SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS

Chan Yong Hong, Nam Kyun Kim, and Yang Lee

Abstract

Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if $a_{i} R b_{j}=0$ for each i, j whenever polynomials $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfy $f(x) R[x] g(x)=0$. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew polynomial rings, that is, we show that if R is a semiprime ring with an epimorphism σ, then $f(x) R[x ; \sigma] g(x)=0$ implies $a_{i} R \sigma^{i+k}\left(b_{j}\right)=0$ for any integer $k \geq 0$ and i, j, where $f(x)=$ $\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \sigma]$. Moreover, we extend this property to the skew monoid rings, the Ore extensions of several types, and skew power series ring, etc. Next we define σ-skew quasi-Armendariz rings for an endomorphism σ of a ring R. Then we study several extensions of σ-skew quasi-Armendariz rings which extend known results for quasi-Armendariz rings and σ-skew Armendariz rings.

Throughout this paper R denotes an associative ring with identity. We denote by $R[x]$ the polynomial ring with an indeterminate x over R. Rege and Chhawchharia [18] introduced the notion of an Armendariz ring. A ring R is called Armendariz if whenever polynomials $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=$ $\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for each i, j. The name "Armendariz ring" was chosen from the fact that Armendariz [2, Lemma 1] had showed that a reduced ring (i.e., a ring without nonzero nilpotent elements) satisfies this condition. Many properties of Armendariz rings have been studied by several authors $[1,8,10,11,12]$. Hirano [5] introduced a quasi-Armendariz ring which is generalizing an Armendariz ring. A ring R is called quasi-Armendariz if whenever polynomials $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x]$ satisfy $f(x) R[x] g(x)=0$, then $a_{i} R b_{j}=0$ for each i, j. Hirano [5, Corollary 3.8] proved that semiprime rings are quasi-Armendariz rings. Moreover, he showed that the class of quasi-Armendariz rings is Morita stable [4, Theorem 3.12 and Proposition 3.13], and that if R is a quasi-Armendariz ring, then some extensions of R (e.g., the n-by- n upper triangular matrix ring, the polynomial ring) are also quasi-Armendariz rings. But most of these properties are not stable in Armendariz rings (for example, [10, Examples 1 and 3, etc.]).

[^0]For a ring R with a ring endomorphism σ and an σ-derivation δ, the Ore extension $R[x ; \sigma, \delta]$ of R is the ring of polynomials in x over R with usual addition and with multiplication subject to the rule $x a=\sigma(a) x+\delta(a)$ for any $a \in R$. If $\delta=0$, then $R[x ; \sigma, \delta]=R[x ; \sigma]$ is called the skew polynomial ring.

On the other hand, Hong, Kim, and Kwak [6] introduced σ-skew Armendariz for an endomorphism σ of a ring R. A ring R is called a σ-skew Armendariz if for $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{n} b_{j} x^{j}$ in $R[x ; \sigma], f(x) g(x)=0$ implies $a_{i} \sigma^{i}\left(b_{j}\right)=0$ for all $0 \leq i \leq m$, and $0 \leq j \leq n$. They proved that σ-rigid rings are σ-skew Armendariz, where a ring R is σ-rigid if for an endomorphism σ of $R, a \sigma(a)=0$ implies $a=0$. It can be easily shown that σ-rigid rings are reduced. But by [6, Example 2], reduced rings are not σ-skew Armendariz in general, even if σ is an automorphism of R. We also can find more results for skew Armendariz rings in [3, 14].

Even though reduced rings are not σ-skew Armendariz, in Section 1, we show that if R is a semiprime ring with an epimorphism σ, then $f(x) R[x ; \sigma] g(x)=$ 0 implies $a_{i} R \sigma^{i+k}\left(b_{j}\right)=0$ for any integer $k \geq 0$ and i, j, where $f(x)=$ $\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \sigma]$. Moreover, we extend the quasi-Armendariz property of semiprime rings to the skew monoid rings, the Ore extensions of several types, and skew power series ring, etc.

Based on results in Section 1, we define σ-skew quasi-Armendariz rings for an endomorphism σ of a ring R in Section 2. Then we study several extensions of σ skew quasi-Armendariz rings which extend known results for quasi-Armendariz rings and σ-skew Armendariz rings.

1. Polynomial extensions of semiprime rings

Recall that a monoid G is called a unique product monoid (simply, u.p.monoid) if for any two nonempty finite subsets $A, B \subseteq G$ there exists $c \in G$ uniquely presented in the form $a b$ where $a \in A$ and $b \in B$. The class of u.p.-monoids is quite large and important (see [15] and [16] for details). For example, this class includes the right or left ordered monoids, submonoids of a free group, and torsion-free nilpotent groups.

Let R be a ring and G a u.p.-monoid. Assume that there is a monoid homomorphism into the epimorphism monoid of R via the acting of G on R. We denote by $\sigma_{g}(r)$ the image of $r \in R$ under $g \in G$. The skew monoid ring $R * G$ is a ring which as a left R-module is free with basis G and multiplication defined by the rule $g r=\sigma_{g}(r) g$.

Theorem 1.1. Let R be a semiprime ring and G a u.p.-monoid. Then $\left(a_{0} g_{0}+\right.$ $\left.\cdots+a_{m} g_{m}\right) R * G\left(b_{0} h_{0}+\cdots+b_{n} h_{n}\right)=0$ with $a_{i}, b_{j} \in R, g_{i}, h_{j} \in G$ if and only if $a_{i} R \sigma_{g_{i}}\left(\sigma_{g}\left(b_{j}\right)\right)=0$ for any $g \in G$ and $0 \leq i \leq m$ and $0 \leq j \leq n$.

Proof. Suppose that $\left(a_{0} g_{0}+\cdots+a_{m} g_{m}\right) R * G\left(b_{0} h_{0}+\cdots+b_{n} h_{n}\right)=0$ with $a_{i}, b_{j} \in R, g_{i}, h_{j} \in G$. Then for any $r \in R$ and $g \in G$, we have the following
equation:
(*)

$$
\left(a_{0} g_{0}+\cdots+a_{m} g_{m}\right) \operatorname{gr}\left(b_{0} h_{0}+\cdots+b_{n} h_{n}\right)=0
$$

We will show that $a_{i} R \sigma_{g_{i}}\left(\sigma_{g}\left(b_{j}\right)\right)=0$ for any $g \in G$ and $0 \leq i \leq m$ and $0 \leq j \leq n$ by using induction on m. If $m=0$, then

$$
\begin{aligned}
0 & =\left(a_{0} g_{0}\right) g r\left(b_{0} h_{0}+\cdots+b_{n} h_{n}\right) \\
& =a_{0} \sigma_{g_{0}}\left(\sigma_{g}\left(r b_{0}\right)\right) g_{0} g h_{0}+\cdots+a_{0} \sigma_{g_{0}}\left(\sigma_{g}\left(r b_{n}\right)\right) g_{0} g h_{n} .
\end{aligned}
$$

By [15, Lemma 1, p.119], $g_{i} g h_{u} \neq g_{0} g h_{v}$ if $u \neq v$. Thus $a_{0} \sigma_{g_{0}}\left(\sigma_{g}\left(r b_{j}\right)\right)=0$ for all $0 \leq j \leq n$ and hence $a_{0} R \sigma_{g_{0}}\left(\sigma_{g}\left(b_{j}\right)\right)=0$ since $\sigma_{g_{0}} \cdot \sigma_{g}$ is surjective. Suppose that $m \geq 1$. Since G is a u.p.-monoid, there exist p, q such that $g_{p} g h_{q}$ is uniquely presented by considering two subsets $A=\left\{g_{0} g, g_{1} g, \ldots, g_{m} g\right\}$ and $B=\left\{h_{0}, h_{1}, \ldots, h_{n}\right\}$ of G. After reordering if necessary, we may assume that $p=0$ and $q=0$. Then from Eq. $(*)$, we have $a_{0} \sigma_{g_{0}}\left(\sigma_{g}\left(r b_{0}\right)\right)=0$. Moreover, since $\sigma_{g_{0}} \cdot \sigma_{g}$ is surjective, $a_{0} R \sigma_{g_{0}}\left(\sigma_{g}\left(b_{0}\right)\right)=0$. Thus for any $s \in R$, we have

$$
\begin{aligned}
0 & =\left(a_{0} g_{0}+\cdots+a_{m} g_{m}\right) g r b_{0} s\left(b_{0} h_{0}+\cdots+b_{n} h_{n}\right) \\
& =\left(a_{1} g_{1}+\cdots+a_{m} g_{m}\right) \operatorname{gr}\left(b_{0} s b_{0} h_{0}+\cdots+b_{0} s b_{n} h_{n}\right) .
\end{aligned}
$$

By the induction hypothesis, $a_{i} \sigma_{g_{i}}\left(\sigma_{g}\left(r b_{0} s b_{j}\right)\right)=0$ for any $1 \leq i \leq m$ and $0 \leq j \leq n$. Then

$$
0=a_{i} \sigma_{g_{i}}\left(\sigma_{g}\left(r b_{0} s b_{0}\right)\right)=a_{i} \sigma_{g_{i}}\left(\sigma_{g}(r)\right) \sigma_{g_{i}}\left(\sigma_{g}\left(b_{0}\right)\right) \sigma_{g_{i}}\left(\sigma_{g}(s)\right) \sigma_{g_{i}}\left(\sigma_{g}\left(b_{0}\right)\right)
$$

Since $\sigma_{g_{i}} \cdot \sigma_{g}$ is surjective for any $1 \leq i \leq m, a_{i} R \sigma_{g_{i}}\left(\sigma_{g}\left(b_{0}\right)\right) R \sigma_{g_{i}}\left(\sigma_{g}\left(b_{0}\right)\right)=0$. Since R is semiprime, $a_{i} R \sigma_{g_{i}}\left(\sigma_{g}\left(b_{0}\right)\right)=0$ for any $1 \leq i \leq m$. Consequently, we have $a_{i} R \sigma_{g_{i}}\left(\sigma_{g}\left(b_{0}\right)\right)=0$ for any $0 \leq i \leq m$. Thus Eq.(*) becomes

$$
\left(a_{0} g_{0}+\cdots+a_{m} g_{m}\right) g r\left(b_{1} h_{1}+\cdots+b_{n} h_{n}\right)=0
$$

Continuing the process as above, we can get

$$
a_{i} \sigma_{g_{i}}\left(\sigma_{g}\left(r b_{j}\right)\right)=0,
$$

and so

$$
a_{i} R \sigma_{g_{i}}\left(\sigma_{g}\left(b_{j}\right)\right)=0
$$

for any $g \in G$ and $0 \leq i \leq m$ and $0 \leq j \leq n$.
A skew (Laurent) polynomial ring $R[x ; \sigma]\left(R\left[x, x^{-1} ; \sigma\right]\right)$ with an epimorphism (an automorphism) σ over R is a skew monoid ring $R * G$ with $G=$ $\left\{1, x, x^{2}, \ldots\right\}\left(G=\left\{\ldots, x^{-2}, x^{-1}, 1, x, x^{2}, \ldots\right\}\right)$ and $\sigma_{x}(r)=\sigma(r)$ for $r \in R$. We denote by \mathbb{Z} the ring of integers.

