ON RADICALLY-SYMMETRIC IDEALS

EBRAHIM HASHEMI

ABSTRACT. A ring R is called symmetric, if abc=0 implies acb=0 for $a,b,c\in R$. An ideal I of a ring R is called symmetric (resp. radically-symmetric) if R/I (resp. R/\sqrt{I}) is a symmetric ring. We first show that symmetric ideals and ideals which have the insertion of factors property are radically-symmetric. We next show that if R is a semicommutative ring, then $T_n(R)$ and $R[x]/(x^n)$ are radically-symmetric, where (x^n) is the ideal of R[x] generated by x^n . Also we give some examples of radically-symmetric ideals which are not symmetric. Connections between symmetric ideals of R and related ideals of some ring extensions are also shown. In particular we show that if R is a symmetric (or semicommutative) (α, δ) -compatible ring, then $R[x; \alpha, \delta]$ is a radically-symmetric ring. As a corollary we obtain a generalization of [13].

0. Introduction

Throughout this paper R denotes an associative ring with identity and $R[x;\alpha,\delta]$ will stands for the Ore extension of R, where α is an endomorphism and δ an α -derivation of R, that is, δ is an additive map such that $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$ for all $a,b \in R$. Recall from [14] that an ideal I of a ring R has the insertion of factors property (or simply, IFP) if $ab \in I$ implies $aRb \subseteq I$ for $a,b \in R$ (H. E. Bell in 1970 introduced this notion for I=0). Observe that every completely semiprime ideal I (i.e., $a^2 \in I$ implies $a \in I$) of R has the IFP [13, Lemma 3.2(a)]. If I=0 has the IFP, then R has the IFP (i.e., semicommutative). A ring R is called reduced if it has no non-zero nilpotent element. By [5], reduced rings have the IFP. If R has the IFP, then it is Abelian (i.e., all idempotents are central).

Liang, Wang and Liu [13] introduced weakly semicommutative rings which are a generalization of semicommutative rings. A ring R is called weakly semicommutative if for any $a,b \in R, ab = 0$ implies arb is a nilpotent element for any $r \in R$.

Received December 31, 2009

 $^{2010\} Mathematics\ Subject\ Classification.\ 16S36,\ 20M11,\ 20M12.$

Key words and phrases. insertion of factors property, (α, δ) -compatible ideals, α -rigid ideals, Ore extensions, symmetric rings, semicommutative rings.

According to Hong et al. [6], for an endomorphism α of a ring R, a α -ideal I (i.e., $\alpha(I) \subseteq I$) is called to be α -rigid if $a\alpha(a) \in I$ implies $a \in I$ for $a \in R$. They studied connections between α -rigid ideals of R and related ideals of some ring extensions.

Recall from [3], that an ideal I is called α -compatible if for each $a,b \in R$, $ab \in I \Leftrightarrow a\alpha(b) \in I$. Moreover, I is said to be δ -compatible if for each $a,b \in R$, $ab \in I \Rightarrow a\delta(b) \in I$. If I is both α -compatible and δ -compatible, it called a (α, δ) -compatible ideal. If I = 0 is a (α, δ) -compatible ideal, we say that R is a (α, δ) -compatible ring. The definition is quite natural, in the light of its similarity with the notion of α -rigid ideals, in [3], the author show that I is a α -rigid ideal if and only if I is α -compatible and completely semiprime.

Following Lambek [12], an ideal I of a ring R is symmetric if $abc \in I$ implies $acb \in I$ for $a, b, c \in R$. A ring R is called symmetric if I = 0 is a symmetric ideal of R. It is obvious that each ideal of a commutative ring is symmetric. Reduced rings are symmetric by the results of Anderson and Camillo [1], but there are many non-reduced commutative (so symmetric) rings.

Kim and Lee [10] proved that if R is Armendariz, then the ordinary polynomial ring over R is symmetric if and only if R is symmetric. There is an example [8] of symmetric ring R for which the ring of polynomials R[x] is not symmetric.

