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NOTES ON SYMMETRIC SKEW n-DERIVATION IN RINGS

Emine Koç and Nadeem ur Rehman

Abstract. Let R be a prime ring (or semiprime ring) with center Z(R),

I a nonzero ideal of R, T an automorphism of R, S : Rn → R be a
symmetric skew n-derivation associated with the automorphism T and

∆ is the trace of S. In this paper, we shall prove that S(x1, . . . , xn) = 0

for all x1, . . . , xn ∈ R if any one of the following holds: i) ∆(x) = 0, ii)
[∆(x), T (x)] = 0 for all x ∈ I.

Moreover, we prove that if [∆(x), T (x)] ∈ Z(R) for all x ∈ I, then R

is a commutative ring.

1. Introduction

Throughout the paper R will denote an associative ring with centre Z(R).
A ring R is said to be prime (resp. semiprime) if aRb = (0) implies that either
a = 0 or b = 0 (resp. aRa = (0) implies that a = 0). We shall write [x, y] the
commutator xy − yx. We make extensive use of basic commutator identities
[xy, z] = [x, z]y + x[y, z] and [x, yz] = [x, y]z + y[x, z]. An additive mapping
d : R → R is called a derivation if d(xy) = d(x)y + xd(y) for all x, y ∈ R. A
derivation d is inner if there exists an element a ∈ R such that d(x) = [a, x]
for all x ∈ R. A mapping S : R × R → R is said to be symmetric if S(x, y) =
S(y, x), for all x, y ∈ R. A mapping ∆ : R → R defined by ∆(x) = S(x, x),
where S : R × R → R is a symmetric mapping, is called the trace of S. It is
obvious that in the case S : R × R → R is a symmetric bi-additive mapping,
the trace ∆ of S satisfies the relation ∆(x+y) = ∆(x) + ∆(y) + 2S(x, y) for all
x, y ∈ R. A bi-additive mapping S : R × R → R is said to be a bi-derivation
if for every x ∈ R, the map y 7→ S(x, y) as well as if for every y ∈ R, the map
x 7→ S(x, y) are derivations of R.

An additive mapping d : R→ R is called a skew derivation (T -derivation) of
R associated with the automorphism T if d(xy) = d(x)y+T (x)d(y) for all x, y ∈
R. Skew derivations are one of the natural generalizations of usual derivations,
when T = I, the identity map on R. Let n ≥ 1 be an integer. A mapping
S : Rn → R is said to be n-additive, if it is additive in each argument and it is
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called symmetric if S(x1, . . . , xn) = S(xπ(1), . . . , xπ(n)) for all x1, x2, . . . , xn ∈
R and every permutation π ∈ Sn, the symmetric group of degree n. An n-
additive map S : Rn → R is called a skew n-derivation associated with the
automorphism T if for every k = 1, 2, . . . , n and all x1, . . . , xn ∈ R, the map
x 7−→ S(x1, xk−1, x, xk+1, . . . , xn) is a skew derivation of R associated with the
automorphism T . This definition covers both the notion of skew derivations as
well as the notion of skew bi-derivation. Namely, a skew 1-derivation is a skew
derivation and skew 2-derivation is a skew bi-derivation.

Let S be a nonempty subset of R. A mapping F from R to R is called cen-
tralizing on S if [F (x), x] ∈ Z(R) for all x ∈ S and is called commuting on S
if [F (x), x] = 0 for all x ∈ S. The study of centralizing mappings was initiated
by E. C. Posner [11], which states that there existence of a nonzero centralizing
derivation on a prime ring forces the ring to be commutative (Posner’s second
theorem). There has been an ongoing interest concerning the relationship be-
tween the commutativity of a ring and the existence of certain specific types
of derivations of R (see [3], for a partial bibliography).

In [8], Maksa introduced the concept of a symmetric bi-derivation (see also
[9], where an example can be found). It was shown in [8] that symmetric bi-
derivations are related to general solution of some functional equations. Then,
Ashraf [1] obtained the analogous result replacing d with the trace of symmetric
bi-derivation. Vukman [13] and [14] also studied the symmetric biderivation
on prime and semiprime rings and obtain some results concerning the traces
symmetric bi-additive maps. Some results on symmetric bi-derivation in prime
and semiprime rings can be found in [2, 4, 5]. In the present paper, we shall
prove that R is commutative if any one of the following holds: i) ∆(x) = 0, ii)
[∆(x), T (x)] = 0, iii) [∆(x), T (x)] ∈ Z(R) for all x ∈ I.

