NOTES ON SYMMETRIC SKEW n-DERIVATION IN RINGS

Emine Koç and Nadeem ur Rehman

Abstract

Let R be a prime ring (or semiprime ring) with center $Z(R)$, I a nonzero ideal of R, T an automorphism of $R, S: R^{n} \rightarrow R$ be a symmetric skew n-derivation associated with the automorphism T and Δ is the trace of S. In this paper, we shall prove that $S\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in R$ if any one of the following holds: i) $\Delta(x)=0$, ii) $[\Delta(x), T(x)]=0$ for all $x \in I$.

Moreover, we prove that if $[\Delta(x), T(x)] \in Z(R)$ for all $x \in I$, then R is a commutative ring.

1. Introduction

Throughout the paper R will denote an associative ring with centre $Z(R)$. A ring R is said to be prime (resp. semiprime) if $a R b=(0)$ implies that either $a=0$ or $b=0$ (resp. $a R a=(0)$ implies that $a=0$). We shall write $[x, y]$ the commutator $x y-y x$. We make extensive use of basic commutator identities $[x y, z]=[x, z] y+x[y, z]$ and $[x, y z]=[x, y] z+y[x, z]$. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. A derivation d is inner if there exists an element $a \in R$ such that $d(x)=[a, x]$ for all $x \in R$. A mapping $S: R \times R \rightarrow R$ is said to be symmetric if $S(x, y)=$ $S(y, x)$, for all $x, y \in R$. A mapping $\Delta: R \rightarrow R$ defined by $\Delta(x)=S(x, x)$, where $S: R \times R \rightarrow R$ is a symmetric mapping, is called the trace of S. It is obvious that in the case $S: R \times R \rightarrow R$ is a symmetric bi-additive mapping, the trace Δ of S satisfies the relation $\Delta(x+y)=\Delta(x)+\Delta(y)+2 S(x, y)$ for all $x, y \in R$. A bi-additive mapping $S: R \times R \rightarrow R$ is said to be a bi-derivation if for every $x \in R$, the map $y \mapsto S(x, y)$ as well as if for every $y \in R$, the map $x \mapsto S(x, y)$ are derivations of R.

An additive mapping $d: R \rightarrow R$ is called a skew derivation (T-derivation) of R associated with the automorphism T if $d(x y)=d(x) y+T(x) d(y)$ for all $x, y \in$ R. Skew derivations are one of the natural generalizations of usual derivations, when $T=I$, the identity map on R. Let $n \geq 1$ be an integer. A mapping $S: R^{n} \rightarrow R$ is said to be n-additive, if it is additive in each argument and it is

[^0]called symmetric if $S\left(x_{1}, \ldots, x_{n}\right)=S\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ for all $x_{1}, x_{2}, \ldots, x_{n} \in$ R and every permutation $\pi \in S_{n}$, the symmetric group of degree n. An n additive map $S: R^{n} \rightarrow R$ is called a skew n-derivation associated with the automorphism T if for every $k=1,2, \ldots, n$ and all $x_{1}, \ldots, x_{n} \in R$, the map $x \longmapsto S\left(x_{1}, x_{k-1}, x, x_{k+1}, \ldots, x_{n}\right)$ is a skew derivation of R associated with the automorphism T. This definition covers both the notion of skew derivations as well as the notion of skew bi-derivation. Namely, a skew 1-derivation is a skew derivation and skew 2 -derivation is a skew bi-derivation.

Let S be a nonempty subset of R. A mapping F from R to R is called centralizing on S if $[F(x), x] \in Z(R)$ for all $x \in S$ and is called commuting on S if $[F(x), x]=0$ for all $x \in S$. The study of centralizing mappings was initiated by E. C. Posner [11], which states that there existence of a nonzero centralizing derivation on a prime ring forces the ring to be commutative (Posner's second theorem). There has been an ongoing interest concerning the relationship between the commutativity of a ring and the existence of certain specific types of derivations of R (see [3], for a partial bibliography).