We say an ideal I of a ring R is radically-symmetric if \sqrt{I} is a symmetric ideal of R. If I = 0 is a radically-symmetric ideal of R, we say R is a radically-symmetric ring.

In this paper we will show that for each $n \geq 2$, there exists a non-zero radically-symmetric ideal of the $n \times n$ upper triangular matrix ring over the ring of integers \mathbb{Z} that is not symmetric. Also we will show that each ideal of R which has the IFP and each symmetric ideal of R are radically-symmetric. Thus radically-symmetric rings are a generalization of symmetric rings. We next show that if R is a semicommutative ringn, then $T_n(R)$ and $R[x]/(x^n)$ are radically-symmetric, where (x^n) is the ideal generated by x^n .

A natural question for a given class of ring is: How does the given class behave with respect to polynomial extensions? In Section 2, connections between symmetric ideals of R and related ideals of some ring extensions are also shown. In particular we will show that:

- (1) If I is a symmetric (α, δ) -compatible ideal of R, then $I[x; \alpha, \delta]$ is a radically-symmetric ideal of $R[x; \alpha, \delta]$.
- (2) If I is a (α, δ) -compatible ideal of R and has the IFP, then $I[x; \alpha, \delta]$ is a radically-symmetric ideal of $R[x; \alpha, \delta]$. As a corollary, if R is a symmetric (α, δ) -compatible ring, then $R[x; \alpha, \delta]$ is a radically-symmetric. Also, if R is a semicommutative (α, δ) -compatible ring, then $R[x; \alpha, \delta]$ is a radically-symmetric ring and hence weakly semicommutative ring. As a corollary we obtain a generalization of [13].

1. Examples

Recall that for an ideal I of R, \sqrt{I} equals the intersection of all prime ideals containing I.

Definition 1.1. For an ideal I of a ring R we say I is radically-symmetric if \sqrt{I} is a symmetric ideal of R. If I = 0 is a radically-symmetric ideal of R, we say R is a radically-symmetric ring.

Lemma 1.2. For an ideal I of a ring R, the following statements are equivalent:

- (1) I is symmetric;
- (2) For any $a_1, \ldots, a_n \in R$, $a_1 \cdots a_n \in I$ implies $a_{i_1} a_{i_2} \cdots a_{i_n} \in I$ for each $\{i_1, i_2, \ldots, i_n\} = \{1, 2, \ldots, n\}$.

Proof. (1)⇒(2). For n=3 we have $1a_1(a_2a_3)=a_1a_2a_3\in I$. Hence $a_2a_3a_1=1(a_2a_3)a_1\in I$, since I is symmetric. By a similar argument one can show that $a_{i_1}a_{i_2}a_{i_3}\in I$ for each $\{i_1,i_2,i_3\}=\{1,2,3\}$. Now let $a_1\cdots a_n\in I$. Then $(a_1a_2)a_3\cdots a_n\in I$. By induction on n, $(a_1a_2)a_{i_3}\cdots a_{i_n}\in I$ for each $\{i_3,\ldots,i_n\}=\{3,\ldots,n\}$. Since $a_1a_2(a_3\cdots a_n)\in I$ and I is symmetric, $a_1(a_3\cdots a_n)a_2\in I$. Then by the induction hypothesis, $(a_1a_3)a_{i_3}\cdots a_{i_n}\in I$ for each $\{i_3,\ldots,i_n\}=\{2,4,\ldots,n\}$. Continuing this process yields $(a_1a_t)a_{i_3}\cdots a_{i_n}\in I$ for each $t=2,\ldots,n$ and $t=1,\ldots,n$ and $t=1,\ldots,n$ by a similar argument we can show that $t=1,\ldots,n$ for each $t=1,\ldots,n$ By a similar argument we can show that $t=1,\ldots,n$ if is clear. □

Definition 1.3. For an ideal I of a ring R we say I has the radically insertion of factors property (or simply, radically IFP) if \sqrt{I} has the IFP. If I = 0 has

Clearly, if I=0 has the IFP, then R has the IFP (i.e., R is semicommutative). The following example shows that, there exists a ring R such that all

Example 1.4. Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a division ring. The only non-zero proper ideals of R are $I_1 = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$, $I_2 = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ and $I_3 = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$. Huh, Lee and Smoktunowicz [8], show that R/I_i is semicommutative for each I_i , but I_i is semicommutative.