Example 1.1 ([10, Example 1]). Let R be a commutative ring, T be an
autoporphism of R and s : R → R be a skew-derivation of R associated
with the automorphism T . Then the map S : Rn → R, S(x1, . . . , xn) =
s(x1)s(x2) · · · s(xn) is a skew n-derivation in R.

Example 1.2 ([10, Example 2]). Let R = {( x y0 0 ) : x, y ∈ Z}, where Z is the
set of all integers, and T ( x y0 0 ) =

(
x −y
0 0

)
. Then R is a noncommutative ring

and T is an automorphism of R. We define a map S : Rn → R by((
x1 y1

0 0

)
,

(
x2 y2

0 0

)
, . . . ,

(
xn yn
0 0

))
→
(

0 x1x2 · · ·xn
0 0

)
.

Then it is easy to verify that S is a skew n-derivation in R associated with the
automorphism T .

2. Main results

Posner [11] proved a very striking theorem, which states that the existence of
a nonzero centralizing derivation on a prime ring forces the ring to be commu-
tative. This theorem has been extremely influential and it initiated the study
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of centralizing mappings. Further Vukman [14] extended the above result for
bi-derivations. Recently, Jung and Park [7] considered permuting 3-derivations
on prime and semiprime rings and obtained the following:

Theorem 2.1. Let R be a noncommutative 3-torsion free semiprime ring and
I be a nonzero two-sided ideal of R. Suppose that there exists a permuting 3-
derivation D : R3 → R with the trace ∆ such that ∆ is centralizing on I. Then
∆ is commuting on I.

Further Park [10] proved that:

Theorem 2.2. Let n ≥ 2 be a fixed positive integer and R be a noncommu-
tative n!-torsion free semiprime ring. If there exists a symmetric n-derivation
D : Rn → R such that the trace of D is centralizing on R, then the trace is
commuting on R.

Many authors ([6], [12]) partially extended the above theorems for symmetric
skew n-derivations for different values of n.

Recently, Fošner [6] proved the above theorems for symmetric skew 3-deriva-
tions in prime rings. In this paper [6], author mentioned some open problems
involving skew n-derivations. In the present paper, our aim is to solve these
problems.

We begin our discussion with the following proposition.

Proposition 2.3. Let R be a n!-torsion free prime ring, I a nonzero ideal of
R, T an automorphism of R and S : Rn → R be a symmetric skew n-derivation
associated with the automorphism T . If ∆ is the trace of S such that ∆(I) = 0,
then S(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ R.

Proof. We have ∆(x) = 0 that is S(x, . . . , x) = 0 for all x ∈ I. Linearizing the
identity, we have

(2.1) 0 = ∆(x+ y) =

(
n

0

)
∆0 +

(
n

1

)
∆1 + · · ·+

(
n

n

)
∆n,

where ∆i = S(x, . . . , x︸ ︷︷ ︸
i

, y, . . . , y︸ ︷︷ ︸
n−i

).

Since ∆(x) = ∆n = ∆0 = 0, (2.1) reduces to

(2.2)

(
n

1

)
∆1 +

(
n

2

)
∆2 + · · ·+

(
n

n− 1

)
∆n−1 = 0.

Replacing x by x, 2x, 3x, (n− 1)x in turn, and expressing the resulting system
of n−1 homogeneous equations, we see that the coefficient matrix of the system
is a Vandermonde matrix

1 1 . . . 1
2 22 . . . 2n−1

. . . . . . . . . . . .
n− 1 (n− 1)2 . . . (n− 1)n−1

 .
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Since the determinant of the matrix is equal to a product of positive integers,
each of which is less than n − 1, and since R is n!-torsion free, it follows
immediately that

∆1 = ∆2 = · · · = ∆n−1 = 0.