In [8], Maksa introduced the concept of a symmetric bi-derivation (see also [9], where an example can be found). It was shown in [8] that symmetric biderivations are related to general solution of some functional equations. Then, Ashraf [1] obtained the analogous result replacing d with the trace of symmetric bi-derivation. Vukman [13] and [14] also studied the symmetric biderivation on prime and semiprime rings and obtain some results concerning the traces symmetric bi-additive maps. Some results on symmetric bi-derivation in prime and semiprime rings can be found in $[2,4,5]$. In the present paper, we shall prove that R is commutative if any one of the following holds: i) $\Delta(x)=0$, ii) $[\Delta(x), T(x)]=0$, iii) $[\Delta(x), T(x)] \in Z(R)$ for all $x \in I$.

Example 1.1 ([10, Example 1]). Let R be a commutative ring, T be an autoporphism of R and $s: R \rightarrow R$ be a skew-derivation of R associated with the automorphism T. Then the map $S: R^{n} \rightarrow R, S\left(x_{1}, \ldots, x_{n}\right)=$ $s\left(x_{1}\right) s\left(x_{2}\right) \cdots s\left(x_{n}\right)$ is a skew n-derivation in R.
Example 1.2 ([10, Example 2]). Let $R=\left\{\left(\begin{array}{ll}x & y \\ 0 & 0\end{array}\right): x, y \in \mathbb{Z}\right\}$, where \mathbb{Z} is the set of all integers, and $T\left(\begin{array}{cc}x & y \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}x & -y \\ 0 & 0\end{array}\right)$. Then R is a noncommutative ring and T is an automorphism of R. We define a map $S: R^{n} \rightarrow R$ by

$$
\left(\left(\begin{array}{cc}
x_{1} & y_{1} \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
x_{2} & y_{2} \\
0 & 0
\end{array}\right), \ldots,\left(\begin{array}{cc}
x_{n} & y_{n} \\
0 & 0
\end{array}\right)\right) \rightarrow\left(\begin{array}{cc}
0 & x_{1} x_{2} \cdots x_{n} \\
0 & 0
\end{array}\right)
$$

Then it is easy to verify that S is a skew n-derivation in R associated with the automorphism T.

2. Main results

Posner [11] proved a very striking theorem, which states that the existence of a nonzero centralizing derivation on a prime ring forces the ring to be commutative. This theorem has been extremely influential and it initiated the study
of centralizing mappings. Further Vukman [14] extended the above result for bi-derivations. Recently, Jung and Park [7] considered permuting 3-derivations on prime and semiprime rings and obtained the following:

Theorem 2.1. Let R be a noncommutative 3 -torsion free semiprime ring and I be a nonzero two-sided ideal of R. Suppose that there exists a permuting 3derivation $D: R^{3} \rightarrow R$ with the trace Δ such that Δ is centralizing on I. Then Δ is commuting on I.

Further Park [10] proved that:
Theorem 2.2. Let $n \geq 2$ be a fixed positive integer and R be a noncommutative n !-torsion free semiprime ring. If there exists a symmetric n-derivation $D: R^{n} \rightarrow R$ such that the trace of D is centralizing on R, then the trace is commuting on R.

Many authors ([6], [12]) partially extended the above theorems for symmetric skew n-derivations for different values of n.

Recently, Fošner [6] proved the above theorems for symmetric skew 3-derivations in prime rings. In this paper [6], author mentioned some open problems involving skew n-derivations. In the present paper, our aim is to solve these problems.

