)
= 0 and so a%3RoP(b};) = 0 for any integer p > 0. Continuing the above
processes, from Eq.(4') we have al; Ro'*?(b)y) = 0 and a9 RoP(bl,) = 0.
Inductively, we have

(8) ay Ro“*P(bY,) = 0 and aly Ro"P(bY;) =0

for any integer p > 0, 0 < u < n and 0 < v < m. Consequently, from Eq.(8)
we have

f118911 =0, f115912 = 0, f125911 = 0.
Assume that our claim is true for w = k — 1. Let f = (fi;), 9 = (gst) € Sk
with fSxg = 0. Note that we can imbed Si_1 into Sj via

k-1 k
E aeq; + E Qijj€4j E ey + E Qij€ij,
i=1 i=1

1<i<j<k—1 1<i<j<k
where a;; = 0 for any 1 < ¢ < k—1. Since fSpg = 0, we have fSx_19 = 0. By
the induction hypothesis, we have
(9) fingst =0
for any 1 < 4,j,s,t < k — 1. Now from the fact that f(h;;)g = 0 for any
(hii) € Sk, the (k — 1, k)-entry,

fithiigg-ve + (frihg—nr + foe—1rhi1)g11 = 0.
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Since f115¢g11 = 0 by Eq.(9), we have

(10) Jura' gu—1yk + fo—nrratgn =0

for any » € R and integer ¢ > 0. Repeating the computation from (3) to (8)
on Eq.(10), we have

(11) fa—vxSg11 =0, f1159(k—1)x = 0.

From Eqgs.(9), (11) and the (k — 2, k)-entry is zero, we have

fiihigg—2yk + fe—2)e—1)P119(k— 1)k + fk—2)6P11911 = 0.

After we repeat the similar computation as above, we have

J1159(k—2)k = 0, fh—2)(k=1)SIk—1)k = 0, fr—2)x 5911 = 0.
Continuing this process, we have f;;Sgs: = 0 for any 1 <4, j, s,t < k. Therefore
R, is g-skew quasi-Armendariz for any w > 2. O

We also consider the following subring of R,,. Let
Vo(R)={M € R, | M = Z agjeqj, where a;j = agi11)(j+1)}
1<i<j<n
By the same method as in the proof of Theorem 2.6, we have the following.

Theorem 2.7. Let o be an epimorphism of a ring R. If R is semiprime, then
Vi, is a-skew quasi-Armendariz for any integer n > 2.

For an integer n > 2, let RA = {rA | r € R} for any A € M,,(R) and
V ="' eirn). Then by [11], V,,(R) = RI, + RV + -+ RV""! where I,
is the n x n identity matrix, and the map p : V,,(R) — R[x]/(x™) defined by
plaoly, + a1V +---+ap 1 V") =ag+aix+ -+ a,_12" 1 + (z") is a ring
isomorphism. So we have the following.

Corollary 2.8. Let o be an epimorphism of a ring R. If R is semiprime, then
R[z]/{x™) is 5-skew quasi-Armendariz for any integer n > 2.

From Theorem 2.6, one may suspect that R,, may be also a &-skew quasi-
Armendariz ring for any integer w > 2 when R is o-skew quasi-Armendariz for
an epimorphism o of R. But the following example erases the possibility.

Example 2.9. Let S be any semiprime ring and R = {(& %) | a,b € S}. Then
R is an Ig-skew quasi-Armendariz ring by Theorem 2.6, where Ig is the identity
map of S. Let Ry = {(4 §)| A, B € R} and

=5 5) (6 )

and
_(ei2 O e12 €11+ e
o= (5 )+ (5 )
in Ro[z; :5], where e;;’s are the matrix units in Mp(S). Then f(x)R2[x; Izg]g(a:)
=0, but (4?0 ) Ry (4 1Lte22) 0.
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Remark 4. Recently, Hashemi [4] defined M-quasi-Armendariz rings as follows:
for a monoid M, a ring R is called M -quasi-Armendariz if whenever a =
aigr + -+ angn, 0 = brhy + -+ + bhy, € R[M] satisfy aR[M]S = 0, then
a;Rb; = 0 for each ¢,j. Then he asserted that if a ring R is reduced and
M-Armendariz, then R is M-quasi-Armendariz. However, we note that M-
Armendariz rings are M-quasi-Armendariz. For, suppose that aR[M]5 = 0.
Then arB =0 for any r € R and so a8’ = 0, where 8’ = rbihy + - + rbp .-
Since R is M-Armendariz, a;rb; = 0 for each i, j, and therefore a; Rb; = 0.