Corollary 1.2. Let R be a semiprime ring with an epimorphism σ and $f(x)=$ $\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \sigma]$. Then $f(x) R[x ; \sigma] g(x)=0$ if and only if $a_{i} R \sigma^{i+k}\left(b_{j}\right)=0$ for any integer $k \geq 0,0 \leq i \leq m$ and $0 \leq j \leq n$.

Corollary 1.3. Let R be a semiprime ring with an automorphism σ. Then for $f(x)=\sum_{i=m}^{n} a_{i} x^{i}, g(x)=\sum_{j=s}^{l} b_{j} x^{j} \in R\left[x, x^{-1} ; \sigma\right]$, where $n, m, s, l \in \mathbb{Z}$, $f(x) R\left[x, x^{-1} ; \sigma\right] g(x)=0$ if and only if $a_{i} R \sigma^{i+t}\left(b_{j}\right)=0$ for any i, j and integer t.

From Corollary 1.2, we may conjecture that the condition " σ is an epimorphism of R " can be replaced by " σ is a monomorphism of R ". But the following example erases the possibility.

Example 1.4. We refer the example of [13, Example 3.7]. Let R be a subset of $\mathbb{N} \times \mathbb{N}$ matrices over a field K defined as follows

$$
R=\left\{M \mid M=\sum_{i, j=1}^{n} a_{i j} e_{i j}+a \sum_{i=n+1}^{\infty} e_{i i} \text { for some } n \in \mathbb{N} \text { and } a_{i j}, a \in K\right\}
$$

where $\left\{e_{i j}\right\}_{i, j \in \mathbb{N}}$ denotes the set of matrix units. Then R is a prime ring. The map $\sigma: R \rightarrow R$ defined by

$$
\sigma\left(\sum_{i, j=1}^{n} a_{i j} e_{i j}+a \sum_{i=n+1}^{\infty} e_{i i}\right)=a e_{11}+\sum_{i, j=1}^{n} a_{i j} e_{(i+1)(j+1)}+a \sum_{i=n+2}^{\infty} e_{i i}
$$

is a monomorphism of R. Note that $e_{11} \sigma(R)=K e_{11}$. Therefore, for any integer $t \geq 0$, we have $e_{11} x R x^{t} e_{11}=K e_{11} e_{(2+t)(2+t)} x^{t+1}=0$, and so $e_{11} x R[x ; \sigma] e_{11}=$ 0 . But $e_{11} R \sigma\left(e_{11}\right) \neq 0$.

However, we have the following on a reduced ring (i.e., a ring has no nonzero nilpotent elements) with an endomorphism.
Remark 1. Let R be a reduced ring with an endomorphism σ and $f(x)=$ $\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \sigma]$. Then $f(x) R[x ; \sigma] g(x)=0$ if and only if $a_{i} R \sigma^{i+t}\left(b_{j}\right)=0$ for any integer $t \geq 0$ and $0 \leq i \leq m, 0 \leq j \leq n$.
Proof. Suppose that $f(x) R[x ; \sigma] g(x)=0$, where $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$ and $g(x)=$ $\sum_{j=0}^{n} b_{j} x^{j}$ in $R[x ; \sigma]$. Equivalently, for any $r \in R$ and integer $t \geq 0$,

$$
\begin{equation*}
\left(a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right) x^{t} r\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)=0 . \tag{1}
\end{equation*}
$$

We claim that $a_{i} R \sigma^{i+t}\left(b_{j}\right)=0$ for any $0 \leq i \leq m, 0 \leq j \leq n$. We proceed by induction on $i+j$. If $i+j=0$, then $a_{0} \sigma^{t}\left(b_{0}\right)=0$ and so $a_{0} R \sigma^{t}\left(b_{0}\right)=0$ since R is reduced. Suppose that our claim is true for $i+j=k-1$, where $1 \leq k \leq m+n$. This implies that $a_{i} R \sigma^{i+t}\left(b_{j}\right)=0$ for $i+j=0,1, \ldots, k-1$. Then we have

$$
\begin{equation*}
a_{0} \sigma^{t}\left(r b_{k}\right)+a_{1} \sigma^{1+t}\left(r b_{k-1}\right)+\cdots+a_{k} \sigma^{k+t}\left(r b_{0}\right)=0 . \tag{2}
\end{equation*}
$$

We first replace r by b_{0} in Eq.(2). Then from Eq.(2), $0=a_{0} \sigma^{t}\left(b_{0} b_{k}\right)+$ $a_{1} \sigma^{1+t}\left(b_{0} b_{k-1}\right)+\cdots+a_{k} \sigma^{k+t}\left(b_{0} b_{0}\right)=a_{k} \sigma^{k+t}\left(b_{0} b_{0}\right)$. Thus $a_{k} \sigma^{k+t}\left(b_{0}\right) \sigma^{k+t}\left(b_{0}\right)=$ 0 . Since R is reduced, $a_{k} \sigma^{k+t}\left(b_{0}\right)=0$ and moreover $a_{k} R \sigma^{k+t}\left(b_{0}\right)=0$. Thus Eq.(2) becomes

$$
\begin{equation*}
a_{0} \sigma^{t}\left(r b_{k}\right)+a_{1} \sigma^{1+t}\left(r b_{k-1}\right)+\cdots+a_{k-1} \sigma^{k-1+t}\left(r b_{1}\right)=0 \tag{3}
\end{equation*}
$$

We next replace r by b_{1} in Eq.(3). Then from Eq.(3), we have $a_{k-1} \sigma^{k-1+t}\left(b_{1} b_{1}\right)$ $=0$ and so $a_{k-1} R \sigma^{k-1+t}\left(b_{1}\right)=0$ by the same method as above. Continuing this process, we have $a_{i} R \sigma^{i+t}\left(b_{j}\right)=0$ for any $i+j=k$. Consequently we have $a_{i} R \sigma^{i+t}\left(b_{j}\right)=0$ for any integer $t \geq 0$ and $0 \leq i \leq m, 0 \leq j \leq n$.

Now we extend Corollary 1.2 and Remark 1 to the Ore extension $R[x ; \sigma, \delta]$ over a semiprime ring R.

Lemma 1.5. Let R be a semiprime ring and consider $R[x ; \sigma, \delta]$ with an automorphism σ and σ-derivation δ over R. Then we have the following assertions:
(1) If $a R \sigma^{n}(b)=0$ for some $a, b \in R$ and all integer $n \geq 0$, then $a R \delta^{m}(b)=0$ for all integer $m \geq 0$.
(2) If aR $\sigma^{n}(b)=0$ for some $a, b \in R$ and all integer $n \geq 0$, then $a R \sigma^{n_{1}} \delta^{m_{1}}$ $\cdots \sigma^{n_{t}} \delta^{m_{t}}(b)=0$ for all integers $m_{i}, n_{j} \geq 0$.
Proof. (1) Suppose that $a R \sigma^{n}(b)=0$ for some $a, b \in R$ and all integer $n \geq 0$. We will proceed by induction on m to show $a R \delta^{m}(b)=0$ for all integer $m \geq 0$. For $m=0$, it is trivial. We now suppose $m \geq 1$. Since σ is an automorphism of $R, a=\sigma\left(a^{\prime}\right)$ for some $a^{\prime} \in R$ and so $a^{\prime} R \sigma^{n}(b)=0$ for all $n \geq 0$ from $\sigma\left(a^{\prime} R \sigma^{n}(b)\right)=a R \sigma^{n+1}(b)=0$. Thus we obtain $a^{\prime} R \delta^{m-1}(b)=0$ by induction hypothesis. From $\delta\left(a^{\prime} R \delta^{m-1}(b)\right)=0$, we have $\sigma\left(a^{\prime}\right) R \delta^{m}(b)=-\delta\left(a^{\prime} R\right) \delta^{m-1}(b)$. Note that by the induction hypothesis, $a R \delta^{m-1}(b)=0$ and so $\delta^{m-1}(b) R a=$ 0 since R is semiprime. Then $\left(a R \delta^{m}(b) R\right)^{2}=\sigma\left(a^{\prime}\right) R \delta^{m}(b) R a R \delta^{m}(b) R=$ $-\delta\left(a^{\prime} R\right)\left(\delta^{m-1}(b) R a\right) R \delta^{n}(b) R=0$. Since R is semiprime, $a R \delta^{m}(b)=0$.
(2) Suppose that $a R \sigma^{n}(b)=0$ for some $a, b \in R$ and all integer $n \geq 0$. Equivalently, $a R \sigma^{i}\left(\sigma^{n_{t}}(b)\right)=0$ for all integers $i, n_{t} \geq 0$. Then by (1), we have $a R \delta^{m_{t-1}}\left(\sigma^{n_{t}}(b)\right)=0$ for all $m_{t-1} \geq 0$. Moreover, since $a^{\prime} R \sigma^{n}(b)=0$ for all $n \geq 0$ as in the proof of (1), $a^{\prime} R \delta^{m}(b)=0$ by (1) and so $a R \sigma\left(\delta^{m}(b)\right)=0$ for all $m \geq 0$, where $\sigma\left(a^{\prime}\right)=a$. Also since $a^{\prime \prime} R \sigma^{n}(b)=0$ for all $n \geq 0$ similarly (where $\left.\sigma^{2}\left(a^{\prime \prime}\right)=a\right), a^{\prime \prime} R \delta^{m}(b)=0$ by (1) and so $a R \sigma^{2}\left(\delta^{m}(b)\right)=0$ for all $m \geq 0$. Continuing this process, we have $a R \sigma^{n_{1}} \delta^{m_{1}} \cdots \sigma^{n_{t}} \delta^{m_{t}}(b)=0$ for all integers $m_{i}, n_{j} \geq 0$.
Theorem 1.6. Let R be a semiprime ring with an automorphism σ of finite order. Then for $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \sigma, \delta]$,

$$
f(x) R[x ; \sigma, \delta] g(x)=0 \text { if and only if } a_{i} R \sigma^{n_{1}} \delta^{m_{1}} \cdots \sigma^{n_{t}} \delta^{m_{t}}\left(b_{j}\right)=0
$$

for all integers $m_{u}, n_{v} \geq 0$ and $0 \leq i \leq m, 0 \leq j \leq n$.
Proof. It is enough to show the necessity. Suppose that $f(x) R[x ; \sigma, \delta] g(x)=0$. Then for any $r \in R$ and integer $t \geq 0$, we have
(*) $\quad\left(a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right) r x^{t}\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)=0$.
By Lemma 1.5, it suffices to show that $a_{i} R \sigma^{l}\left(b_{j}\right)=0$ for any integer $l \geq 0$ and $0 \leq i \leq m, 0 \leq j \leq n$. We proceed by induction on $i+j$. If $i+j=0$, then $a_{0} r x^{t} \bar{b}_{0}=0$ and so $a_{0} R \sigma^{t}\left(b_{0}\right)=0$ for any integer $t \geq 0$. Suppose that $i+j \geq 1$. From Eq.(*), we have $a_{m} \sigma^{m}(r) \sigma^{m+t}\left(b_{n}\right)=0$. Since σ has a finite
order, $a_{m} R \sigma^{l}\left(b_{n}\right)=0$ for any integer $l \geq 0$. Hence from $f(x) R[x ; \sigma, \delta] g(x)=0$, for any $r, s \in R$, we have

$$
\begin{aligned}
0 & =\left(a_{0}+\cdots+a_{m} x^{m}\right) r x^{t} \sigma^{-(m+t)}\left(a_{m}\right) s\left(b_{0}+\cdots+b_{n} x^{n}\right) \\
& =\left(a_{0}+\cdots+a_{m} x^{m}\right) r x^{t}\left(\sigma^{-(m+t)}\left(a_{m}\right) s b_{0}+\cdots+\sigma^{-(m+t)}\left(a_{m}\right) s b_{n-1} x^{n-1}\right) .
\end{aligned}
$$