By using Lemma 1.2 we have the following result.

non-zero ideals of R have the IFP but R does not has the IFP.

Corollary 1.5. Symmetric ideals have the IFP.

the radically IFP, we say R has the radically IFP.

Proposition 1.6. Let an ideal I has the IFP. Then I is a radically-symmetric ideal.

Proof. First we show that $\sqrt{I} = \{a \in R \mid a^n \in I \text{ for some } n \geq 1\}$. Clearly $\sqrt{I} \subseteq \{a \in R \mid a^n \in I \text{ for some } n \geq 1\}$. Let $a \in \{a \in R \mid a^n \in I \text{ for some } n \geq 1\}$. Then $a^n \in I$ for some $n \geq 1$. Hence $ar_1ar_2 \cdots ar_n \in I$ for each $r_1, r_2, \ldots, r_n \in I$

R, since I has the IFP. Thus $(aR)^n \subseteq I$. If P is a prime ideal of R containing I, then $(aR)^n \subseteq I \subseteq P$ implies $a \in P$. Hence $a \in \sqrt{I}$ and $\sqrt{I} = \{a \in R | a^n \in I \text{ for some } n \geq 1\}$.

Now, let $abc \in \sqrt{I}$. Then $(abc)^n \in I$ for some positive integer n. Since I has the IFP, by a simple computation one can show that $(acb)^{2n} \in I$. Therefore I is a radically-symmetric ideal of R.

Corollary 1.7. Let R be a semicommutative ring. Then R is a radically-symmetric ring.

For a ring R, let $R_n(R)$ be the set of all $n \times n$ upper-triangular matrices with constant main diagonal. Clearly, $R_n(R)$ is a subring of $T_n(R)$, the $n \times n$ upper triangular matrix ring over R. It is well known $R_n(R) \cong R[x]/(x^n)$, where (x^n) is the ideal of R[x] generated by x^n . In the following we will see the converse of Proposition 1.6 is not true.

By a similar way as used in Example 1.8, we can construct numerous radically-symmetric ideals of $R_n(\mathbb{Z})$ such that don't have the IFP for $n \geq 4$.

Example 1.9. Let $J = \left\{ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} | a_{ij} \in 2p\mathbb{Z} \right\}$ be an ideal of $T_3(\mathbb{Z})$, where p is a prime number and \mathbb{Z} is the set of integers. Then $\begin{pmatrix} p & p & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 4p \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ but $\begin{pmatrix} p & p & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & p \end{pmatrix} = \begin{pmatrix} 0 & 0 & 7p \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \notin J$. Hence J doesn't has the IFP, but is radically-symmetric by Proposition 1.15.

Let J be an ideal of $R_n(R)$ and

$$I = \left\{ a \in R \middle| \left(\begin{array}{cccc} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{array} \right) \in J \text{ for some } a_{ij} \in R \right\}.$$

Then I is an ideal of R.

Proposition 1.10. Let J be an ideal of $R_n(R)$ such that $R_n(I) \subseteq J$, where I is the ideal that mentioned above. Let $A = \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \in R_n(R)$ such that $a^k \in I$ for some non-negative integer k. Then $A^{nk} \in J$.