We begin our discussion with the following proposition.
Proposition 2.3. Let R be a n!-torsion free prime ring, I a nonzero ideal of R, T an automorphism of R and $S: R^{n} \rightarrow R$ be a symmetric skew n-derivation associated with the automorphism T. If Δ is the trace of S such that $\Delta(I)=0$, then $S\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in R$.
Proof. We have $\Delta(x)=0$ that is $S(x, \ldots, x)=0$ for all $x \in I$. Linearizing the identity, we have

$$
\begin{equation*}
0=\Delta(x+y)=\binom{n}{0} \Delta_{0}+\binom{n}{1} \Delta_{1}+\cdots+\binom{n}{n} \Delta_{n} \tag{2.1}
\end{equation*}
$$

where $\Delta_{i}=S(\underbrace{x, \ldots, x}_{i}, \underbrace{y, \ldots, y}_{n-i})$.
Since $\Delta(x)=\Delta_{n}=\Delta_{0}=0,(2.1)$ reduces to

$$
\begin{equation*}
\binom{n}{1} \Delta_{1}+\binom{n}{2} \Delta_{2}+\cdots+\binom{n}{n-1} \Delta_{n-1}=0 \tag{2.2}
\end{equation*}
$$

Replacing x by $x, 2 x, 3 x,(n-1) x$ in turn, and expressing the resulting system of $n-1$ homogeneous equations, we see that the coefficient matrix of the system is a Vandermonde matrix

$$
\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
2 & 2^{2} & \cdots & 2^{n-1} \\
\cdots & \cdots & \cdots & \cdots \\
n-1 & (n-1)^{2} & \cdots & (n-1)^{n-1}
\end{array}\right)
$$

Since the determinant of the matrix is equal to a product of positive integers, each of which is less than $n-1$, and since R is $n!$-torsion free, it follows immediately that

$$
\Delta_{1}=\Delta_{2}=\cdots=\Delta_{n-1}=0
$$

Now $\Delta_{1}=0$ yields that $S(y, x, x, \ldots, x)=0$ for all $x, y \in I$. Again linearizing this identity with respect to x, we can prove by the same manner that $S(y, z, x, \ldots, x)=0$ for all $x, y, z \in I$ and hence $S\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in I$. Now replacing x_{1} with $r_{1} x_{1}$, where $r_{1} \in R$, we get $0=S\left(r_{1} x_{1}, x_{2}, \ldots, x_{n}\right)=S\left(r_{1}, x_{2}, \ldots, x_{n}\right) x_{1}+T\left(r_{1}\right) S\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Since $S\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in I$, we have from above relation that $S\left(r_{1}, x_{2}, \ldots, x_{n}\right) x_{1}=0$ for all $x_{1}, \ldots, x_{n} \in I$. Since R is prime, we conclude that $S\left(r_{1}, x_{2}, \ldots, x_{n}\right)=0$ for all $x_{2}, \ldots, x_{n} \in I$ and $r_{1} \in R$. Again replacing x_{2} with $r_{2} x_{2}$, where $r_{2} \in R$, we have by the same arguments that $S\left(r_{1}, r_{2}, \ldots, x_{n}\right)=0$ for all $x_{3}, \ldots, x_{n} \in I$ and $r_{1}, r_{2} \in R$. Repeating the process, we obtain that $S\left(r_{1}, \ldots, r_{n}\right)=0$ for all $r_{1}, \ldots, r_{n} \in R$.
Theorem 2.4. Let R be a noncommutative $(n+1)$!-torsion free prime ring, I a nonzero ideal of R, T an automorphism of R and $S: R^{n} \rightarrow R$ be a symmetric skew n-derivation associated with the automorphism T. If Δ is the trace of S such that

$$
[\Delta(x), T(x)]=0
$$

for all $x \in I$, then $S\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in R$.
Proof. We have

$$
\begin{equation*}
[\Delta(x), T(x)]=0 \tag{2.3}
\end{equation*}
$$

for all $x \in I$. Replacing x with $x+y$ in above relation and then using the technique of linearizing as in Proposition 2.3, we get

$$
\begin{equation*}
n[S(y, x, \ldots, x), T(x)]+[\Delta(x), T(y)]=0 \tag{2.4}
\end{equation*}
$$