Moreover, in [4, Proposition 1.2], he proved that if R is a M-Armendariz
and reduced ring, then R, is M-quasi-Armendariz for each n > 2. However,
using the same method as in the proof of Theorem 2.6, we can show that if R
is a M-quasi-Armendariz and semiprime ring, then R, is M-quasi-Armendariz
for each n > 2.

We next study the polynomial ring and the Laurent polynomial ring over a
o-skew quasi-Armendariz ring. If R is quasi-Armendariz, then the polynomial
ring R[z] is quasi-Armendariz [4, Theorem 3.16]. We extend this result to o-
skew quasi-Armendariz rings. Recall that if o is an endomorphism of a ring
R, then the map & : R[z] — R[z] defined by 6(> i~ a;z’) = > iv,o(a;)z’ is
an endomorphism of the polynomial ring R[z] and clearly this map extends o.
The Laurent polynomial ring R[z,r~1] with an indeterminate x, consists of all
formal sums ", a;z’, where a; € R and k, n are (possibly negative) integers.
The map ¢ : Rlz,27 '] — Rlz,z!] defined by o(> -, a;z’) = > i, o(a;)z’
extends o and is also an endomorphism of R[z,z~1].

Theorem 2.10. Let o be an endomorphism of a ring R and ot = I for some
positive integer t. Then the following statements are equivalent:

(1) R is o-skew quasi-Armendariz.

(2) R[z] is 7-skew quasi-Armendariz.

(3) R[z,x71] is 6-skew quasi-Armendariz.
Proof. We only give the proof of (1)<(3) since (1)<(2) can be proved by the
same method.

(1)=(3): We refer the proof of [3, Proposition 7).

Suppose f(y)R[z, 2~ "|ly;5lg(y) = 0, where f(y) = fo(x) + fi(z)y + -+
S @)y, 9(y) = go(z) + g1(x)y + - + gn(x)y"™ € Rlz,2""[y;5]. We also
let fi(z) = Yhi,, aua®, gj(z) = 3201, bya” for each 0 < ¢ < m and 0 <
Jj < n, where as,,...,ap,,bk;,...,by; € R and s;,p;, kj,q; € Z. Take positive
integers s,k such that s = max{|s;| | i = 0,1,...,m} and k = max{|k;| | j =
0,1,...,n}. Let f'(y) = 2°f(y) = fo(2) + fi(@)y + -+ [, (2)y™ and ¢'(y) =
Fg(y) = go(x) + gi(x)y + -+ + g, (x)y", where f/(x) = fi(z)z® and gj(x) =
g;(z)z*. Now we take a positive integer [ such that [ > > deg(f/(x)) +
i deg(g)(x)). Let f'(z) = fo(a') + fi(a")z"™ + -+ f],(2")a™" ™ and
g (x) = gh(a?) + g} () z"* + - + g/ (xt) 2"+, Then we claim that

f'(@)R[z; 0]g' (z) =0,
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equivalently, f/(z)raz*¢’'(z) = 0 for any integer w > 0. Since
f(y)Rlz, 27y olg(y) = 0,

F'(y)R[z,z7 [y;5lg'(y) = 0 and so f'(y)ry*”g (y) = 0 for any integer w > 0.
Thus

’ _ _
fr(@)a™ (r)a™ " (g;,(x)) = 0.