Then $a_{m} \sigma^{m}(r) \sigma^{m+t}\left(\sigma^{-(m+t)}\left(a_{m}\right) s b_{n-1}\right)=0$ and so $a_{m} R a_{m} R \sigma^{m+t}\left(b_{n-1}\right)=0$. Since R is semiprime, we have $a_{m} R \sigma^{m+t}\left(b_{n-1}\right)=0$ and hence $a_{m} R \sigma^{l}\left(b_{n-1}\right)=$ 0 for any integer $l \geq 0$. Continuing this process, we have $a_{m} R \sigma^{l}\left(b_{j}\right)=0$ for any integer $l \geq 0$ and $0 \leq j \leq n$. Thus by Lemma 1.5, Eq.(*) becomes

$$
\left(a_{0}+a_{1} x+\cdots+a_{m-1} x^{m-1}\right) r x^{t}\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)=0
$$

By the induction hypothesis, we have $a_{i} R \sigma^{l}\left(b_{j}\right)=0$ for any integer $l \geq 0$, $0 \leq i \leq m-1$ and $0 \leq j \leq n$. In the above, $a_{m} R \sigma^{l}\left(b_{j}\right)=0$ for any integer $l \geq 0$ and $0 \leq j \leq n$. Therefore $a_{i} R \sigma^{l}\left(b_{j}\right)=0$ for any integer $l \geq 0,0 \leq i \leq m$ and $0 \leq j \leq n$.

Corollary 1.7. Let R be a semiprime ring. Then $f(x) R[x ; \delta] g(x)=0$ for $f(x)=\sum_{i=0}^{m}, g(x)=\sum_{j=0}^{n} \in R[x ; \delta]$ if and only if $a_{i} R \delta^{l}\left(b_{j}\right)=0$ for any integer $l \geq 0,0 \leq i \leq m$ and $0 \leq j \leq n$.

The following example shows that the condition " σ has a finite order" is essential in Theorem 1.6.

Example 1.8. We refer the example of [9, Example 4.3]. Let F be a field and $F_{i}=F$ for $i \in \mathbb{Z}$. Let R be a F-subalgebra of $\prod_{i \in \mathbb{Z}} F_{i}$ generated by $\oplus_{i \in \mathbb{Z}} F_{i}$ and $1_{\prod_{i \in \mathbb{Z}} F_{i}}$. Then

$$
R=\left\{\left(a_{i}\right) \in \prod_{i \in \mathbb{Z}} F_{i} \mid a_{i} \text { is eventually constant }\right\}
$$

Let σ be an automorphism of R defined by $\sigma\left(\left(a_{i}\right)\right)=\left(a_{i+1}\right)$. Then σ does not have a finite order. Let $e_{1}=\left(a_{i}\right) \in R$ with $a_{1}=1$ and $a_{i}=0$ for all $i \neq 1$. Then $e_{1} x R[x ; \sigma] e_{1} x=0$, but $e_{1} R e_{1} \neq 0$. In spite of this fact, since R is semiprime, by Corollary 1.2, $f(x) R[x ; \sigma] g(x)=0$ if and only if $a_{i} R \sigma^{i+k} \sigma\left(b_{j}\right)=0$ for any integer $t \geq 0$ and i, j, where $f(x)=\sum_{i=0}^{m} a_{i} x^{i}, g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \sigma]$.

For skew power series rings, we already obtained the following result using a similar method as in the proof of Remark 1.

Remark 2 ([7, Lemma 4]). Let R be a semiprime ring with an epimorphism σ. Then for $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}, g(x)=\sum_{j=0}^{\infty} b_{j} x^{j} \in R[[x ; \sigma]], f(x) R[[x ; \sigma]] g(x)=0$ if and only if $a_{i} R \sigma^{i+t}\left(b_{j}\right)=0$ for all $t, i, j \geq 0$.

2. Skew quasi-Armendariz rings

Based on Corollary 1.2, σ-skew Armendariz rings in [6] and quasi-Armendariz rings in [5], we define the following.

Definition 2.1. Let σ be an endomorphism of a ring R. A ring R is called a σ-skew quasi-Armendariz ring if for $f(x)=\sum_{i=0}^{m} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{n} b_{j} x^{j}$ in $R[x ; \sigma], f(x) R[x ; \sigma] g(x)=0$ implies $a_{i} R \sigma^{i}\left(b_{j}\right)=0$ for all $0 \leq i \leq m$, and $0 \leq j \leq n$.
Remark 3. Let R be a σ-skew quasi-Armendariz ring with $f(x) R[x ; \sigma] g(x)=0$. Then $f(x) x^{t} R[x ; \sigma] g(x)=0$ for any integer $t \geq 0$ and so $a_{i} R \sigma^{i+t}\left(b_{j}\right)=0$. Therefore, comparing with Corollary 1.2, Definition 2.1 makes sense.

By Remark 1, if R is a reduced ring, then R is σ-skew quasi-Armendariz when σ is an endomorphism of R. But reduced rings are not σ-skew Armendariz even if σ is an automorphism (see Example 2.2(1) below). We also note that if R is a σ-skew Armendariz ring, then R is σ-skew quasi-Armendariz when σ is an epimorphism of R. Moreover, by Corollary 1.2, semiprime rings are also σ skew quasi-Armendariz when σ is an epimorphism of R. However, semiprime rings are not σ-skew quasi-Armendariz when σ is a monomorphism of R by Example 1.4. Therefore σ-skew quasi-Armendariz rings extend both σ-skew Armendariz rings and semiprime rings when σ is an epimorphism of R. We note that the semiprimenesses of R and $R[x ; \sigma]$ do not depend on each other by [9, Example 4.3] and [17, Theorem 2.2].

The following examples show that σ-skew quasi-Armendariz rings strictly contain σ-skew Armendariz rings and semiprime (so reduced) rings in spite of σ being bijective.
Example 2.2. (1) Let $R=F \oplus F$, where F is a field, and let $\sigma: R \rightarrow R$ be an automorphism of R defined by $\sigma((a, b))=(b, a)$. Then by [6, Example 2], R is not σ-skew Armendariz. By Remark 1, reduced rings with any endomorphism σ are always σ-skew quasi-Armendariz.
(2) We consider the ring

$$
R=\left\{\left.\left(\begin{array}{ll}
a & t \\
0 & a
\end{array}\right) \right\rvert\, a \in \mathbb{Z}, t \in \mathbb{Q}\right\}
$$

where \mathbb{Q} is the set of all rational numbers, respectively. Let $\sigma: R \rightarrow R$ be an automorphism defined by $\sigma\left(\left(\begin{array}{ll}a & t \\ 0 & a\end{array}\right)\right)=\left(\begin{array}{cc}a & t / 2 \\ 0 & a\end{array}\right)$. Then R is σ-skew Armendariz by [6, Example 1], and so R is σ-skew quasi-Armendariz. But R is not semiprime (so not reduced) obviously.

We thereafter investigate the extensions, that is, matrix rings, polynomial rings, homomorphic images and classical quotient rings over a σ-skew quasiArmendariz ring.

We first study several types of matrix rings over σ-skew quasi-Armendariz rings. The $n \times n$ full (or upper triangular) matrix ring over quasi-Armendariz ring is quasi-Armendariz [5, Theorem 3.12]. We extends these results to σ skew quasi-Armendariz rings. We denote the $n \times n$ full matrix ring over R by $\mathbb{M}_{n}(R)$. Recall that if σ is an endomorphism of a ring R, then the map $\bar{\sigma}: \mathbb{M}_{n}(R) \rightarrow \mathbb{M}_{n}(R)$ defined by $\bar{\sigma}\left(\left(a_{i j}\right)\right)=\left(\sigma\left(a_{i j}\right)\right)$ is an endomorphism of $\mathbb{M}_{n}(R)$ and clearly this map extends σ.

Theorem 2.3. Let σ be an endomorphism of a ring R and fix $n \geq 2$. Then R is σ-skew quasi-Armendariz if and only if $\mathbb{M}_{n}(R)$ is $\bar{\sigma}$-skew quasi-Armendariz.

Proof. We present only the case when $n=2$, the general case can be proved by the same method. Note that $\mathbb{M}_{n}(R)[x ; \bar{\sigma}] \cong \mathbb{M}_{n}(R[x ; \sigma])$. Then $f, g \in$ $\mathbb{M}_{n}(R)[x ; \bar{\sigma}]$ can be expressed by the following forms:

$$
\begin{aligned}
& f(x)=\sum_{i=0}^{p}\left(\begin{array}{ll}
a_{i_{11}} & a_{i_{12}} \\
a_{i_{21}} & a_{i_{22}}
\end{array}\right) x^{i}=\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right), \\
& g(x)=\sum_{j=0}^{q}\left(\begin{array}{ll}
b_{j_{11}} & b_{j_{12}} \\
b_{j_{21}} & b_{j_{22}}
\end{array}\right) x^{j}=\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right),
\end{aligned}
$$

where $f_{s t}=\sum_{i=0}^{p} a_{i_{s t}} x^{i}$ and $g_{u v}=\sum_{j=0}^{q} b_{j_{u v}} x^{j}$. Suppose that

$$
\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right) \mathbb{M}_{2}(R[x ; \sigma])\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)=0
$$

Then for any $r_{i j} \in R$ and integers $w_{i j} \geq 0$,

$$
\left(\begin{array}{ll}
f_{11} & f_{12} \tag{*}\\
f_{21} & f_{22}
\end{array}\right)\left(\begin{array}{ll}
r_{11} x^{w_{11}} & r_{12} x^{w_{12}} \\
r_{21} x^{w_{21}} & r_{22} x^{w_{22}}
\end{array}\right)\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)=0
$$

If we take $r_{i j}$'s are zero when $i \neq t$ or $j \neq u$ in Eq. $(*)$, then we have $f_{s t} r_{t u} x^{w_{t u}} g_{u v}=0$ for each $1 \leq t, u \leq 2$. Consequently, $f_{s t} R[x ; \sigma] g_{u v}=0$ for any $1 \leq s, t, u, v \leq 2$. Since R is σ-skew quasi-Armendariz, we have $a_{i_{s t}} R \sigma^{i}\left(b_{j_{u v}}\right)=0$ for any $0 \leq i \leq p$ and $0 \leq j \leq q$. Therefore, from the fact

$$
\bar{\sigma}^{i}\left(\left(\begin{array}{ll}
b_{j_{11}} & b_{j_{12}} \\
b_{j_{21}} & b_{j_{22}}
\end{array}\right)\right)=\left(\begin{array}{ll}
\sigma^{i}\left(b_{j_{11}}\right) & \sigma^{i}\left(b_{j_{12}}\right) \\
\sigma^{i}\left(b_{j_{21}}\right) & \sigma^{i}\left(b_{j_{22}}\right)
\end{array}\right)
$$

we have

$$
\left(\begin{array}{ll}
a_{i_{11}} & a_{i 12} \\
a_{i_{21}} & a_{i_{22}}
\end{array}\right) \mathbb{M}_{2}(R) \bar{\sigma}^{i}\left(\left(\begin{array}{ll}
b_{j_{11}} & b_{j_{12}} \\
b_{j_{21}} & b_{j_{22}}
\end{array}\right)\right)=0
$$

for any $0 \leq s \leq p$ and $0 \leq t \leq q$. Therefore $\mathbb{M}_{2}(R)$ is $\bar{\sigma}$-skew quasi-Armendariz.
The converse can be easily checked using diagonal matrices.
The class of quasi-Armendariz rings is Morita stable by [5, Theorem 3.12 and Proposition 3.13]. By the same way as in [5, Proposition 3.13], we also have the following result. Let σ be an endomorphism of a ring R and e an idempotent of R such that $\sigma(e)=e$. Then we have an endomorphism $\bar{\sigma}: e R e \rightarrow e R e$ defined by $\bar{\sigma}(e r e)=e \sigma(r) e$. We note that there exists a σ-skew quasi-Armendariz ring with idempotent which is not fixed by σ (see Example 2.2(1)).
Proposition 2.4. Let σ be an endomorphism of a ring R and $e^{2}=e \in R$ with $\sigma(e)=e$. If R is σ-skew quasi-Armendariz, then $e R e$ is $\bar{\sigma}$-skew quasiArmendariz.