Now ∆1 = 0 yields that S(y, x, x, . . . , x) = 0 for all x, y ∈ I. Again lin-
earizing this identity with respect to x, we can prove by the same manner
that S(y, z, x, . . . , x) = 0 for all x, y, z ∈ I and hence S(x1, x2, . . . , xn) = 0
for all x1, . . . , xn ∈ I. Now replacing x1 with r1x1, where r1 ∈ R, we get
0 = S(r1x1, x2, . . . , xn) = S(r1, x2, . . . , xn)x1 + T (r1)S(x1, x2, . . . , xn). Since
S(x1, x2, . . . , xn) = 0 for all x1, . . . , xn ∈ I, we have from above relation that
S(r1, x2, . . . , xn)x1 = 0 for all x1, . . . , xn ∈ I. Since R is prime, we con-
clude that S(r1, x2, . . . , xn) = 0 for all x2, . . . , xn ∈ I and r1 ∈ R. Again
replacing x2 with r2x2, where r2 ∈ R, we have by the same arguments that
S(r1, r2, . . . , xn) = 0 for all x3, . . . , xn ∈ I and r1, r2 ∈ R. Repeating the
process, we obtain that S(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ R. �

Theorem 2.4. Let R be a noncommutative (n+ 1)!-torsion free prime ring, I
a nonzero ideal of R, T an automorphism of R and S : Rn → R be a symmetric
skew n-derivation associated with the automorphism T . If ∆ is the trace of S
such that

[∆(x), T (x)] = 0

for all x ∈ I, then S(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ R.

Proof. We have

(2.3) [∆(x), T (x)] = 0

for all x ∈ I. Replacing x with x + y in above relation and then using the
technique of linearizing as in Proposition 2.3, we get

(2.4) n[S(y, x, . . . , x), T (x)] + [∆(x), T (y)] = 0

for all x, y ∈ I. Now we put y = xy and then obtain that

(2.5) n[∆(x)y + T (x)S(y, x, . . . , x), T (x)] + [∆(x), T (x)T (y)] = 0

that is,

(2.6)
n∆(x)[y, T (x)] + n[∆(x), T (x)]y + nT (x)[S(y, x, . . . , x), T (x)]

+ T (x)[∆(x), T (y)] + [∆(x), T (x)]T (y) = 0

for all x, y ∈ I. Now using (2.3) and (2.4), (2.6) reduces to

(2.7) n∆(x)[y, T (x)] = 0

for all x, y ∈ I. By using torsion free restriction onR, we can write ∆(x)[y, T (x)]
= 0 for all x, y ∈ I. Now putting y = yr, where r ∈ R, we get

0 = ∆(x)[yr, T (x)] = ∆(x)[y, T (x)]r + ∆(x)y[r, T (x)] = ∆(x)y[r, T (x)]

for all x, y ∈ I and r ∈ R. Since R is prime, for each x ∈ I, either ∆(x) = 0
or T (x) ∈ Z(R). Now choose x ∈ I such that T (x) ∈ Z(R). Thus from (2.4),
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we can write for all y ∈ I that [∆(x), T (y)] = 0, that is [∆(x), T (I)] = 0. Since
T (I) is a nonzero ideal of R, we have ∆(x) ∈ Z(R).

Therefore, in any case, we can write ∆(x) ∈ Z(R) for all x ∈ I. This
implies [∆(x), r] = 0 for all x ∈ I and r ∈ R. Again by replacing x with
x + y and then by using the same arguments linearization of Proposition 2.3,
we have n[S(y, x, . . . , x), r] = 0 for all x, y ∈ I and r ∈ R. Since R is n-
torsion free, [S(y, x, . . . , x), r] = 0 for all x, y ∈ I and r ∈ R. Putting y =
yr we get 0 = [S(y, x, . . . , x)r + T (y)S(r, x, . . . , x), r] = [S(y, x, . . . , x), r]r +
[T (y)S(r, x, . . . , x), r]. This implies 0 = [T (y)S(r, x, . . . , x), r] for all x, y ∈ I
and r ∈ R. Putting y = sy, where s ∈ R, we obtain

0 = [T (s)T (y)S(r, x, . . . , x), r]

= T (s)[T (y)S(r, x, . . . , x), r] + [T (s), r]T (y)S(r, x, . . . , x)

= [T (s), r]T (y)S(r, x, . . . , x).