Using these equations, we have f’(z)rz"g’(z) = 0 for any integer w > 0. Thus
(asOxt(SO+S) IS apoxt(p0+s) 4o+ ag,, gtEmtbstmbtm apmzt(Pm+s+ml)+m)
wa(bkoxt<k0+k) N bqoxt(qurk) N bknxt(kn+k+nl)+n NS bq7th(qn+k+nl)+n)

=0.
Since R is o-skew quasi-Armendariz and ¢! is the identity map, we have

o, Ro'(bg;) = aq, RoM@tstiDFi(hy ) = 0 for any oy € {s;,...,p;} and B; €
{kj,...,q;}, where 0 <i <m and 0 < j < n. Therefore

fi(w)Rlz, 2~ 15" (g;(x)) = 0.

(3)=(1): Let f(y) =ao+ary+ -+ amy™, g(y) =bo + b1y +--- +byy" €
Rly; o] such that f(y)R[y;o0]lg(y) = 0. Now let f(u) = ao + aju + -+ +
amu™ and g(u) = by + biu + -+ + byu™ € Rlz,z7'][u;5]. We claim that
f(u)R[z,z~Y[u;5)g(u) = 0, equivalently, f(u)rz*u®g(u) = 0 for any » € R
and k,s € Z with s > 0. Since f(y)R[y;olg(y) =0, f(y)ry®*g(y) = 0. Then we
have

flwratug(u)
= (aorz® + a15(ra®)u + - - + 4™ (ra®)u™)u® (bo + bru + - - - + byu™)
= (aorz® + a1o(r)z®u + - + apo™(r)xFu™)u® (bo + bru + - - + byu™)
= xk(ao +aru+ -+ anu™)ru’(by + biu+ -+ byu™) = 0.

Since R[z,z~ '] is 5-skew quasi-Armendariz, we have a; R[z,z~']*(b;) = 0 for
all 4,7 and so a;Ro?(b;) = 0. Therefore R is o-skew quasi-Armendariz. O

We now consider the homomorphic images of o-skew quasi-Armendariz rings.
For an ideal I of R, if o(I) C I, then 6 : R/I — R/I defined by d(a + I) =
o(a) + I is an endomorphism of a factor ring R/I. We now note that the
homomorphic image of o-skew quasi-Armendariz rings need not to be so in
general.
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Example 2.11. We use the argument in [6, Example 7]. Let Z4 be the ring
of integers modulo 4. Consider the ring

a b -
R{(O a) an,beZ4}.

Let 0 : R — R be an automorphism defined by o ((“ 5)) = (8 —Lf’). Then R

0a
is o-skew Armendariz by [6, Example 7], and so R is o-skew quasi-Armendariz

because R is commutative. Let I = {(49) | a € 4Z}. Then o(I) = I and the
factor ring R/I = {(g g) | a,b e Z4} is not o-skew quasi-Armendariz. In fact,

2 0 2 1 ({2 0 2 B
(6 2)+ (& o)) mim (5 5) + (5 2)) =
But (§3) (R/1) o ((§5)) #0.
However, we obtain the following result referring the method in the proof of
[9, Lemma 3.6].

DI =

Proposition 2.12. Let o be an endomorphism of a ring R and I an ideal of
R with o(I) = I. If R is o-skew quasi-Armendariz, then R/rg(I) is &-skew
quasi-Armendariz.

Moreover, we may ask that R is an o-skew quasi-Armendariz ring if for a
nonzero proper ideal I of R with o(I) = I, R/I is 6-skew quasi-Armendariz
and [ is o-skew quasi-Armendariz as a ring. However, we also have a coun-
terexample to this situation as in the following.

Example 2.13. Consider the ring

a b\, .+
w={(3 ) jasen).
Let ¢ : R — R be an automorphism defined by a((gg)) = (g?). By
the argument of Example 2.11, R is not o-skew quasi-Armendariz. Let I =
{(8 8) |b€Zs}. Then o(I) = I and the factor ring R/I = Z4 is 5-skew
quasi-Armendariz. Moreover, I is o-skew quasi-Armendariz as a ring.

Proposition 2.14. For an endomorphism o of a ring R, suppose that R/T is
a o-skew quasi-Armendariz ring for an ideal I of R. If I is semiprime as a
ring, then R is o-skew quasi-Armendariz.