We denote the $n \times n$ upper triangular matrix ring over a ring R by $\mathbb{U M}_{n}(R)$. By the same method as in the proof of Theorem 2.3, we obtain the following.

Theorem 2.5. Let σ be an endomorphism of a ring R and fix $n \geq 2$. Then R is σ-skew quasi-Armendariz if and only if $\mathbb{U M}_{n}(R)$ is $\bar{\sigma}$-skew quasi-Armendariz.

For a ring R, let

$$
R_{w}=\left\{M \in \mathbb{U M}_{w}(R) \mid M=\sum_{i=1}^{w} a e_{i i}+\sum_{1 \leq i<j \leq w} a_{i j} e_{i j}\right\},
$$

where $e_{s t}$'s are matrix units in $\mathbb{U M}_{w}(R)$. For an endomorphism σ of R, if R is σ-rigid (equivalently, $R[x ; \sigma]$ is reduced by [6, Proposition 3]), then R_{2} and R_{3} are $\bar{\sigma}$-skew Armendariz rings by [7, Proposition 17]. But R_{w} are not $\bar{\sigma}$ skew Armendariz for $w \geq 4$ even if σ is an automorphism by [6, Example 18]. However, we show that if R is semiprime, then R_{w} is a $\bar{\sigma}$-skew quasi-Armendariz ring for any integer $w \geq 2$ when σ is an epimorphism of R.

Theorem 2.6. Let σ be an epimorphism of a ring R. If R is semiprime, then R_{w} is $\bar{\sigma}$-skew quasi-Armendariz for any integer $w \geq 2$.

Proof. Suppose that $f R_{w}[x ; \bar{\sigma}] g=0$ for $f, g \in R_{w}[x ; \bar{\sigma}]$. Let $S=R[x ; \sigma]$ and note that $R_{w}[x ; \bar{\sigma}] \cong R[x ; \sigma]_{w}=S_{w}$ for any integer $w \geq 2$. Then f and g can be expressed by the following forms:

$$
\begin{aligned}
& f=\sum_{u=0}^{n} A_{u} x^{u}=\sum_{i=1}^{w} f_{11} e_{i i}+\sum_{1 \leq i<j \leq w} f_{i j} e_{i j} \\
& g=\sum_{v=0}^{m} B_{v} x^{v}=\sum_{s=1}^{w} g_{11} e_{s s}+\sum_{1 \leq s<t \leq w} g_{s t} e_{s t}
\end{aligned}
$$

where $A_{u}=\left(a_{i j}^{u}\right), B_{v}=\left(b_{s t}^{v}\right) \in R_{w}$ and $f_{i j}, g_{s t} \in R[x ; \sigma]$. We will show that $f_{i j} S g_{s t}=0$ for all $1 \leq i, j, s, t \leq w$. We will proceed by induction on w. Let

$$
f=\left(\begin{array}{cc}
f_{11} & f_{12} \\
0 & f_{11}
\end{array}\right), g=\left(\begin{array}{cc}
g_{11} & g_{12} \\
0 & g_{11}
\end{array}\right)
$$

such that $f S_{2} g=0$. Then

$$
\left(\begin{array}{cc}
f_{11} & f_{12} \\
0 & f_{11}
\end{array}\right)\left(\begin{array}{cc}
h_{11} & h_{12} \\
0 & h_{11}
\end{array}\right)\left(\begin{array}{cc}
g_{11} & g_{12} \\
0 & g_{11}
\end{array}\right)=0
$$

for any $\left(\begin{array}{cc}h_{11} & h_{12} \\ 0 & h_{11}\end{array}\right) \in S_{2}$. Then we have the following:

$$
\begin{align*}
f_{11} h_{11} g_{11} & =0 \tag{1}\\
f_{11} h_{11} g_{12}+f_{11} h_{12} g_{11}+f_{12} h_{11} g_{11} & =0 \tag{2}
\end{align*}
$$

By Eq.(1), $f_{11} S g_{11}=0$ and so Eq.(2) becomes $f_{11} r x^{p} g_{12}+f_{12} r x^{p} g_{11}=0$ for any $r \in R$ and integer $p \geq 0$. Then we have

$$
\begin{equation*}
a_{11}^{0} r \sigma^{p}\left(b_{12}^{0}\right)+a_{12}^{0} r \sigma^{p}\left(b_{11}^{0}\right)=0 ; \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
a_{11}^{0} r \sigma^{p}\left(b_{12}^{1}\right)+a_{11}^{1} \sigma(r) \sigma^{1+p}\left(b_{12}^{0}\right)+a_{12}^{0} r \sigma^{p}\left(b_{11}^{1}\right)+a_{12}^{1} \sigma(r) \sigma^{1+p}\left(b_{11}^{0}\right)=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
a_{11}^{n} \sigma^{n}(r) \sigma^{n+p}\left(b_{12}^{m}\right)+a_{12}^{n} \sigma^{n}(r) \sigma^{n+p}\left(b_{11}^{m}\right)=0 . \tag{5}
\end{equation*}
$$

Since $f_{11} S g_{11}=0$, by Corollary 1.2 , we have

$$
\begin{equation*}
a_{11}^{u} R \sigma^{u+p}\left(b_{11}^{v}\right)=0 \tag{6}
\end{equation*}
$$

for any integer $p \geq 0,0 \leq u \leq n$ and $0 \leq v \leq m$. If we multiply $s \sigma^{p}\left(b_{11}^{0}\right)$ (where $s \in R$) on the right side of Eq.(3), then $\overline{a_{12}^{0}} r \sigma^{p}\left(b_{11}^{0}\right) s \sigma^{p}\left(b_{11}^{0}\right)=0$ and so $a_{12}^{0} R \sigma^{p}\left(b_{11}^{0}\right) R \sigma^{p}\left(b_{11}^{0}\right)=0$. Since R is semiprime, we have

$$
\begin{equation*}
a_{12}^{0} R \sigma^{p}\left(b_{11}^{0}\right)=0 \text { and so } a_{11}^{0} R \sigma^{p}\left(b_{12}^{0}\right)=0 \tag{7}
\end{equation*}
$$

for any integer $p \geq 0$. If we multiply $s \sigma^{1+p}\left(b_{11}^{0}\right)$ (where $s \in R$) on the right side of Eq.(4), using Eqs.(6), (7) and the fact that p is any integer, then $a_{12}^{1} R \sigma^{1+p}\left(b_{11}^{0}\right) R \sigma^{1+p}\left(b_{11}^{0}\right)=0$. Since R is semiprime, $a_{12}^{1} R \sigma^{1+p}\left(b_{11}^{0}\right)=0$ for any integer $p \geq 0$. Then Eq.(4) becomes

$$
a_{11}^{0} r \sigma^{p}\left(b_{12}^{1}\right)+a_{11}^{1} \sigma(r) \sigma^{1+p}\left(b_{12}^{0}\right)+a_{12}^{0} r \sigma^{p}\left(b_{11}^{1}\right)=0 .
$$

If we replace r in Eq. (4^{\prime}) by $r \sigma^{p}\left(b_{11}^{1}\right) s$ (where $s \in R$), then $a_{12}^{0} r \sigma^{p}\left(b_{11}^{1}\right) s \sigma^{p}\left(b_{11}^{1}\right)$ $=0$ and so $a_{12}^{0} R \sigma^{p}\left(b_{11}^{1}\right)=0$ for any integer $p \geq 0$. Continuing the above processes, from Eq. $\left(4^{\prime}\right)$ we have $a_{11}^{1} R \sigma^{1+p}\left(b_{12}^{0}\right)=0$ and $a_{11}^{0} R \sigma^{p}\left(b_{12}^{1}\right)=0$. Inductively, we have

$$
\begin{equation*}
a_{11}^{u} R \sigma^{u+p}\left(b_{12}^{v}\right)=0 \text { and } a_{12}^{u} R \sigma^{u+p}\left(b_{11}^{v}\right)=0 \tag{8}
\end{equation*}
$$

for any integer $p \geq 0,0 \leq u \leq n$ and $0 \leq v \leq m$. Consequently, from Eq.(8) we have

$$
f_{11} S g_{11}=0, f_{11} S g_{12}=0, f_{12} S g_{11}=0
$$

Assume that our claim is true for $w=k-1$. Let $f=\left(f_{i j}\right), g=\left(g_{s t}\right) \in S_{k}$ with $f S_{k} g=0$. Note that we can imbed S_{k-1} into S_{k} via

$$
\sum_{i=1}^{k-1} \alpha e_{i i}+\sum_{1 \leq i<j \leq k-1} \alpha_{i j} e_{i j} \mapsto \sum_{i=1}^{k} \alpha e_{i i}+\sum_{1 \leq i<j \leq k} \alpha_{i j} e_{i j},
$$

where $\alpha_{i k}=0$ for any $1 \leq i \leq k-1$. Since $f S_{k} g=0$, we have $f S_{k-1} g=0$. By the induction hypothesis, we have

$$
\begin{equation*}
f_{i j} S g_{s t}=0 \tag{9}
\end{equation*}
$$

for any $1 \leq i, j, s, t \leq k-1$. Now from the fact that $f\left(h_{i j}\right) g=0$ for any $\left(h_{k l}\right) \in S_{k}$, the $(k-1, k)$-entry,

$$
f_{11} h_{11} g_{(k-1) k}+\left(f_{11} h_{(k-1) k}+f_{(k-1) k} h_{11}\right) g_{11}=0
$$

Since $f_{11} S g_{11}=0$ by Eq.(9), we have

$$
\begin{equation*}
f_{11} r x^{t} g_{(k-1) k}+f_{(k-1) k} r x^{t} g_{11}=0 \tag{10}
\end{equation*}
$$

for any $r \in R$ and integer $t \geq 0$. Repeating the computation from (3) to (8) on Eq.(10), we have

$$
\begin{equation*}
f_{(k-1) k} S g_{11}=0, f_{11} S g_{(k-1) k}=0 . \tag{11}
\end{equation*}
$$

From Eqs.(9), (11) and the ($k-2, k$)-entry is zero, we have

$$
f_{11} h_{11} g_{(k-2) k}+f_{(k-2)(k-1)} h_{11} g_{(k-1) k}+f_{(k-2) k} h_{11} g_{11}=0 .
$$

After we repeat the similar computation as above, we have

$$
f_{11} S g_{(k-2) k}=0, f_{(k-2)(k-1)} S g_{(k-1) k}=0, f_{(k-2) k} S g_{11}=0 .
$$

Continuing this process, we have $f_{i j} S g_{s t}=0$ for any $1 \leq i, j, s, t \leq k$. Therefore R_{w} is $\bar{\sigma}$-skew quasi-Armendariz for any $w \geq 2$.