Proof. We proceed by induction on
$$n$$
. Let $n=2$. For a positive integer k , $A^k=\begin{pmatrix} a^k & b_{12} \\ 0 & a^k \end{pmatrix}$ and that $A^{2k}=\begin{pmatrix} a^{2k} & a^k b_{12}+b_{12}a^k \\ 0 & a^{2k} \end{pmatrix}$. Hence $A^{2k}\in J$, since $a^{2k},a^kb_{12}+b_{12}a^k = b_{12}a^k \in I$. Now, let $A=\begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \in R_n(R)$ such that $a^k\in I$ for a non-negative integer k . Consider $A^{(n-1)k}=\begin{pmatrix} a^{(n-1)k} & b_{12} & \cdots & b_{1n} \\ 0 & a^{(n-1)k} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a^{(n-1)k} \end{pmatrix}$ and $A^k=\begin{pmatrix} a^k & c_{12} & \cdots & c_{1n} \\ 0 & a^k & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a^k \end{pmatrix}$. By the induction hypothesis all b_{ij} 's, except b_{1n} , are in I . Let $x=a^kb_{1n}+c_{12}b_{2n}+\cdots+c_{1n}a^{(n-1)k}$. Then $A^{nk}=\begin{pmatrix} a^{nk} & y_{12} & \cdots & y_{1n-1} & x \\ 0 & a^{nk} & \cdots & y_{2n-1} & y_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a^{nk} & y_{n-1n} \\ 0 & 0 & \cdots & 0 & a^{nk} \end{pmatrix}$ $\in J$, since a^{nk} , x and all y_{ij} 's are in I .

Proposition 1.11. Let J be an ideal of $R_n(R)$ such that $R_n(I) \subseteq J$, where I is the ideal that mentioned above. If I has the IFP, then J is a radically-symmetric ideal of $R_n(R)$ for each $n \ge 2$.

$$Proof. \text{ Let } A = \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix}, B = \begin{pmatrix} b & b_{12} & \cdots & b_{1n} \\ 0 & b & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots$$

Proposition 1.10. Therefore J is a radically-symmetric ideal of $R_n(R)$.

By using Proposition 1.11 we have the following theorem.

Theorem 1.12. Let R be a semicommutative ring. Then $R_n(R)$ is a radically-symmetric ring.

Lemma 1.13. Let
$$J = \left\{ \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} | a_{ij} \in I_{ij}, 1 \leq i \leq n, i \leq j \leq n \right\},$$
 such that $I_{ij} \subseteq I_{is}$ for $1 \leq i \leq n, i \leq j \leq s \leq n$ and $I_{sj} \subseteq I_{ij}$ for $j = 1, \dots, n,$ $1 \leq i \leq s \leq n$ and I_{ij} is an ideal of R for each i, j . Then J is an ideal of $T_n(R)$.

Proof. It is straightforward.

Proposition 1.14. Let J be an ideal of $T_n(R)$ that mentioned in Lemma 1.13.

Proposition 1.14. Let
$$J$$
 be an ideal of $T_n(R)$ that mentioned in Lemma 1.13.
Let $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \in T_n(R)$ such that $a_{ii}^k \in I_{ii}$ for some non-negative integer k and $i = 1, \ldots, n$. Then $(A^{2k+1})^{n-1} \in J$.

Proof. We proceed by induction on n. For n=2, let $A=\begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix}$. Since $A^{2k+1} = \begin{pmatrix} a_{11}^{2k+1} & x \\ 0 & a_{22}^{2k+1} \end{pmatrix}$, where $x = \sum a_{11}^{i} a_{12} a_{22}^{j}$, $i+j=2k, i, j \geq 0$, we have $A^{2k+1} \in J$. Now, assume $n \geq 3$ and $A \in T_n(R)$. Consider $(A^{2k+1})^{n-2} = A^{2k+1}$ $\begin{pmatrix}
a_{11}^{(2k+1)(n-2)} & b_{12} & \cdots & b_{1n} \\
0 & a_{22}^{(2k+1)(n-2)} & \cdots & b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn}^{(2k+1)(n-2)}
\end{pmatrix} \text{ and } A^{2k+1} = \begin{pmatrix}
a_{11}^{2k+1} & c_{12} & \cdots & c_{1n} \\
0 & a_{22}^{2k+1} & \cdots & c_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn}^{2k+1}
\end{pmatrix}.$

By the induction hypothesis all b_{ij} 's, except b_{1n} , are in I. Hence (1,n)-entry of $(A^{2k+1})^{n-1}$ is $x = a_{11}^{(2k+1)}b_{1n} + c_{12}b_{2n} + \cdots + c_{1n-1}b_{n-1n} + c_{1n}a_{nn}^{(2k+1)(n-2)} \in I$, since $a_{11}^{(2k+1)}, a_{nn}^{(2k+1)}, b_{2n}, \dots, b_{n-1n} \in I$. Therefore $(A^{2k+1})^{n-1} \in J$.