Proof. Let f(z) = ap+arz+- -+ apnz™, g(x) =by+ b1z +- -+ bnz™ € Rlz; 0]
such that f(z)R[z;0]g(x) = 0. Then f(x)(R/I)[x;5]g(x) =0, where @ = a+ I
and f(z) = ag+ayr+---+a,2",g(z) = by +byx + -+ b,x™ € (R)I)[z;5].
Since R/I is 5-skew quasi-Armendariz, a; Ro®(b;) C I for all ¢, j. Moreover, we
can get

(1) a;Ro"T5(b;) C I

for any integer s > 0. We proceed by the induction on degf(x) = n with
n > 0. If n = 0, then we are done. Suppose that n > 1. We first claim that
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apRa'(b;) = 0 for all integer ¢ > 0 and 0 < j < m. Assume that there exists
b; such that agRo' (b;) # 0 for some ¢;. Then we can take k in {1,2,...,m}
such that k is the smallest one with respect to the property agRo'2(by) # 0
for some t5. So for j € {0,1,...,k — 1}, apRo'(b;) = 0 for any ¢. Note
that of(bj)Iag = 0. Indeed, (c(bj)IagR)* = o'(bj)I(apRot(b;))IagR = 0.
Since o'(b;)IapR C I and I is semiprime as a ring, o'(b;)IagR = 0 and so
o'(bj)Iag = 0. Now we note that
(ar—j Ro'(b;))(RagRo ™ (by,))? = (ar—;Ro' (b;))(RagRo* (by) R)(ag Ro (by,))
C (an—jRo' (b)) I(aoRo™ (by))
= ay_;jR(c"(b;)Iag)Ro™ (by) = 0
by Eq.(1). The coefficient of the term z***2 in f(z)R[z;0]g(z) = 0 is
(2) 0 = agra'(b) + a1o(r)a2 T (bp_1) + - + apo™(r)o2TF (by)
for any r € R. Multiplying (RagRo'2 (bx))? to Eq.(2) on the right side, we have
0 = (aoro’(bg) + a10(r)o2 (bp_1) 4 - - - + apa™(r)o2 T (bo)) (Rag Ro'? (b))
= aoro'?(by)(RagRo'? (by))?

and so (RagRo'2 (b)) = 0. Since RagRo'(by) C I by Eq.(1) and I is
semiprime as a ring, we have agRc'2(b;,) = 0, which is a contradiction. Con-
sequently, agRo'(b;) = 0 for all j € {0,1,...,m} and thus we have that
fi(x)Rlx;0)g(z) = 0, where fi(x) = a; + agx + -+ + a," L. But the de-
gree of fi(z) is less than n. By the induction hypothesis, we get a; Ro*(b;) = 0
for all 0 < ¢ <mand 0 < j < m. Therefore R is o-skew quasi-Armendariz. [

We consider the classical left quotient ring Q(R) of a o-skew quasi-Armen-
dariz ring R. Recall that a ring R is left Ore if there exists the classical left
quotient ring Q(R) of R. Let o be an automorphism of a left Ore ring R.
Then for any b~'a € Q(R) where a,b € R with b regular, the induced map & :
Q(R) — Q(R) defined by (b~ 'a) = o(b)~'o(a) extends to an automorphism
of Q(R).

Theorem 2.15. Let R be a left Ore ring with an automorphism o of R. If R
is o-skew quasi-Armendariz, then Q(R) is G-skew quasi-Armendariz.

Proof. Let Q(R) = Q and f(z) = > i, a2, g(z) = Z;L:o B;x? € Q] such
that f(z)Qlx;5]g(x) = 0. We may assume that a; = u~ta;, B; = v='b; with
a;,b; € R and regular elements u,v € R. Since f(z)Qx;d]g(z) = 0, we have
utag+ a1z + -+ amz™) Qv (bg + bz + - - - + byz™) = 0 for any integer
k > 0. For each k > 0, note that Qo*(v)™! = Q and also Q = Qu~'. Thus we
have

0=(ap+az+- -+ amxm)ka(bo +biz 4+ bpz™)

=(ap+az+---+ amxm)Qv_lRmk(bo +bix + -+ bpa™)
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forany k> 0. Let t 7 's € Q, sv~! = vt and t~1v' "t = ¢, Then
0= (a0 +arx+- -+ amxm)tflsvflek(bo +biz+ -+ bux™)
= (a0 +arx+---+ amxm)t'_ls'ka(bo +biz+ -+ bua™)