We also consider the following subring of R_{n}. Let

$$
V_{n}(R)=\left\{M \in R_{n} \mid M=\sum_{1 \leq i \leq j \leq n} a_{i j} e_{i j}, \text { where } a_{i j}=a_{(i+1)(j+1)}\right\} .
$$

By the same method as in the proof of Theorem 2.6, we have the following.
Theorem 2.7. Let σ be an epimorphism of a ring R. If R is semiprime, then V_{n} is $\bar{\sigma}$-skew quasi-Armendariz for any integer $n \geq 2$.

For an integer $n \geq 2$, let $R A=\{r A \mid r \in R\}$ for any $A \in \mathbb{M}_{n}(R)$ and $V=\sum_{i=1}^{n-1} e_{i(i+1)}$. Then by [11], $V_{n}(R)=R I_{n}+R V+\cdots+R V^{n-1}$, where I_{n} is the $n \times n$ identity matrix, and the map $\rho: V_{n}(R) \rightarrow R[x] /\left\langle x^{n}\right\rangle$ defined by $\rho\left(a_{0} I_{n}+a_{1} V+\cdots+a_{n-1} V^{n-1}\right)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+\left\langle x^{n}\right\rangle$ is a ring isomorphism. So we have the following.

Corollary 2.8. Let σ be an epimorphism of a ring R. If R is semiprime, then $R[x] /\left\langle x^{n}\right\rangle$ is $\bar{\sigma}$-skew quasi-Armendariz for any integer $n \geq 2$.

From Theorem 2.6, one may suspect that R_{w} may be also a $\bar{\sigma}$-skew quasiArmendariz ring for any integer $w \geq 2$ when R is σ-skew quasi-Armendariz for an epimorphism σ of R. But the following example erases the possibility.
Example 2.9. Let S be any semiprime ring and $R=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right) \right\rvert\, a, b \in S\right\}$. Then R is an \bar{I}_{S}-skew quasi-Armendariz ring by Theorem 2.6, where I_{S} is the identity map of S. Let $R_{2}=\left\{\left.\left(\begin{array}{cc}A & B \\ 0 & A\end{array}\right) \right\rvert\, A, B \in R\right\}$ and

$$
f(x)=\left(\begin{array}{cc}
e_{12} & 0 \\
0 & e_{12}
\end{array}\right)+\left(\begin{array}{cc}
e_{12} & -\left(e_{11}+e_{22}\right) \\
0 & e_{12}
\end{array}\right) x
$$

and

$$
g(x)=\left(\begin{array}{cc}
e_{12} & 0 \\
0 & e_{12}
\end{array}\right)+\left(\begin{array}{cc}
e_{12} & e_{11}+e_{22} \\
0 & e_{12}
\end{array}\right) x
$$

in $R_{2}\left[x ; \overline{\bar{I}}_{S}\right]$, where $e_{i j}$'s are the matrix units in $\mathbb{M}_{2}(S)$. Then $f(x) R_{2}\left[x ; \overline{\bar{I}}_{S}\right] g(x)$ $=0$, but $\left(\begin{array}{cc}e_{12} & 0 \\ 0 & e_{12}\end{array}\right) R_{2}\left(\begin{array}{cc}e_{12} & e_{11}+e_{22} \\ 0 & e_{12}\end{array}\right) \neq 0$.

Remark 4. Recently, Hashemi [4] defined M-quasi-Armendariz rings as follows: for a monoid M, a ring R is called M-quasi-Armendariz if whenever $\alpha=$ $a_{1} g_{1}+\cdots+a_{n} g_{n}, \beta=b_{1} h_{1}+\cdots+b_{m} h_{m} \in R[M]$ satisfy $\alpha R[M] \beta=0$, then $a_{i} R b_{j}=0$ for each i, j. Then he asserted that if a ring R is reduced and M-Armendariz, then R is M-quasi-Armendariz. However, we note that M Armendariz rings are M-quasi-Armendariz. For, suppose that $\alpha R[M] \beta=0$. Then $\alpha r \beta=0$ for any $r \in R$ and so $\alpha \beta^{\prime}=0$, where $\beta^{\prime}=r b_{1} h_{1}+\cdots+r b_{m} h_{m}$. Since R is M-Armendariz, $a_{i} r b_{j}=0$ for each i, j, and therefore $a_{i} R b_{j}=0$.

Moreover, in [4, Proposition 1.2], he proved that if R is a M-Armendariz and reduced ring, then R_{n} is M-quasi-Armendariz for each $n \geq 2$. However, using the same method as in the proof of Theorem 2.6 , we can show that if R is a M-quasi-Armendariz and semiprime ring, then R_{n} is M-quasi-Armendariz for each $n \geq 2$.

We next study the polynomial ring and the Laurent polynomial ring over a σ-skew quasi-Armendariz ring. If R is quasi-Armendariz, then the polynomial ring $R[x]$ is quasi-Armendariz [4, Theorem 3.16]. We extend this result to σ skew quasi-Armendariz rings. Recall that if σ is an endomorphism of a ring R, then the map $\bar{\sigma}: R[x] \rightarrow R[x]$ defined by $\bar{\sigma}\left(\sum_{i=0}^{m} a_{i} x^{i}\right)=\sum_{i=0}^{m} \sigma\left(a_{i}\right) x^{i}$ is an endomorphism of the polynomial ring $R[x]$ and clearly this map extends σ. The Laurent polynomial ring $R\left[x, x^{-1}\right]$ with an indeterminate x, consists of all formal sums $\sum_{i=k}^{n} a_{i} x^{i}$, where $a_{i} \in R$ and k, n are (possibly negative) integers. The map $\bar{\sigma}: R\left[x, x^{-1}\right] \rightarrow R\left[x, x^{-1}\right]$ defined by $\bar{\sigma}\left(\sum_{i=k}^{n} a_{i} x^{i}\right)=\sum_{i=k}^{n} \sigma\left(a_{i}\right) x^{i}$ extends σ and is also an endomorphism of $R\left[x, x^{-1}\right]$.
Theorem 2.10. Let σ be an endomorphism of a ring R and $\sigma^{t}=I_{R}$ for some positive integer t. Then the following statements are equivalent:
(1) R is σ-skew quasi-Armendariz.
(2) $R[x]$ is $\bar{\sigma}$-skew quasi-Armendariz.
(3) $R\left[x, x^{-1}\right]$ is $\bar{\sigma}$-skew quasi-Armendariz.

Proof. We only give the proof of $(1) \Leftrightarrow(3)$ since $(1) \Leftrightarrow(2)$ can be proved by the same method.
$(1) \Rightarrow(3)$: We refer the proof of $[3$, Proposition 7$]$.
Suppose $f(y) R\left[x, x^{-1}\right][y ; \bar{\sigma}] g(y)=0$, where $f(y)=f_{0}(x)+f_{1}(x) y+\cdots+$ $f_{m}(x) y^{m}, g(y)=g_{0}(x)+g_{1}(x) y+\cdots+g_{n}(x) y^{n} \in R\left[x, x^{-1}\right][y ; \bar{\sigma}]$. We also let $f_{i}(x)=\sum_{u=s_{i}}^{p_{i}} a_{u} x^{u}, g_{j}(x)=\sum_{v=k_{j}}^{q_{j}} b_{v} x^{v}$ for each $0 \leq i \leq m$ and $0 \leq$ $j \leq n$, where $a_{s_{i}}, \ldots, a_{p_{i}}, b_{k_{j}}, \ldots, b_{q_{j}} \in R$ and $s_{i}, p_{i}, k_{j}, q_{j} \in \mathbb{Z}$. Take positive integers s, k such that $s=\max \left\{\left|s_{i}\right| \mid i=0,1, \ldots, m\right\}$ and $k=\max \left\{\left|k_{j}\right| \mid j=\right.$ $0,1, \ldots, n\}$. Let $f^{\prime}(y)=x^{s} f(y)=f_{0}^{\prime}(x)+f_{1}^{\prime}(x) y+\cdots+f_{m}^{\prime}(x) y^{m}$ and $g^{\prime}(y)=$ $x^{k} g(y)=g_{0}^{\prime}(x)+g_{1}^{\prime}(x) y+\cdots+g_{n}^{\prime}(x) y^{n}$, where $f_{i}^{\prime}(x)=f_{i}(x) x^{s}$ and $g_{j}^{\prime}(x)=$ $g_{j}(x) x^{k}$. Now we take a positive integer l such that $l>\sum_{i=0}^{m} \operatorname{deg}\left(f_{i}^{\prime}(x)\right)+$ $\sum_{j=0}^{n} \operatorname{deg}\left(g_{j}^{\prime}(x)\right)$. Let $f^{\prime}(x)=f_{0}^{\prime}\left(x^{t}\right)+f_{1}^{\prime}\left(x^{t}\right) x^{t l+1}+\cdots+f_{m}^{\prime}\left(x^{t}\right) x^{m t l+m}$ and $g^{\prime}(x)=g_{0}^{\prime}\left(x^{t}\right)+g_{1}^{\prime}\left(x^{t}\right) x^{t l+1}+\cdots+g_{n}^{\prime}\left(x^{t}\right) x^{n t l+n}$. Then we claim that

$$
f^{\prime}(x) R[x ; \sigma] g^{\prime}(x)=0,
$$

equivalently, $f^{\prime}(x) r x^{w} g^{\prime}(x)=0$ for any integer $w \geq 0$. Since

$$
f(y) R\left[x, x^{-1}\right][y ; \bar{\sigma}] g(y)=0
$$

$f^{\prime}(y) R\left[x, x^{-1}\right][y ; \bar{\sigma}] g^{\prime}(y)=0$ and so $f^{\prime}(y) r y^{w} g^{\prime}(y)=0$ for any integer $w \geq 0$. Thus

$$
\begin{aligned}
f_{0}^{\prime}(x) r \bar{\sigma}^{w}\left(g_{0}^{\prime}(x)\right) & =0 \\
\left.f_{0}^{\prime}(x) r \bar{\sigma}^{w}\left(g_{1}^{\prime}(x)\right)+f_{1}^{\prime}(x) \bar{\sigma}(r) \bar{\sigma}^{w+1}\left(g_{0}^{\prime}(x)\right)\right) & =0
\end{aligned}
$$

$$
f_{m}^{\prime}(x) \bar{\sigma}^{m}(r) \bar{\sigma}^{m+w}\left(g_{n}^{\prime}(x)\right)=0
$$