for all $x, y \in I$. Now we put $y=x y$ and then obtain that

$$
\begin{equation*}
n[\Delta(x) y+T(x) S(y, x, \ldots, x), T(x)]+[\Delta(x), T(x) T(y)]=0 \tag{2.5}
\end{equation*}
$$

that is,

$$
\begin{align*}
n \Delta(x)[y, T(x)] & +n[\Delta(x), T(x)] y+n T(x)[S(y, x, \ldots, x), T(x)] \\
& +T(x)[\Delta(x), T(y)]+[\Delta(x), T(x)] T(y)=0 \tag{2.6}
\end{align*}
$$

for all $x, y \in I$. Now using (2.3) and (2.4), (2.6) reduces to

$$
\begin{equation*}
n \Delta(x)[y, T(x)]=0 \tag{2.7}
\end{equation*}
$$

for all $x, y \in I$. By using torsion free restriction on R, we can write $\Delta(x)[y, T(x)]$ $=0$ for all $x, y \in I$. Now putting $y=y r$, where $r \in R$, we get

$$
0=\Delta(x)[y r, T(x)]=\Delta(x)[y, T(x)] r+\Delta(x) y[r, T(x)]=\Delta(x) y[r, T(x)]
$$

for all $x, y \in I$ and $r \in R$. Since R is prime, for each $x \in I$, either $\Delta(x)=0$ or $T(x) \in Z(R)$. Now choose $x \in I$ such that $T(x) \in Z(R)$. Thus from (2.4),
we can write for all $y \in I$ that $[\Delta(x), T(y)]=0$, that is $[\Delta(x), T(I)]=0$. Since $T(I)$ is a nonzero ideal of R, we have $\Delta(x) \in Z(R)$.

Therefore, in any case, we can write $\Delta(x) \in Z(R)$ for all $x \in I$. This implies $[\Delta(x), r]=0$ for all $x \in I$ and $r \in R$. Again by replacing x with $x+y$ and then by using the same arguments linearization of Proposition 2.3, we have $n[S(y, x, \ldots, x), r]=0$ for all $x, y \in I$ and $r \in R$. Since R is n torsion free, $[S(y, x, \ldots, x), r]=0$ for all $x, y \in I$ and $r \in R$. Putting $y=$ $y r$ we get $0=[S(y, x, \ldots, x) r+T(y) S(r, x, \ldots, x), r]=[S(y, x, \ldots, x), r] r+$ $[T(y) S(r, x, \ldots, x), r]$. This implies $0=[T(y) S(r, x, \ldots, x), r]$ for all $x, y \in I$ and $r \in R$. Putting $y=s y$, where $s \in R$, we obtain

$$
\begin{aligned}
0 & =[T(s) T(y) S(r, x, \ldots, x), r] \\
& =T(s)[T(y) S(r, x, \ldots, x), r]+[T(s), r] T(y) S(r, x, \ldots, x) \\
& =[T(s), r] T(y) S(r, x, \ldots, x) .
\end{aligned}
$$

This implies that $0=[T(s), r] T(I) S(r, x, \ldots, x)$ for all $x \in I$ and $r, s \in R$. Since R is prime, for each $r \in R$ we conclude either $[T(s), r]=0$ for all $s \in R$ or $S(r, x, \ldots, x)=0$ for all $x \in I$. The sets of $r \in R$ for which these two conditions hold are additive subgroups of R whose union is R; therefore, $[T(s), r]=0$ for all $s \in R$, for all $r \in R$ or $S(r, x, \ldots, x)=0$ for all $x \in I$, for all $r \in R$. Since R is noncommutative, first case can not occurs, and hence $S\left(r_{1}, x, \ldots, x\right)=0$ for all $x \in I, r_{1} \in R$. Then by same argument of Proposition 2.3, we can conclude that $S\left(r_{1}, \ldots, r_{n}\right)=0$ for all $r_{1}, \ldots, r_{n} \in R$.