Proposition 1.15. Let J be an ideal of $T_n(R)$ that mentioned in Lemma 1.13. If each I_{ii} , $1 \le i \le n$ has the IFP, then J is radically-symmetric.

Proof. Let
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ 0 & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b_{nn} \end{pmatrix} \text{ and } C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ 0 & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c_{nn} \end{pmatrix}$$

 $\in T_n(R)$ such that $ABC \in \sqrt{J}$. Then $(a_{ii}b_{ii}c_{ii})^k \in I_{ii}$ for a positive integer k and each i. Since I_{ii} has the IFP, one can show that $(a_{ii}c_{ii}b_{ii})^{2k} \in I_{ii}$ for each i. Thus $ACB \in \sqrt{J}$, by Proposition 1.14. Therefore J is a radically-symmetric ideal of $T_n(R)$.

By using Proposition 1.15 we have the following theorem.

Theorem 1.16. If R is a semicommutative ring, then $T_n(R)$ is a radicallysymmetric ring for each $n \geq 2$.

2. Extensions of symmetric ideals

Definition 2.1. For an ideal I of R, we say that I is α -compatible if for each $a, b \in R, ab \in I \Leftrightarrow a\alpha(b) \in I$. Moreover, I is said to be δ -compatible if for each $a, b \in R, ab \in I \Rightarrow a\delta(b) \in I$. If I is both α -compatible and δ -compatible, we say that I is (α, δ) -compatible. If I = 0 is a (α, δ) -compatible ideal, we say R is a (α, δ) -compatible ring.

Note that there exists a ring R for which all non-zero proper ideals are α -compatible but R isn't α -compatible. For example, consider the ring R= $\binom{F}{0} \binom{F}{F}$, where F is a field, and the endomorphism α of R is defined by $\alpha(\binom{a}{0} \binom{a}{c}) = 0$ $\begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}$ for $a, b, c \in F$.

Proposition 2.2 ([3]). Let R be a ring, J an ideal of R and $\alpha : R \to R$ an endomorphism of R. Then the following conditions are equivalent:

- (1) J is an α -rigid ideal of R;
- (2) J is α -compatible, semiprime and has the IFP;
- (3) J is α -compatible and completely semiprime.

If δ is an α -derivation of R, then the following are equivalent:

- (4) J is an α -rigid δ -ideal of R;
- (5) J is (α, δ) -compatible, semiprime and has the IFP;
- (6) J is (α, δ) -compatible and completely semiprime.

Proposition 2.3. Let I be a (α, δ) -compatible ideal of R and $a, b \in R$.

- (1) If $ab \in I$, then $a\alpha^n(b), \alpha^n(a)b \in I$ for every positive integer n. Conversely, if $a\alpha^k(b)$ or $\alpha^k(a)b \in I$ for some positive integer k, then $ab \in I$.
- (2) If $ab \in I$, then $\alpha^m(a)\delta^n(b), \delta^n(a)\alpha^m(b) \in I$ for each non-negative integers m, n.
- *Proof.* (1) If $ab \in I$, then $\alpha^n(a)\alpha^n(b) \in I$, since I is α -ideal. Hence $\alpha^n(a)b \in I$, since I is α -compatible. If $\alpha^k(a)b \in I$, then $\alpha^k(a)\alpha^k(b) \in I$, and so $ab \in I$, since I is α -compatible.
- (2) It is enough to show that $\delta(a)\alpha(b) \in I$. If $ab \in I$, then by (1) and δ -compatibility of I, $\alpha(a)\delta(b) \in I$. Hence $\delta(a)b = \delta(ab) \alpha(a)\delta(b) \in I$. Thus $\delta(a)b \in I$ and $\delta(a)\alpha(b) \in I$, since I is α -compatible.