Using these equations, we have $f^{\prime}(x) r x^{w} g^{\prime}(x)=0$ for any integer $w \geq 0$. Thus

$$
\begin{aligned}
& \left(a_{s_{0}} x^{t\left(s_{0}+s\right)}+\cdots+a_{p_{0}} x^{t\left(p_{0}+s\right)}+\cdots+a_{s_{m}} x^{t\left(s_{m}+s+m l\right)+m}+\cdots+a_{p_{m}} x^{t\left(p_{m}+s+m l\right)+m}\right) \\
& r x^{w}\left(b_{k_{0}} x^{t\left(k_{0}+k\right)}+\cdots+b_{q_{0}} x^{t\left(q_{0}+k\right)}+\cdots+b_{k_{n}} x^{t\left(k_{n}+k+n l\right)+n}+\cdots+b_{q_{n}} x^{t\left(q_{n}+k+n l\right)+n}\right) \\
& =0
\end{aligned}
$$

Since R is σ-skew quasi-Armendariz and σ^{t} is the identity map, we have $a_{\alpha_{i}} R \sigma^{i}\left(b_{\beta_{j}}\right)=a_{\alpha_{i}} R \sigma^{t\left(\alpha_{i}+s+i l\right)+i}\left(b_{\beta_{j}}\right)=0$ for any $\alpha_{i} \in\left\{s_{i}, \ldots, p_{i}\right\}$ and $\beta_{j} \in$ $\left\{k_{j}, \ldots, q_{j}\right\}$, where $0 \leq i \leq m$ and $0 \leq j \leq n$. Therefore

$$
f_{i}(x) R\left[x, x^{-1}\right] \bar{\sigma}^{i}\left(g_{j}(x)\right)=0
$$

$(3) \Rightarrow(1)$: Let $f(y)=a_{0}+a_{1} y+\cdots+a_{m} y^{m}, g(y)=b_{0}+b_{1} y+\cdots+b_{n} y^{n} \in$ $R[y ; \sigma]$ such that $f(y) R[y ; \sigma] g(y)=0$. Now let $f(u)=a_{0}+a_{1} u+\cdots+$ $a_{m} u^{m}$ and $g(u)=b_{0}+b_{1} u+\cdots+b_{n} u^{n} \in R\left[x, x^{-1}\right][u ; \bar{\sigma}]$. We claim that $f(u) R\left[x, x^{-1}\right][u ; \bar{\sigma}] g(u)=0$, equivalently, $f(u) r x^{k} u^{s} g(u)=0$ for any $r \in R$ and $k, s \in \mathbb{Z}$ with $s \geq 0$. Since $f(y) R[y ; \sigma] g(y)=0, f(y) r y^{s} g(y)=0$. Then we have

$$
\begin{aligned}
& f(u) r x^{k} u^{s} g(u) \\
= & \left(a_{0} r x^{k}+a_{1} \bar{\sigma}\left(r x^{k}\right) u+\cdots+a_{m} \bar{\sigma}^{m}\left(r x^{k}\right) u^{m}\right) u^{s}\left(b_{0}+b_{1} u+\cdots+b_{n} u^{n}\right) \\
= & \left(a_{0} r x^{k}+a_{1} \sigma(r) x^{k} u+\cdots+a_{m} \sigma^{m}(r) x^{k} u^{m}\right) u^{s}\left(b_{0}+b_{1} u+\cdots+b_{n} u^{n}\right) \\
= & x^{k}\left(a_{0}+a_{1} u+\cdots+a_{m} u^{m}\right) r u^{s}\left(b_{0}+b_{1} u+\cdots+b_{n} u^{n}\right)=0 .
\end{aligned}
$$

Since $R\left[x, x^{-1}\right]$ is $\bar{\sigma}$-skew quasi-Armendariz, we have $a_{i} R\left[x, x^{-1}\right] \bar{\sigma}^{i}\left(b_{j}\right)=0$ for all i, j and so $a_{i} R \sigma^{i}\left(b_{j}\right)=0$. Therefore R is σ-skew quasi-Armendariz.

We now consider the homomorphic images of σ-skew quasi-Armendariz rings. For an ideal I of R, if $\sigma(I) \subseteq I$, then $\bar{\sigma}: R / I \rightarrow R / I$ defined by $\bar{\sigma}(a+I)=$ $\sigma(a)+I$ is an endomorphism of a factor ring R / I. We now note that the homomorphic image of σ-skew quasi-Armendariz rings need not to be so in general.

Example 2.11. We use the argument in [6, Example 7]. Let \mathbb{Z}_{4} be the ring of integers modulo 4 . Consider the ring

$$
R=\left\{\left.\left(\begin{array}{cc}
a & \bar{b} \\
0 & a
\end{array}\right) \right\rvert\, a \in \mathbb{Z}, \bar{b} \in \mathbb{Z}_{4}\right\}
$$

Let $\sigma: R \rightarrow R$ be an automorphism defined by $\sigma\left(\left(\begin{array}{ll}a & \bar{b} \\ 0 & a\end{array}\right)\right)=\left(\begin{array}{cc}a & -\bar{b} \\ 0 & a\end{array}\right)$. Then R is σ-skew Armendariz by [6, Example 7], and so R is σ-skew quasi-Armendariz because R is commutative. Let $I=\left\{\left.\left(\begin{array}{cc}a & \overline{0} \\ 0 & a\end{array}\right) \right\rvert\, a \in 4 \mathbb{Z}\right\}$. Then $\sigma(I)=I$ and the factor ring $R / I \cong\left\{\left.\left(\begin{array}{cc}\bar{a} & \bar{b} \\ 0 & \bar{a}\end{array}\right) \right\rvert\, \bar{a}, \bar{b} \in \mathbb{Z}_{4}\right\}$ is not σ-skew quasi-Armendariz. In fact,

$$
\left(\left(\begin{array}{ll}
\overline{2} & \overline{0} \\
0 & \overline{2}
\end{array}\right)+\left(\begin{array}{cc}
\overline{2} & \overline{1} \\
0 & \overline{2}
\end{array}\right) x\right)(R / I)[x ; \bar{\sigma}]\left(\left(\begin{array}{cc}
\overline{2} & \overline{0} \\
0 & \overline{2}
\end{array}\right)+\left(\begin{array}{cc}
\overline{2} & \overline{1} \\
0 & \overline{2}
\end{array}\right) x\right)=0 .
$$

But $\left(\begin{array}{c}\overline{2} \\ 0 \\ 0\end{array}\right)(R / I) \bar{\sigma}\left(\left(\begin{array}{c}\overline{2} \\ 0 \\ 0\end{array} \frac{\overline{0}}{2}\right)\right) \neq 0$.
However, we obtain the following result referring the method in the proof of [9, Lemma 3.6].
Proposition 2.12. Let σ be an endomorphism of a ring R and I an ideal of R with $\sigma(I)=I$. If R is σ-skew quasi-Armendariz, then $R / r_{R}(I)$ is $\bar{\sigma}$-skew quasi-Armendariz.

Moreover, we may ask that R is an σ-skew quasi-Armendariz ring if for a nonzero proper ideal I of R with $\sigma(I)=I, R / I$ is $\bar{\sigma}$-skew quasi-Armendariz and I is σ-skew quasi-Armendariz as a ring. However, we also have a counterexample to this situation as in the following.

Example 2.13. Consider the ring

$$
R=\left\{\left.\left(\begin{array}{cc}
\bar{a} & \bar{b} \\
0 & \bar{a}
\end{array}\right) \right\rvert\, \bar{a}, \bar{b} \in \mathbb{Z}_{4}\right\} .
$$

Let $\sigma: R \rightarrow R$ be an automorphism defined by $\sigma\left(\left(\begin{array}{cc}\bar{a} & \bar{b} \\ 0 & \bar{a}\end{array}\right)\right)=\left(\begin{array}{cc}\bar{a} & -\bar{b} \\ 0 & \bar{a}\end{array}\right)$. By the argument of Example 2.11, R is not σ-skew quasi-Armendariz. Let $I=$ $\left\{\left.\left(\begin{array}{l}\overline{0} \\ 0 \\ 0\end{array}\right) \right\rvert\, \bar{b} \in \mathbb{Z}_{4}\right\}$. Then $\sigma(I)=I$ and the factor ring $R / I \cong \mathbb{Z}_{4}$ is $\bar{\sigma}$-skew quasi-Armendariz. Moreover, I is σ-skew quasi-Armendariz as a ring.

Proposition 2.14. For an endomorphism σ of a ring R, suppose that R / I is a $\bar{\sigma}$-skew quasi-Armendariz ring for an ideal I of R. If I is semiprime as a ring, then R is σ-skew quasi-Armendariz.
Proof. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x ; \sigma]$ such that $f(x) R[x ; \sigma] g(x)=0$. Then $\bar{f}(x)(R / I)[x ; \bar{\sigma}] \bar{g}(x)=\overline{0}$, where $\bar{a}=a+I$ and $\bar{f}(x)=\bar{a}_{0}+\bar{a}_{1} x+\cdots+\bar{a}_{n} x^{n}, \bar{g}(x)=\bar{b}_{0}+\bar{b}_{1} x+\cdots+\bar{b}_{m} x^{m} \in(R / I)[x ; \bar{\sigma}]$. Since R / I is $\bar{\sigma}$-skew quasi-Armendariz, $a_{i} R \sigma^{i}\left(b_{j}\right) \subseteq I$ for all i, j. Moreover, we can get

$$
\begin{equation*}
a_{i} R \sigma^{i+s}\left(b_{j}\right) \subseteq I \tag{1}
\end{equation*}
$$

for any integer $s \geq 0$. We proceed by the induction on $\operatorname{deg} f(x)=n$ with $n \geq 0$. If $n=0$, then we are done. Suppose that $n \geq 1$. We first claim that
$a_{0} R \sigma^{t}\left(b_{j}\right)=0$ for all integer $t \geq 0$ and $0 \leq j \leq m$. Assume that there exists b_{j} such that $a_{0} R \sigma^{t_{1}}\left(b_{j}\right) \neq 0$ for some t_{1}. Then we can take k in $\{1,2, \ldots, m\}$ such that k is the smallest one with respect to the property $a_{0} R \sigma^{t_{2}}\left(b_{k}\right) \neq 0$ for some t_{2}. So for $j \in\{0,1, \ldots, k-1\}, a_{0} R \sigma^{t}\left(b_{j}\right)=0$ for any t. Note that $\sigma^{t}\left(b_{j}\right) I a_{0}=0$. Indeed, $\left(\sigma^{t}\left(b_{j}\right) I a_{0} R\right)^{2}=\sigma^{t}\left(b_{j}\right) I\left(a_{0} R \sigma^{t}\left(b_{j}\right)\right) I a_{0} R=0$. Since $\sigma^{t}\left(b_{j}\right) I a_{0} R \subseteq I$ and I is semiprime as a ring, $\sigma^{t}\left(b_{j}\right) I a_{0} R=0$ and so $\sigma^{t}\left(b_{j}\right) I a_{0}=0$. Now we note that

$$
\begin{aligned}
\left(a_{k-j} R \sigma^{t}\left(b_{j}\right)\right)\left(R a_{0} R \sigma^{t_{2}}\left(b_{k}\right)\right)^{2} & =\left(a_{k-j} R \sigma^{t}\left(b_{j}\right)\right)\left(R a_{0} R \sigma^{t_{2}}\left(b_{k}\right) R\right)\left(a_{0} R \sigma^{t_{2}}\left(b_{k}\right)\right) \\
& \subseteq\left(a_{k-j} R \sigma^{t}\left(b_{j}\right)\right) I\left(a_{0} R \sigma^{t_{2}}\left(b_{k}\right)\right) \\
& =a_{k-j} R\left(\sigma^{t}\left(b_{j}\right) I a_{0}\right) R \sigma^{t_{2}}\left(b_{k}\right)=0
\end{aligned}
$$