Theorem 2.5. Let R be a noncommutative $(n+1)$!-torsion free semiprime ring, I a nonzero ideal of R, T an automorphism of R and $S: R^{n} \rightarrow R$ be a symmetric skew n-derivation associated with the automorphism T. If Δ is the trace of S such that

$$
[\Delta(x), T(x)] \in Z(R)
$$

for all $x \in I$, then $[\Delta(x), T(x)]=0$ for all $x \in I$.
Proof. Let $x \in I$ and $t=[\Delta(x), T(x)] \in Z(R)$. Denote

$$
\gamma_{i}(y, x)=S(\underbrace{y, \ldots, y}_{i}, \underbrace{x, \ldots, x}_{n-i}) .
$$

Then $\gamma_{0}(y, x)=S(x, \ldots, x)=\Delta(x)$ and $\gamma_{n}(y, x)=S(y, \ldots, y)=\Delta(y)$. Linearizing the relation $[\Delta(x), T(x)] \in Z(R)$ yields as shown in Proposition 2.3 that

$$
\begin{gathered}
\binom{n}{1}\left[\gamma_{1}(y, x), T(x)\right]+[\Delta(x), T(y)] \in Z(R), \\
\binom{n}{2}\left[\gamma_{2}(y, x), T(x)\right]+\binom{n}{1}\left[\gamma_{1}(y, x), T(y)\right] \in Z(R), \\
\binom{n}{3}\left[\gamma_{3}(y, x), T(x)\right]+\binom{n}{2}\left[\gamma_{2}(y, x), T(y)\right] \in Z(R),
\end{gathered}
$$

$$
\binom{n}{n}[\Delta(y), T(x)]+\binom{n}{n-1}\left[\gamma_{n-1}(y, x), T(y)\right] \in Z(R) .
$$

Now putting $y=x^{2}$, above relations become

$$
\begin{equation*}
\binom{n}{1}\left[\gamma_{1}\left(x^{2}, x\right), T(x)\right]+2 t T(x) \in Z(R) \tag{2.8}
\end{equation*}
$$

$$
\begin{align*}
\binom{n}{2}\left[\gamma_{2}\left(x^{2}, x\right), T(x)\right] & +\binom{n}{1}\left\{\left[\gamma_{1}\left(x^{2}, x\right), T(x)\right] T(x)\right. \tag{2.9}\\
& \left.+T(x)\left[\gamma_{1}\left(x^{2}, x\right), T(x)\right]\right\} \in Z(R)
\end{align*}
$$

$$
\begin{align*}
\binom{n}{3}\left[\gamma_{3}\left(x^{2}, x\right), T(x)\right] & +\binom{n}{2}\left\{\left[\gamma_{2}\left(x^{2}, x\right), T(x)\right] T(x)\right. \tag{2.10}\\
& \left.+T(x)\left[\gamma_{2}\left(x^{2}, x\right), T(x)\right]\right\} \in Z(R)
\end{align*}
$$

$$
\binom{n}{n}\left[\Delta\left(x^{2}\right), T(x)\right]+\binom{n}{n-1}\left\{\left[\gamma_{n-1}\left(x^{2}, x\right), T(x)\right] T(x)\right.
$$

$$
\left.+T(x)\left[\gamma_{n-1}\left(x^{2}, x\right), T(x)\right]\right\} \in Z(R)
$$

Commuting both sides of (2.8) with $T(x)$, we can write

$$
0=\left[\binom{n}{1}\left[\gamma_{1}\left(x^{2}, x\right), T(x)\right]+2 t T(x), T(x)\right]=\binom{n}{1}\left[\left[\gamma_{1}\left(x^{2}, x\right), T(x)\right], T(x)\right]
$$