This implies that 0 = [T (s), r]T (I)S(r, x, . . . , x) for all x ∈ I and r, s ∈ R. Since
R is prime, for each r ∈ R we conclude either [T (s), r] = 0 for all s ∈ R or
S(r, x, . . . , x) = 0 for all x ∈ I. The sets of r ∈ R for which these two conditions
hold are additive subgroups of R whose union is R; therefore, [T (s), r] = 0 for
all s ∈ R, for all r ∈ R or S(r, x, . . . , x) = 0 for all x ∈ I, for all r ∈ R. Since R
is noncommutative, first case can not occurs, and hence S(r1, x, . . . , x) = 0 for
all x ∈ I, r1 ∈ R. Then by same argument of Proposition 2.3, we can conclude
that S(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ R. �

Theorem 2.5. Let R be a noncommutative (n + 1)!-torsion free semiprime
ring, I a nonzero ideal of R, T an automorphism of R and S : Rn → R be a
symmetric skew n-derivation associated with the automorphism T . If ∆ is the
trace of S such that

[∆(x), T (x)] ∈ Z(R)

for all x ∈ I, then [∆(x), T (x)] = 0 for all x ∈ I.

Proof. Let x ∈ I and t = [∆(x), T (x)] ∈ Z(R). Denote

γi(y, x) = S(y, . . . , y︸ ︷︷ ︸
i

, x, . . . , x︸ ︷︷ ︸
n−i

).

Then γ0(y, x) = S(x, . . . , x) = ∆(x) and γn(y, x) = S(y, . . . , y) = ∆(y). Lin-
earizing the relation [∆(x), T (x)] ∈ Z(R) yields as shown in Proposition 2.3
that (

n

1

)
[γ1(y, x), T (x)] + [∆(x), T (y)] ∈ Z(R),(

n

2

)
[γ2(y, x), T (x)] +

(
n

1

)
[γ1(y, x), T (y)] ∈ Z(R),(

n

3

)
[γ3(y, x), T (x)] +

(
n

2

)
[γ2(y, x), T (y)] ∈ Z(R),

. . . . . . . . .
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n

n

)
[∆(y), T (x)] +

(
n

n− 1

)
[γn−1(y, x), T (y)] ∈ Z(R).

Now putting y = x2, above relations become

(2.8)

(
n

1

)
[γ1(x2, x), T (x)] + 2tT (x) ∈ Z(R),

(2.9)

(
n

2

)
[γ2(x2, x), T (x)] +

(
n

1

){
[γ1(x2, x), T (x)]T (x)

+ T (x)[γ1(x2, x), T (x)]
}
∈ Z(R),

(2.10)

(
n

3

)
[γ3(x2, x), T (x)] +

(
n

2

){
[γ2(x2, x), T (x)]T (x)

+ T (x)[γ2(x2, x), T (x)]
}
∈ Z(R),

. . . . . . . . .

(2.11)

(
n

n

)
[∆(x2), T (x)] +

(
n

n− 1

){
[γn−1(x2, x), T (x)]T (x)

+ T (x)[γn−1(x2, x), T (x)]
}
∈ Z(R).

Commuting both sides of (2.8) with T (x), we can write

0 = [

(
n

1

)
[γ1(x2, x), T (x)] + 2tT (x), T (x)] =

(
n

1

)
[[γ1(x2, x), T (x)], T (x)].

Since R is (n + 1)!-torsion free, we conclude that [γ1(x2, x), T (x)] commutes
with T (x). Again, commuting both sides of (2.9) with T (x), we obtain by
using the fact [[γ1(x2, x), T (x)], T (x)] = 0 that [[γ2(x2, x), T (x)], T (x)] = 0. In
the same manner, we can prove in general that [[γi(x

2, x), T (x)], T (x)] = 0 for
i = 1, 2, . . . , n − 1 and [[∆(x2), T (x)], T (x)] = 0. Thus the relations (2.8) to
(2.11) reduce to (

n

1

)
[γ1(x2, x), T (x)] + 2tT (x) ∈ Z(R),(

n

2

)
[γ2(x2, x), T (x)] + 2

(
n

1

)
[γ1(x2, x), T (x)]T (x) ∈ Z(R),(

n

3

)
[γ3(x2, x), T (x)] + 2

(
n

2

)
[γ2(x2, x), T (x)]T (x) ∈ Z(R),

. . . . . . . . .(
n

n− 1

)
[γn−1(x2, x), T (x)] + 2

(
n

n− 2

)
[γn−2(x2, x), T (x)]T (x) ∈ Z(R),(

n

n

)
[∆(x2), T (x)] + 2

(
n

n− 1

)
[γn−1(x2, x), T (x)]T (x) ∈ Z(R).
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There exists a sequence of maps µi : R→ Z(R) such that(
n

1

)
[γ1(x2, x), T (x)] + 2tT (x) = µ1(x),(

n

2

)
[γ2(x2, x), T (x)] + 2

(
n

1

)
[γ1(x2, x), T (x)]T (x) = µ2(x),(

n

3

)
[γ3(x2, x), T (x)] + 2

(
n

2

)
[γ2(x2, x), T (x)]T (x) = µ3(x),

. . . . . . . . .(
n

n− 1

)
[γn−1(x2, x), T (x)] + 2

(
n

n− 2

)
[γn−2(x2, x), T (x)]T (x) = µn−1(x),(

n

n

)
[∆(x2), T (x)] + 2

(
n

n− 1

)
[γn−1(x2, x), T (x)]T (x) = µn(x).