by Eq.(1). The coefficient of the term $x^{k+t_{2}}$ in $f(x) R[x ; \sigma] g(x)=0$ is

$$
\begin{equation*}
0=a_{0} r \sigma^{t_{2}}\left(b_{k}\right)+a_{1} \sigma(r) \sigma^{t_{2}+1}\left(b_{k-1}\right)+\cdots+a_{k} \sigma^{k}(r) \sigma^{t_{2}+k}\left(b_{0}\right) \tag{2}
\end{equation*}
$$

for any $r \in R$. Multiplying $\left(R a_{0} R \sigma^{t_{2}}\left(b_{k}\right)\right)^{2}$ to Eq.(2) on the right side, we have

$$
\begin{aligned}
0 & =\left(a_{0} r \sigma^{t_{2}}\left(b_{k}\right)+a_{1} \sigma(r) \sigma^{t_{2}+1}\left(b_{k-1}\right)+\cdots+a_{k} \sigma^{k}(r) \sigma^{t_{2}+k}\left(b_{0}\right)\right)\left(R a_{0} R \sigma^{t_{2}}\left(b_{k}\right)\right)^{2} \\
& =a_{0} r \sigma^{t_{2}}\left(b_{k}\right)\left(R a_{0} R \sigma^{t_{2}}\left(b_{k}\right)\right)^{2}
\end{aligned}
$$

and so $\left(R a_{0} R \sigma^{t_{2}}\left(b_{k}\right)\right)^{3}=0$. Since $R a_{0} R \sigma^{t_{2}}\left(b_{k}\right) \subseteq I$ by Eq.(1) and I is semiprime as a ring, we have $a_{0} R \sigma^{t_{2}}\left(b_{k}\right)=0$, which is a contradiction. Consequently, $a_{0} R \sigma^{t}\left(b_{j}\right)=0$ for all $j \in\{0,1, \ldots, m\}$ and thus we have that $f_{1}(x) R[x ; \sigma] g(x)=0$, where $f_{1}(x)=a_{1}+a_{2} x+\cdots+a_{n} x^{n-1}$. But the degree of $f_{1}(x)$ is less than n. By the induction hypothesis, we get $a_{i} R \sigma^{i}\left(b_{j}\right)=0$ for all $0 \leq i \leq n$ and $0 \leq j \leq m$. Therefore R is σ-skew quasi-Armendariz.

We consider the classical left quotient ring $Q(R)$ of a σ-skew quasi-Armendariz ring R. Recall that a ring R is left Ore if there exists the classical left quotient ring $Q(R)$ of R. Let σ be an automorphism of a left Ore ring R. Then for any $b^{-1} a \in Q(R)$ where $a, b \in R$ with b regular, the induced map $\bar{\sigma}$: $Q(R) \rightarrow Q(R)$ defined by $\bar{\sigma}\left(b^{-1} a\right)=\sigma(b)^{-1} \sigma(a)$ extends to an automorphism of $Q(R)$.

Theorem 2.15. Let R be a left Ore ring with an automorphism σ of R. If R is σ-skew quasi-Armendariz, then $Q(R)$ is $\bar{\sigma}$-skew quasi-Armendariz.

Proof. Let $Q(R)=Q$ and $f(x)=\sum_{i=0}^{m} \alpha_{i} x^{i}, g(x)=\sum_{j=0}^{n} \beta_{j} x^{j} \in Q[x]$ such that $f(x) Q[x ; \bar{\sigma}] g(x)=0$. We may assume that $\alpha_{i}=u^{-1} a_{i}, \beta_{j}=v^{-1} b_{j}$ with $a_{i}, b_{j} \in R$ and regular elements $u, v \in R$. Since $f(x) Q[x ; \bar{\sigma}] g(x)=0$, we have $u^{-1}\left(a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right) Q x^{k} v^{-1}\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)=0$ for any integer $k \geq 0$. For each $k \geq 0$, note that $Q \sigma^{k}(v)^{-1}=Q$ and also $Q=Q v^{-1}$. Thus we have

$$
\begin{aligned}
0 & =\left(a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right) Q x^{k}\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right) \\
& =\left(a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right) Q v^{-1} R x^{k}\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)
\end{aligned}
$$

for any $k \geq 0$. Let $t^{-1} s \in Q, s v^{-1}=v^{\prime-1} s^{\prime}$ and $t^{-1} v^{\prime-1}=t^{\prime-1}$. Then

$$
\begin{aligned}
0= & \left(a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right) t^{-1} s v^{-1} R x^{k}\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right) \\
= & \left(a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right) t^{\prime-1} s^{\prime} R x^{k}\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right) \\
= & \left(a_{0} t^{\prime-1} s^{\prime}+a_{1} \bar{\sigma}\left(t^{\prime-1} s^{\prime}\right) x+\cdots+a_{m} \bar{\sigma}^{m}\left(t^{\prime-1} s^{\prime}\right) x^{m}\right) R x^{k}\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right) \\
= & \left(a_{0} t^{\prime-1} s^{\prime}+a_{1} \sigma\left(t^{\prime}\right)^{-1} \sigma\left(s^{\prime}\right) x+\cdots+a_{m} \sigma^{m}\left(t^{\prime}\right)^{-1} \sigma^{m}\left(s^{\prime}\right) x^{m}\right) \\
& \times R x^{k}\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right) .
\end{aligned}
$$

We now let $a_{i} \sigma^{i}\left(t^{\prime}\right)^{-1}=w^{-1} a_{i}^{\prime}$. Then we have $w^{-1}\left(a_{0}^{\prime} s^{\prime}+a_{1}^{\prime} \sigma\left(s^{\prime}\right) x+\cdots+\right.$ $\left.a_{m} \sigma^{m}\left(s^{\prime}\right) x^{m}\right) R x^{k}\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)=0$ and so $\left(a_{0}^{\prime} s^{\prime}+a_{1}^{\prime} \sigma\left(s^{\prime}\right) x+\cdots+\right.$ $\left.a_{m} \sigma^{m}\left(s^{\prime}\right) x^{m}\right) R x^{k}\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)=0$. Since R is σ-skew quasi-Armendariz,

$$
\begin{equation*}
a_{i}^{\prime} \sigma^{i}\left(s^{\prime}\right) R \sigma^{i}\left(b_{j}\right)=0 \text { and so } w^{-1} a_{i}^{\prime} \sigma^{i}\left(s^{\prime}\right) R \sigma^{i}\left(b_{j}\right)=0 \tag{*}
\end{equation*}
$$

for any $1 \leq i \leq m, 1 \leq j \leq n$. We now will show that $u^{-1} a_{i} Q \sigma^{i}\left(v^{-1} b_{j}\right)=0$. From Eq.(*) and the same argument as above, we have $\left(a_{0}+a_{1} x+\cdots+\right.$ $\left.a_{m} x^{m}\right) t^{-1} s v^{-1} b_{j}=0$ for any $t^{-1} s \in Q$ and $1 \leq j \leq n$, and so $\left(u^{-1} a_{0}+u^{-1} a_{1} x+\right.$ $\left.\cdots+u^{-1} a_{m} x^{m}\right) Q v^{-1} b_{j}=0$ for any $1 \leq j \leq n$. Hence $u^{-1} a_{i} Q \sigma^{i}\left(v^{-1} b_{j}\right)=0$ for any $1 \leq i \leq m, 1 \leq j \leq n$. Therefore Q is $\bar{\sigma}$-skew quasi-Armendariz.

Hirano [5, Proposition 3.4] proved that a ring R is quasi-Armendariz if and only if $\Phi: \Gamma \rightarrow \Delta$ is bijective with $\Phi(A)=A R[x]$, where $\Gamma=\left\{r_{R}(U) \mid\right.$ U is an ideal of $R\}$ and $\Delta=\left\{r_{R}(V) \mid V\right.$ is an ideal of $\left.R[x]\right\}$.

Finally, we introduce a similar result for skew quasi-Armendariz rings. Let A be an ideal of a ring R and suppose that $i=i(A)$ is a nonnegative integer depending on A. Define

$$
A^{\prime}=\left\{a x^{k} \mid a \in A, k \geq i=i(A)\right\} \subseteq R[x ; \sigma] .
$$

Note $A^{\prime}=\cup_{t=0}^{\infty} A x^{i+t}$. Moreover $r_{R[x ; \sigma]}\left(A^{\prime}\right)$ and $r_{R}\left(A^{\prime}\right)=r_{R[x ; \sigma]}\left(A^{\prime}\right) \cap R$ are ideals of $R[x ; \sigma]$ and R, respectively. For, let $f(x) \in r_{R[x ; \sigma]}\left(A^{\prime}\right)$ and $g(x)=$ $\sum_{i=0}^{n} b_{i} x^{i} \in R[x ; \sigma]$. For any $a x^{k} \in A^{\prime}, a x^{k} g(x) f(x)=\sum_{i=0}^{n} a \sigma^{k}\left(b_{i}\right) x^{k+i} f(x)$ $=0$ since $a \sigma^{k}\left(b_{i}\right) \in A$ and $a \sigma^{k}\left(b_{i}\right) x^{k+i} \in A^{\prime}$. Thus $g(x) f(x) \in r_{R[x ; \sigma]}\left(A^{\prime}\right)$ and so $r_{R[x ; \sigma]}\left(A^{\prime}\right)$ is an ideal of $R[x ; \sigma]$, entailing that $r_{R}\left(A^{\prime}\right)$ is an ideal of R.

Given ideals $A_{j}(j \in I)$ of $R, r_{R[x ; \sigma]}\left(\cup_{j} A_{j}^{\prime}\right)=\cap_{j} r_{R[x ; \sigma]}\left(A_{j}^{\prime}\right)$; hence $r_{R}\left(\cup_{j} A_{j}^{\prime}\right)$ $=r_{R[x ; \sigma]}\left(\cup_{j} A_{j}^{\prime}\right) \cap R$ and $r_{R[x ; \sigma]}\left(\cup_{j} A_{j}^{\prime}\right)$ are ideals of R and $R[x ; \sigma]$ respectively, with the help of the preceding computation.

Let

$$
\Gamma=\left\{r_{R}\left(\cup_{j} B_{j}^{\prime}\right) \mid B_{j} \text { is an ideal of } R \text { for } j \in I\right\}
$$

and

$$
\Delta=\left\{r_{R[x ; \sigma]}(V) \mid V \text { is an ideal of } R[x ; \sigma]\right\} .
$$

Then we obtain an injective map $\Phi: \Gamma \rightarrow \Delta$ defined by $\Phi\left(r_{R}\left(\cup_{j} B_{j}^{\prime}\right)\right)=$ $r_{R}\left(\cup_{j} B_{j}^{\prime}\right) R[x ; \sigma]$ as in the proof of Theorem 2.16 below.
Theorem 2.16. Let σ be an epimorphism of R. Then the following statements are equivalent:
(1) R is σ-skew quasi-Armendariz.
(2) $\Phi: \Gamma \rightarrow \Delta$ is bijective with $\Phi\left(r_{R}\left(\cup_{j} B_{j}^{\prime}\right)\right)=r_{R}\left(\cup_{j} B_{j}^{\prime}\right) R[x ; \sigma]$.