Since R is $(n+1)$!-torsion free, we conclude that $\left[\gamma_{1}\left(x^{2}, x\right), T(x)\right]$ commutes with $T(x)$. Again, commuting both sides of (2.9) with $T(x)$, we obtain by using the fact $\left[\left[\gamma_{1}\left(x^{2}, x\right), T(x)\right], T(x)\right]=0$ that $\left[\left[\gamma_{2}\left(x^{2}, x\right), T(x)\right], T(x)\right]=0$. In the same manner, we can prove in general that $\left[\left[\gamma_{i}\left(x^{2}, x\right), T(x)\right], T(x)\right]=0$ for $i=1,2, \ldots, n-1$ and $\left[\left[\Delta\left(x^{2}\right), T(x)\right], T(x)\right]=0$. Thus the relations (2.8) to (2.11) reduce to

$$
\begin{gathered}
\binom{n}{1}\left[\gamma_{1}\left(x^{2}, x\right), T(x)\right]+2 t T(x) \in Z(R), \\
\binom{n}{2}\left[\gamma_{2}\left(x^{2}, x\right), T(x)\right]+2\binom{n}{1}\left[\gamma_{1}\left(x^{2}, x\right), T(x)\right] T(x) \in Z(R), \\
\binom{n}{3}\left[\gamma_{3}\left(x^{2}, x\right), T(x)\right]+2\binom{n}{2}\left[\gamma_{2}\left(x^{2}, x\right), T(x)\right] T(x) \in Z(R), \\
\ldots \ldots \ldots \\
\binom{n}{n-1}\left[\gamma_{n-1}\left(x^{2}, x\right), T(x)\right]+2\binom{n}{n-2}\left[\gamma_{n-2}\left(x^{2}, x\right), T(x)\right] T(x) \in Z(R), \\
\binom{n}{n}\left[\Delta\left(x^{2}\right), T(x)\right]+2\binom{n}{n-1}\left[\gamma_{n-1}\left(x^{2}, x\right), T(x)\right] T(x) \in Z(R) .
\end{gathered}
$$

There exists a sequence of maps $\mu_{i}: R \rightarrow Z(R)$ such that

$$
\left.\begin{array}{c}
\binom{n}{1}\left[\gamma_{1}\left(x^{2}, x\right), T(x)\right]+2 t T(x)=\mu_{1}(x), \\
\binom{n}{2}\left[\gamma_{2}\left(x^{2}, x\right), T(x)\right]+2\binom{n}{1}\left[\gamma_{1}\left(x^{2}, x\right), T(x)\right] T(x)=\mu_{2}(x), \\
\binom{n}{3}\left[\gamma_{3}\left(x^{2}, x\right), T(x)\right]+2\binom{n}{2}\left[\gamma_{2}\left(x^{2}, x\right), T(x)\right] T(x)=\mu_{3}(x), \\
\cdots \cdots \cdots
\end{array} \begin{array}{c}
n \\
n-1
\end{array}\right)\left[\gamma_{n-1}\left(x^{2}, x\right), T(x)\right]+2\binom{n}{n-2}\left[\gamma_{n-2}\left(x^{2}, x\right), T(x)\right] T(x)=\mu_{n-1}(x), ~\left[\begin{array}{c}
n \\
n
\end{array}\right)\left[\Delta\left(x^{2}\right), T(x)\right]+2\binom{n}{n-1}\left[\gamma_{n-1}\left(x^{2}, x\right), T(x)\right] T(x)=\mu_{n}(x) . .
$$