Multiplying the equations 2n−1T (x)n−1, −2n−2T (x)n−2, . . . , (−1)n21T (x)1,
−(−1)n.1 respectively, we can write the equations as

2n−1T (x)n−1

(
n

1

)
[γ1(x2, x), T (x)] + 2nT (x)nt = 2n−1T (x)n−1µ1(x),

− 2n−2T (x)n−2

(
n

2

)
[γ2(x2, x), T (x)]− 2n−1T (x)n−1

(
n

1

)
[γ1(x2, x), T (x)]

= − 2n−2T (x)n−2µ2(x),

2n−3T (x)n−3

(
n

3

)
[γ3(x2, x), T (x)] + 2n−2T (x)n−2

(
n

2

)
[γ2(x2, x), T (x)]

= 2n−3T (x)n−3µ3(x),

. . . . . . . . .

(−1)n2T (x)

(
n

n− 1

)
[γn−1(x2, x), T (x)]

+ (−1)n22T (x)2

(
n

n− 2

)
[γn−2(x2, x), T (x)]

= (−1)n2T (x)µn−1(x),

− (−1)n
(
n

n

)
[∆(x2), T (x)]− (−1)n2

(
n

n− 1

)
[γn−1(x2, x), T (x)]T (x)

= − (−1)nµn(x).

Adding all these above equations, we obtain

(2.12)

2nT (x)nt− (−1)n[∆(x2), T (x)]

= 2n−1T (x)n−1µ1(x)− 2n−2T (x)n−2µ2(x) + 2n−3T (x)n−3µ3(x)

+ · · ·+ (−1)n2T (x)µn−1(x)− (−1)nµn(x).
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Now by hypothesis, we have [∆(x2), T (x2)] ∈ Z(R). Then for some µn+1 :
R→ R, we can write [∆(x2), T (x2)] = µn+1(x). Since [∆(x2), T (x)] commutes
with T (x), we have

µn+1(x) = [∆(x2), T (x2)] = 2T (x)[∆(x2), T (x)].

Now multiplying (2.12) by 2T (x) in both sides and then using the fact
2T (x)[∆(x2), T (x)] = µn+1(x), we obtain that

(2.13)

2n+1T (x)n+1t− (−1)nµn+1(x)

= 2nT (x)nµ1(x)− 2n−1T (x)n−1µ2(x) + 2n−2T (x)n−2µ3(x)

+ · · ·+ (−1)n22T (x)2µn−1(x)− (−1)n2T (x)µn(x).

Now commuting T (x)k with ∆(x) successively, we get

[∆(x), T (x)k] = [∆(x), T (x).T (x). · · · .T (x)︸ ︷︷ ︸
k times

] = ktT (x)k−1

and

[∆(x), [∆(x), T (x)k]] = kt[∆(x), T (x)k−1] = k(k − 1)t2T (x)k−2

= k!
(k−2)! t

2T (x)k−2.

Thus commuting T (x)k with ∆(x) successively m-times yields

[∆(x), . . . , [∆(x), T (x)k]] =

{ k!
(k−m)! t

mT (x)k−m, 1 ≤ m ≤ k
0, m > k.

Using this fact, we can write, successively commuting both sides of (2.13)
(n + 1)-times with T (x) and using the fact that R is (n + 1)!-torsion free,
we obtain tn+2 = 0. Since the center of semiprime ring contains no nonzero
nilpotent elements, we have t = 0, as desired. �

Corollary 2.6. Let R be a (n+ 1)!-torsion free prime ring, I a nonzero ideal
of R, T an automorphism of R and S : Rn → R be a nonzero symmetric skew
n-derivation associated with the automorphism T . If ∆ is the trace of S such
that

[∆(x), T (x)] ∈ Z(R)

for all x ∈ I, then R is commutative.
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