Proof. We first claim that Φ is well-defined. For $r_{R}\left(\cup_{j} B_{j}^{\prime}\right) \in \Gamma$, let $g(x)=$ $b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in r_{R}\left(\cup_{j} B_{j}^{\prime}\right) R[x ; \sigma]$. Then $b_{0}, b_{1}, \ldots, b_{m} \in r_{R}\left(\cup_{j} B_{j}^{\prime}\right)$ and so $b_{\ell} x^{\ell} \in r_{R[x ; \sigma]}\left(\cup_{j} B_{j}^{\prime}\right)$ for each ℓ, entailing $g(x) \in r_{R[x ; \sigma]}\left(\cup_{j} B_{j}^{\prime}\right)$. Conversely, let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in r_{R[x ; \sigma]}\left(\cup_{j} B_{j}^{\prime}\right)$. Then $0=b x^{k}\left(a_{0}+a_{1} x+\cdots+\right.$ $\left.a_{n} x^{n}\right)=b x^{k} a_{0}+b x^{k} a_{1} x+\cdots+b x^{k} a_{n} x^{n}$ for all $b x^{k} \in \cup_{j} B_{j}^{\prime}$. If $b x^{k} a_{t} \neq 0$ for some t, then $b \sigma^{k}\left(a_{t}\right) \neq 0$ and so $b x^{k} a_{t} x^{t}=b \sigma^{k}\left(a_{t}\right) x^{k+t} \neq 0$; hence $b x^{k} f(x) \neq 0$, a contradiction. Thus $a_{j} \in r_{R}\left(\cup_{j} B_{j}^{\prime}\right)$ and we get $f(x) \in r_{R}\left(\cup_{j} B_{j}^{\prime}\right) R[x ; \sigma]$. Consequently $r_{R}\left(\cup_{j} B_{j}^{\prime}\right) R[x ; \sigma]=r_{R[x ; \sigma]}\left(\cup_{j} B_{j}^{\prime}\right)$ and so we obtain

$$
\begin{aligned}
r_{R}\left(\cup_{j} B_{j}^{\prime}\right) R[x ; \sigma] & =r_{R[x ; \sigma]}\left(\cup_{j} B_{j}^{\prime}\right)=r_{R[x ; \sigma]}\left(\left(\cup_{j} B_{j}^{\prime}\right) R[x ; \sigma]\right) \\
& =r_{R[x ; \sigma]}\left(R[x ; \sigma]\left(\cup_{j} B_{j}^{\prime}\right) R[x ; \sigma]\right),
\end{aligned}
$$

determining the map $\Phi: \Gamma \rightarrow \Delta$ with $\Phi\left(r_{R}\left(\cup_{j} B_{j}^{\prime}\right)\right)=r_{R}\left(\cup_{j} B_{j}^{\prime}\right) R[x ; \sigma]$.
Next we show that Φ is injective. Put $\Phi\left(r_{R}\left(\cup_{s} A_{s}^{\prime}\right)\right)=\Phi\left(r_{R}\left(\cup_{t} A_{t}^{\prime}\right)\right)$. Then

$$
r_{R}\left(\cup_{s} A_{s}^{\prime}\right) R[x ; \sigma]=r_{R}\left(\cup_{t} A_{t}^{\prime}\right) R[x ; \sigma] \text { and } r_{R[x ; \sigma]}\left(\cup_{s} A_{s}^{\prime}\right)=r_{R[x ; \sigma]}\left(\cup_{t} A_{t}^{\prime}\right)
$$

by the result above. It then follows

$$
r_{R}\left(\cup_{s} A_{s}^{\prime}\right)=r_{R[x ; \sigma]}\left(\cup_{s} A_{s}^{\prime}\right) \cap R=r_{R[x ; \sigma]}\left(\cup_{t} A_{t}^{\prime}\right) \cap R=r_{R}\left(\cup_{t} A_{t}^{\prime}\right),
$$

proving that Φ is injective.
$(1) \Rightarrow(2)$: It suffices to show that Φ is surjective. Let V be an ideal of $R[x ; \sigma]$ and $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in V$. If $g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in$ $r_{R[x ; \sigma]}(f(x) R[x ; \sigma])$, then $f(x) R[x ; \sigma] g(x)=0$ and $f(x) x^{t} R[x ; \sigma] g(x)=0$ for all nonnegative integer t. Since R is σ-skew quasi-Armendariz, we have $a_{i} R \sigma^{i+t}\left(b_{j}\right)$ $=0$ for each $0 \leq i \leq n, 0 \leq j \leq m$. Then for any $0 \leq j \leq m$, we have $b_{j} \in r_{R}\left(a_{i} R x^{i+t}\right)=r_{R}\left(R a_{i} R x^{i+t}\right)$ for each $0 \leq i \leq n$; hence $b_{j} \in$ $\cap_{i=0}^{n} r_{R}\left(R a_{i} R x^{i+t}\right)=r_{R}\left(\cup_{i=0}^{n} R a_{i} R x^{i+t}\right)$. Set $A_{i}=R a_{i} R$ for $i=0,1, \ldots, n$. Then $A_{i}^{\prime}=\left\{d x^{j} \mid d \in A_{i}, j \geq i\right\}=\cup_{t=0}^{\infty} R a_{i} R x^{i+t}$ with $i=i\left(A_{i}\right)$. So $g(x) \in r_{R}\left(\cup_{i=0}^{n} A_{i}^{\prime}\right) R[x ; \sigma]$ and hence $r_{R[x ; \sigma]}(f(x) R[x ; \sigma]) \subseteq r_{R}\left(M_{f}\right) R[x ; \sigma]$, where $M_{f}=\cup_{i=0}^{n} A_{i}^{\prime}$. Conversely, let $g(x) \in r_{R}\left(M_{f}\right) R[x ; \sigma]=r_{R[x ; \sigma]}\left(M_{f}\right)$. Since every term of polynomials in $f(x) R[x ; \sigma]$ is a sum of monomials contained in M_{f}, we get $f(x) R[x ; \sigma] g(x)=0$ and thus $g(x) \in r_{R[x ; \sigma]}(f(x) R[x ; \sigma])$, concluding $r_{R[x ; \sigma]}(f(x) R[x ; \sigma])=r_{R}\left(M_{f}\right) R[x ; \sigma]$. Consequently

$$
\begin{aligned}
r_{R[x ; \sigma]}(V) & =\bigcap_{f(x) \in V} r_{R[x ; \sigma]}(f(x) R[x ; \sigma])=\bigcap_{f(x) \in V} r_{R[x ; \sigma]}\left(M_{f}\right) \\
& =r_{R[x ; \sigma]}\left(\bigcup_{f(x) \in V} M_{f}\right)=r_{R[x ; \sigma]}\left(M_{V}\right) \\
& =r_{R[x ; \sigma]}\left(\cup_{j} B_{j}^{\prime}\right)=r_{R}\left(\cup_{j} B_{j}^{\prime}\right) R[x ; \sigma]=\Phi\left(r_{R}\left(\cup_{j} B_{j}^{\prime}\right)\right),
\end{aligned}
$$

where $M_{V}=\cup_{i j}\left(R a_{i j} R\right)^{\prime}$ and $a_{i j}$ runs over the set of all coefficients of polynomials in V. Thus Φ is surjective.
$(2) \Rightarrow(1)$: Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in$ $R[x ; \sigma]$ with $f(x) R[x ; \sigma] g(x)=0$. Since Φ is surjective,

$$
r_{R[x ; \sigma]}(R[x ; \sigma] f(x) R[x ; \sigma])=r_{R}\left(\cup_{j} B_{j}^{\prime}\right) R[x ; \sigma]
$$

for some $r_{R}\left(\cup_{j} B_{j}^{\prime}\right) \in \Gamma$. Note $r_{R}\left(\cup_{j} B_{j}^{\prime}\right) R[x ; \sigma]=r_{R[x ; \sigma]}\left(\cup_{j} B_{j}^{\prime}\right)$, so $\left(\cup_{j} B_{j}^{\prime}\right) g(x)$ $=0$. Then for any $d x^{k} \in \cup_{j} B_{j}^{\prime}$ we get $d x^{k}\left(b_{0}+b_{1} x+\cdots+b_{m} x^{m}\right)=0$; hence $d x^{k} b_{j}=0$ for all $j=0,1, \ldots, m$ by the same computation as above. Consequently $b_{j} \in r_{R[x ; \sigma]}\left(\cup_{j} B_{j}^{\prime}\right)=r_{R[x ; \sigma]}(R[x ; \sigma] f(x) R[x ; \sigma])$ for any $j=0,1, \ldots, m$. Especially $\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right) R b_{j}=0$ for any $j=0,1, \ldots, m$. Now from the hypothesis that σ is surjective, we get $a_{i} R \sigma^{i}\left(b_{j}\right)=0$ for all i, j. Therefore R is σ-skew quasi-Armendariz.

Acknowledgements. The first named author was supported by the Kyung Hee University in the program of 2007 . The second named author was supported by the National Research Foundation of Korea grant funded by the Korea Government (No. 2009-0074018), while the third named author was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-521-C00003).

References

[1] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272.
2] E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.
[3] W. Chen and W. Tong, A note on skew Armendariz rings, Comm. Algebra 33 (2005), no. 4, 1137-1140.
[4] E. Hashemi, Quasi-Armendariz rings relative to a monoid, J. Pure Appl. Algebra 211 (2007), no. 2, 374-382.

5] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52
[6] C. Y. Hong, N. K. Kim, and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103-122.
7] C. Y. Hong, N. K. Kim, and Y. Lee, Extensions of McCoy's Theorem, Glasgow Math. J. 52 (2010), 155-159.
[8] C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761.
9] A. A. M. Kamal, Some remarks on Ore extension rings, Comm. Algebra 22 (1994), no. 10, 3637-3667.
[10] N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488.
[11] T. K. Lee and T. L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593.
[12] T. K. Lee and Y. Q. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004), no. 6, 2287-2299.
[13] A. Leroy and J. Matczuk, Goldie conditions for Ore extensions over semiprime rings, Algebr. Represent. Theory 8 (2005), no. 5, 679-688.
[14] J. Matczuk, A characterization of σ-rigid rings, Comm. Algebra 32 (2004), no. 11, 4333-4336.
[15] J. Okniński, Semigroup Algebras, Monographs and Textbooks in Pure and Applied Mathematics, 138. Marcel Dekker, Inc., New York, 1991.
[16] D. S. Passmann, The Algebraic Structure of Group Rings, Wiley-Interscience [John Wiley \& Sons], New York-London-Sydney, 1977.
[17] K. R. Pearson and W. Stephenson, A skew polynomial ring over a Jacobson ring need not be a Jacobson ring, Comm. Algebra 5 (1977), no. 8, 783-794.
[18] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17.

Chan Yong Hong
Department of Mathematics and Research Institute for Basic Sciences
Kyung Hee University
Seoul 131-701, Korea
E-mail address: hcy@khu.ac.kr
Nam Kyun Kim
College of Liberal Arts
Hanbat National University
Daejeon 305-719, Korea
E-mail address: nkkim@hanbat.ac.kr
Yang Lee
Department of Mathematics Education
Pusan National University
Pusan 609-735, Korea
E-mail address: ylee@pusan.ac.kr

[^0]: Received June 18, 2008; Revised August 26, 2008.
 2000 Mathematics Subject Classification. 16N60, 16S36.
 Key words and phrases. semiprime ring, quasi-Armendariz ring, skew polynomial ring.