Multiplying the equations $2^{n-1} T(x)^{n-1},-2^{n-2} T(x)^{n-2}, \ldots,(-1)^{n} 2^{1} T(x)^{1}$, $-(-1)^{n} .1$ respectively, we can write the equations as

$$
\begin{aligned}
& 2^{n-1} T(x)^{n-1}\binom{n}{1}\left[\gamma_{1}\left(x^{2}, x\right), T(x)\right]+2^{n} T(x)^{n} t=2^{n-1} T(x)^{n-1} \mu_{1}(x), \\
& -2^{n-2} T(x)^{n-2}\binom{n}{2}\left[\gamma_{2}\left(x^{2}, x\right), T(x)\right]-2^{n-1} T(x)^{n-1}\binom{n}{1}\left[\gamma_{1}\left(x^{2}, x\right), T(x)\right] \\
& =-2^{n-2} T(x)^{n-2} \mu_{2}(x), \\
& 2^{n-3} T(x)^{n-3}\binom{n}{3}\left[\gamma_{3}\left(x^{2}, x\right), T(x)\right]+2^{n-2} T(x)^{n-2}\binom{n}{2}\left[\gamma_{2}\left(x^{2}, x\right), T(x)\right] \\
& =2^{n-3} T(x)^{n-3} \mu_{3}(x) \text {, } \\
& (-1)^{n} 2 T(x)\binom{n}{n-1}\left[\gamma_{n-1}\left(x^{2}, x\right), T(x)\right] \\
& +(-1)^{n} 2^{2} T(x)^{2}\binom{n}{n-2}\left[\gamma_{n-2}\left(x^{2}, x\right), T(x)\right] \\
& =(-1)^{n} 2 T(x) \mu_{n-1}(x) \text {, } \\
& -(-1)^{n}\binom{n}{n}\left[\Delta\left(x^{2}\right), T(x)\right]-(-1)^{n} 2\binom{n}{n-1}\left[\gamma_{n-1}\left(x^{2}, x\right), T(x)\right] T(x) \\
& =-(-1)^{n} \mu_{n}(x) \text {. }
\end{aligned}
$$

Adding all these above equations, we obtain

$$
\begin{aligned}
& 2^{n} T(x)^{n} t-(-1)^{n}\left[\Delta\left(x^{2}\right), T(x)\right] \\
= & 2^{n-1} T(x)^{n-1} \mu_{1}(x)-2^{n-2} T(x)^{n-2} \mu_{2}(x)+2^{n-3} T(x)^{n-3} \mu_{3}(x) \\
& +\cdots+(-1)^{n} 2 T(x) \mu_{n-1}(x)-(-1)^{n} \mu_{n}(x) .
\end{aligned}
$$

Now by hypothesis, we have $\left[\Delta\left(x^{2}\right), T\left(x^{2}\right)\right] \in Z(R)$. Then for some μ_{n+1} : $R \rightarrow R$, we can write $\left[\Delta\left(x^{2}\right), T\left(x^{2}\right)\right]=\mu_{n+1}(x)$. Since $\left[\Delta\left(x^{2}\right), T(x)\right]$ commutes with $T(x)$, we have

$$
\mu_{n+1}(x)=\left[\Delta\left(x^{2}\right), T\left(x^{2}\right)\right]=2 T(x)\left[\Delta\left(x^{2}\right), T(x)\right]
$$

Now multiplying (2.12) by $2 T(x)$ in both sides and then using the fact $2 T(x)\left[\Delta\left(x^{2}\right), T(x)\right]=\mu_{n+1}(x)$, we obtain that

$$
\begin{align*}
& 2^{n+1} T(x)^{n+1} t-(-1)^{n} \mu_{n+1}(x) \\
= & 2^{n} T(x)^{n} \mu_{1}(x)-2^{n-1} T(x)^{n-1} \mu_{2}(x)+2^{n-2} T(x)^{n-2} \mu_{3}(x) \tag{2.13}\\
& +\cdots+(-1)^{n} 2^{2} T(x)^{2} \mu_{n-1}(x)-(-1)^{n} 2 T(x) \mu_{n}(x) .
\end{align*}
$$