Lemma 2.4. Let I be a (α, δ) -compatible ideal of R. If $(ab)^k \in I$ for some $k \geq 0$, then $(a\alpha(b))^k, (a\delta(b))^k \in I$.

Proof. Since I is α -compatible and $(ab)^k = (ab) \cdots (ab) \in I$ we have $a\alpha(b)\alpha(ab \cdots ab) = a\alpha(bab \cdots ab) \in I$. Hence $a\alpha(b)(ab \cdots ab) \in I$, since I is α -compatible. Now, $a\alpha(b)a\alpha(b)\alpha(ab \cdots ab) = a\alpha(b)a\alpha(b \cdots ab) \in I$. Continuing this procedure yields $(a\alpha(b))^k \in I$. Since I is δ -compatible and $(ab)^k = (ab) \cdots (ab) \in I$, we have $a\delta(bab \cdots ab) = a\delta(b)(ab \cdots ab) + a\alpha(b)\delta(ab \cdots ab) \in I$. Since $a\alpha(b)(ab \cdots ab) \in I$ and I is δ -compatible, we have $a\alpha(b)\delta(ab \cdots ab) \in I$. Thus $a\delta(b)(ab \cdots ab) \in I$. Continuing this procedure yields $(a\delta(b))^k \in I$.

Lemma 2.5. Let I be a (α, δ) -compatible ideal of R and has the IFP. Then

- (1) \sqrt{I} is a (α, δ) -compatible ideal of R and has the IFP.
- (2) $I[x; \alpha, \delta]$ and $\sqrt{I[x; \alpha, \delta]}$ are ideals of $R[x; \alpha, \delta]$.

Proof. (1) By the proof of Proposition 1.6, $\sqrt{I} = \{a \in R | a^n \in I \text{ for some } n \geq 1\}$, hence the result follows from Lemma 2.4 and Proposition 2.3.

(2)	It follows from	(α, δ) -compatibility of I:	\square I
-----	-----------------	---	---------------

In [6, Example 2], the authors show that there exists a non-zero ideal I of a ring R such that has the IFP but ideal I[x] of R[x] isn't symmetric. In the sequel we will show that if I has the IFP, then I[x] is radically-symmetric and hence has the radically IFP. More generally, we will show that: (1) If I

is a (α, δ) -compatible ideal of R and has the IFP, then the ideal $I[x; \alpha, \delta]$ of $R[x; \alpha, \delta]$ is radically-symmetric and hence has the radically IFP.

For non-empty subsets A, B of R and $r \in R$, put $AB = \{ab | a \in A, b \in B\}$, $A^0 = \{1\}$ and $rA = \{ra | a \in A\}$.

Notation. Let α be an endomorphism, δ an α -derivation of R, $0 \le i \le j$ and $a \in R$. Let us write f_i^j for the set of all "words" in α and δ in which there are i factors of α and j-i factors of δ . For instance, $f_j^j(a) = \{\alpha^j(a)\}$, $f_0^j(a) = \{\delta^j(a)\}$ and $f_{j-1}^j(a) = \{\alpha^{j-1}\delta(a), \alpha^{j-2}\delta\alpha(a), \ldots, \delta\alpha^{j-1}(a)\}$.

Lemma 2.6. Let I be a (α, δ) -compatible ideal of R and has the IFP. Then $\sqrt{I}[x; \alpha, \delta] = \{ f \in R[x; \alpha, \delta] | f^k \in I[x; \alpha, \delta] \text{ for some } k \geq 1 \}.$