=1 4

= (aot'_ls/ + alﬁ(t'_ls/)x +odama™ ('S ™) R  (bo + bz 4 - - - + bpa™)

_ (aotlfls/ + alo_(tl)fla_(s/)m 4o + U/mO'Tn(t,)710'7,L(S,)SL‘7n)

X Ra:k(bo +bix+ -+ bpz™).
We now let a;0(t')~! = w™la,. Then we have w™(a}s’' + ajo(s)z + --- +
amo™(s") ™) Ra* (bg + byx + - + byz™) = 0 and so (aps’ + ajo(s)x + -+ +
Umo™ (s 2™) Ra® (bg+by -+ - -+b,z™) =0. Since R is o-skew quasi-Armendariz,

(%) alo'(s')Ra'(b;) = 0 and so w™'alo'(s')Ra'(b;) = 0
forany 1 <i<m, 1< j <n. We now will show that u_laiQai(v_lbj) = 0.
From Eq.(x) and the same argument as above, we have (ag + a1z + -+ +

amx™)t tsv7lb; =0forany t7's € Qand 1 < j < n, and so (v 'ag+u"ta;z+
o+ ula,r™)QuTb; = 0 for any 1 < j < n. Hence u™'a;Qo’(v=1b;) = 0
for any 1 <7 <m, 1 <j <n. Therefore @ is o-skew quasi-Armendariz. O

Hirano [5, Proposition 3.4] proved that a ring R is quasi-Armendariz if and
only if ® : I' — A is bijective with ®(A) = AR[z]|, where I' = {rr(U) |
U is an ideal of R} and A = {rg(V) | V is an ideal of R[z]}.

Finally, we introduce a similar result for skew quasi-Armendariz rings. Let
A be an ideal of a ring R and suppose that i = i(A) is a nonnegative integer
depending on A. Define

A ={az" |ac Ak >i=i(A)} C Rlz;0).

Note A" = U2 Az*t. Moreover 7pgiy.0)(A’) and rr(A’) = g0 (A’) N R are
ideals of R[z;0] and R, respectively. For, let f(z) € rgp..(A’) and g(x) =
S o bizt € Rlx;o]. For any az® € A, axFg(z)f(x) = Y1 ac®(b) 2" f(z)
= 0 since ac®(b;) € A and ac®(b;)z"" € A’. Thus g(x)f(z) € rg.0)(A’) and
SO T'R[z:0)(A’) is an ideal of R[z;0], entailing that rp(A’) is an ideal of R.

Given ideals A; (j € I) of R, 7Rriz;01(UjA}) = N7 Rl2s01(A)); hence 7r(U;A))
= TRxs0] (UjAS) N R and 7{p0)(U;A}) are ideals of R and R[z; o] respectively,
with the help of the preceding computation.

Let

I = {rr(U;B}) | B is an ideal of R for j € I}
and
A = {rRs:0)(V) | V is an ideal of R[z;0]}.

Then we obtain an injective map ® : I' — A defined by ®(rr(U;B})) =
rr(U;Bj) R[x; o] as in the proof of Theorem 2.16 below.

Theorem 2.16. Let o be an epimorphism of R. Then the following statements
are equivalent:
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(1) R is o-skew quasi-Armendariz.
(2) @: T — A is bijective with ®(rr(U;B})) = rr(U; B) R[x; o].