Now commuting $T(x)^{k}$ with $\Delta(x)$ successively, we get

$$
\left[\Delta(x), T(x)^{k}\right]=[\Delta(x), \underbrace{T(x) \cdot T(x) \cdots \cdot T(x)}_{k \text { times }}]=k t T(x)^{k-1}
$$

and

$$
\begin{aligned}
{\left[\Delta(x),\left[\Delta(x), T(x)^{k}\right]\right] } & =k t\left[\Delta(x), T(x)^{k-1}\right]=k(k-1) t^{2} T(x)^{k-2} \\
& =\frac{k!}{(k-2)!} t^{2} T(x)^{k-2} .
\end{aligned}
$$

Thus commuting $T(x)^{k}$ with $\Delta(x)$ successively m-times yields

$$
\left[\Delta(x), \ldots,\left[\Delta(x), T(x)^{k}\right]\right]=\left\{\begin{array}{cc}
\frac{k!}{(k-m)!} t^{m} T(x)^{k-m}, & 1 \leq m \leq k \\
0, & m>k
\end{array}\right.
$$

Using this fact, we can write, successively commuting both sides of (2.13) $(n+1)$-times with $T(x)$ and using the fact that R is $(n+1)$!-torsion free, we obtain $t^{n+2}=0$. Since the center of semiprime ring contains no nonzero nilpotent elements, we have $t=0$, as desired.

Corollary 2.6. Let R be a $(n+1)$!-torsion free prime ring, I a nonzero ideal of R, T an automorphism of R and $S: R^{n} \rightarrow R$ be a nonzero symmetric skew n-derivation associated with the automorphism T. If Δ is the trace of S such that

$$
[\Delta(x), T(x)] \in Z(R)
$$

for all $x \in I$, then R is commutative.

References

[1] M. Ashraf, On symmetric bi-derivations in rings, Rend. Istit. Mat. Univ. Trieste 31 (1999), no. 1-2, 25-36.
[2] M. Ashraf and M. R. Jamal, Traces of permuting n-additive maps and permuting nderivations of rings, Mediterr. J. Math. 11 (2014), no. 2, 287-297.
[3] H. E. Bell and W. S. Martindale, III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), no. 1, 92-101.
[4] M. Bresar, On generalized biderivations and related maps, J. Algebra 172 (1995), no. 3, 764-786.
[5] M. Bresar, W. S. Martindale, III, and C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra 161 (1993), no. 2, 342-357.
[6] A. Fošner, Prime and semiprime rings with symmetric skew 3-derivations, Aequat. Math. DOI 10.1007/s00010-013-0208-8.
[7] Y.-S. Jung and K.-H. Park, On prime and semiprime rings with permuting 3-derivations, Bull. Korean Math. Soc. 44 (2007), no. 4, 789-794.
[8] Gy. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glas. Mat. Ser. III 15(35) (1980), no. 2, 279-282.
[9] , On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 6, 303-307.
[10] K. H. Park, On prime and semiprme rings with symmetyric n-derivations, J. Chungcheong Math. Soc. 22 (2009), no. 3, 451-454.
[11] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[12] R. K. Sharma and B. Dhara, Skew-commuting and commuting mappings in rings with left identity, Results Math. 46 (2004), no. 1-2, 123-129.
[13] J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aequationes Math. 38 (1989), no. 2-3, 245-254.
[14] , Two results concerning symmetric bi-derivations on prime rings, Aequationes Math. 40 (1990), no. 2-3, 181-189.

Emine Koç
Department of Mathematics
Cumhuriyet University
Sivas, Turkey
Email address: eminekoc@cumhuriyet.edu.tr
Nadeem ur Rehman
Department of Mathematics
Aligarh Muslim University
Aligarh U.P., India
Email address: nu.rehman.mm@amu.ac.in

[^0]: Received November 14, 2017; Accepted April 11, 2018.
 2010 Mathematics Subject Classification. 16W20, 16W25, 16N60.
 Key words and phrases. prime ring, semiprime ring, symmetric skew n-derivation, centralizing mapping, commuting mapping.