Proof. We first claim that ® is well-defined. For rr(U;B}) € T, let g(z) =
bo +b17 + - + bpx™ € TR(U; B)) Rlw; o). Then bo, b1, .., by € rr(U;B}) and
so bea! € TRz;0)(U; B}) for each £, entailing g(z) € 7g(s:0)(U; B}). Conversely,
let f(z) = ap+aiz+- - +anz" € gy (U;B}). Then 0 = ba*(ag+arz+-- -+
anz") = bx*ag + bzFaiz + - - - + baxFa,z™ for all bz* € UjB;.. If bzFa, # 0 for
some ¢, then bo*(a;) # 0 and so bz*a;zt = bo* (as)zF T # 0; hence bz f(z) # 0,
a contradiction. Thus a; € rr(U;B}) and we get f(z) € rr(U;Bj)R[x;0].
Consequently 7r(U; B}) R[x; 0] = 7R[s:01(U; B}) and so we obtain

TR(UJB;)R[xa U] = TR[I;U](UJB;) = TR[w;U]((UjB;)R[x; U])
= TR[z;0] (R[SC, O'](U]Bé)R[l‘,O']),

determining the map ® : I' — A with ®(rr(U; B})) = rr(U; B}) R[z; o].
Next we show that ® is injective. Put ®(rg(UsA%)) = ®(rr(UiA;)). Then

TR(USA;)R[x; U] = TR<UtA;)R[$; 0-} and TR[I;G‘](USA/S) = TR[z;J](UtA:t)
by the result above. It then follows
TR<USAIS) = rR[m;o](USA;) NR= T'R[z;0] (UtAD NR= rR<UtA1/€)a

proving that ® is injective.

(1)=-(2): It suffices to show that ® is surjective. Let V be an ideal of R[z; 0]
and f(z) = ap+ a1z + - +apa™ € V. If g(z) = by + byz + -+ + bpa™ €
T Rlzso) (f (2)R[z; 0]), then f(z)R[z; olg(x) = 0 and f(z)z' R[z; 0]g(x) = 0 for all
nonnegative integer ¢. Since R is o-skew quasi-Armendariz, we have a; Ro*(b;)
= 0 for each 0 < 7 < n,0 < 5 < m. Then for any 0 < 57 < m, we
have b; € rr(a;Rz"™) = rp(Ra;Rz**?) for each 0 < i < n; hence b; €
N?_orr(Ra;Rx*Tt) = rr(U Ra; Rz**t). Set A; = Ra;R for i = 0,1,...,n.
Then A, = {dz? | d € A;,j > i} = U Ra; Rzt with i = i(4;). So
9(2) € rr(UyA)Rlr;0] and hence rago)(f(@)Rl;0)) C ra(My)Rlz; o,
where My = UP_yAj. Conversely, let g(x) € rr(My)R[x;0] = rRp;0)(My).
Since every term of polynomials in f(z)R[z;0] is a sum of monomials con-
tained in My, we get f(z)R[z;0]g(x) = 0 and thus g(z) € gz, (f(z)R]z; 0]),
concluding rg(z01(f (2) R[2; 0]) = 7r(M[)R[z; 0]. Consequently

TR[I;U‘] (V) = ﬂ TR[:L’;O'](f(x)R[x; U]) = ﬂ TR[IW] (Mf)

f@)ev f(z)ev
= Rl | M) = 7apo) (M)
f(z)ev
= TRla301(Uj B}) = 7r(U; B})Rlz; 0] = ®(rr(U; B})),
where My = U;;(Ra;; R) and a;; runs over the set of all coefficients of poly-
nomials in V. Thus @ is surjective.
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(2)=(1): Let f(x) =ao+a1x+---+anz", g(x) =by +brz +--- +bpa™ €
Rlz; 0] with f(x)R[x;0]g(x) = 0. Since ® is surjective,

" Rlaio) (Rlz; 0] f (2) R[z; 0]) = rr(U;B5) Rlx; o]

for some rR(UjB;) € I'. Note TR(U]‘B;-)R[.Z';O'] = rR[m;o](UjB§), SO (UjB;)g(a:)
= 0. Then for any dz* € U; B} we get dz® (b + byx + - - + bz™) = 0; hence
dxkbj =0 for all 7 = 0,1,...,m by the same computation as above. Conse-

quently b; € TRrz,0)(U;j Bj) = TRa:0) (R[z; 0 f(2) R[7; 0]) for any j = 0,1,...,m.
Especially (ap + a1z + - - + apz™)Rb; = 0 for any j = 0,1,...,m. Now from
the hypothesis that o is surjective, we get a;Ro’(bj) = 0 for all i, j. Therefore

R is o-skew quasi-Armendariz. (I
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