Proof. Note that $\sqrt{I} = \{a \in R \mid a^n \in I \text{ for some } n \geq 1\}$, by the proof of Proposition 1.6. Let $f(x) = a_0 + \dots + a_n x^n \in \{f \in R[x;\alpha,\delta] \mid f^n \in I[x;\alpha,\delta] \text{ for some } k \geq 1\}$. Then $(f(x))^k \in I[x;\alpha,\delta]$ for some positive integer k and $a_n\alpha^n(a_n) \cdots \alpha^{k(n-1)}(a_n) \in I$, since it is the leading coefficient of $(f(x))^k$. Hence $a_n \in \sqrt{I}$, since \sqrt{I} is α -compatible. Since $\sqrt{I}[x;\alpha,\delta]$ is an ideal of $R[x;\alpha,\delta]$ and $a_n \in \sqrt{I}$, we have $a_n x^n \in \sqrt{I}[x;\alpha,\delta]$. There exists $g(x), h(x) \in R[x;\alpha,\delta]$ such that $f(x)^k = (a_0 + \dots + a_{n-1}x^{n-1})^k + a_n x^n g(x) + h(x) a_n x^n$. Hence $(a_0 + \dots + a_{n-1}x^{n-1})^k \in \sqrt{I}[x;\alpha,\delta]$, since $\sqrt{I}[x;\alpha,\delta]$ is an ideal of $R[x;\alpha,\delta]$ and $a_n x^n \in \sqrt{I}[x;\alpha,\delta]$. By using induction on n, we have $a_i \in \sqrt{I}$ for each i. Thus $\{f \in R[x;\alpha,\delta] \mid f^k \in I[x;\alpha,\delta] \text{ for some } k \geq 1\} \subseteq \sqrt{I}[x;\alpha,\delta]$.

Now, let $f(x) = a_0 + \cdots + a_n x^n \in \sqrt{I}[x; \alpha, \delta]$. Then $a_i^{m_i} \in I$ for some $m_i \geq 1$. Let $k = m_0 + \cdots + m_n + 1$. Then

$$(f(x))^k = \sum (a_0^{i_{01}}(a_1x)^{i_{11}} \cdots (a_nx^n)^{i_{n1}}) \cdots (a_0^{i_{0k}}(a_1x)^{i_{1k}} \cdots (a_nx^n)^{i_{nk}}),$$

where $i_{0r}+i_{1r}+\cdots+i_{nr}=1$ and $0\leq i_{rs}\leq 1$ for $r=1,\ldots,k$. Each coefficient of $(a_0^{i_{01}}(a_1x)^{i_{11}}\cdots(a_nx^n)^{i_{n1}})\cdots(a_0^{i_{0k}}(a_1x)^{i_{1k}}\cdots(a_nx^n)^{i_{nk}})$ is a sum of such elements $\gamma\in ((f_{r_{01}}^{s_{01}}(a_0))^{i_{01}}\cdots(f_{r_{n1}}^{s_{n1}}(a_n))^{i_{n1}})\cdots((f_{r_{0k}}^{s_{0k}}(a_0))^{i_{0k}}\cdots(f_{r_{nk}}^{s_{nk}}(a_n))^{i_{nk}})$. It can be easily checked that there exists $a_t\in\{a_0,\ldots,a_n\}$ such that $i_{t1}+i_{t2}+\cdots+i_{tk}\geq m_t$. Since $a_t^{m_t}\in I$ and I is (α,δ) -compatible and has the IFP, hence by Proposition 2.3, $\gamma\in I$. Thus each coefficient of $(f(x))^k$ belong to I. Therefore $f(x)\in\{f\in R[x;\alpha,\delta]|f^k\in I[x;\alpha,\delta] \text{ for some }k\geq 1\}$.

Lemma 2.7. Let I be a (α, δ) -compatible ideal of R and has the IFP and $f(x) = a_0 + \cdots + a_n x^n, g(x) = b_0 + \cdots + b_m x^m \in R[x; \alpha, \delta]$. Then

- (1) $f(x)g(x) \in \sqrt{I}[x; \alpha, \delta]$ if and only if $a_ib_j \in \sqrt{I}$ for each i, j.
- (2) $\sqrt{I}[x;\alpha,\delta]$ has the IFP.

Proof. (1) Note that $f(x)g(x) = \sum_{i=0}^{n} \sum_{j=0}^{m} (a_i x^i)(b_j x^j)$. Then $a_n \alpha^n(b_m) \in \sqrt{I}$, since it is the leading coefficient of f(x)g(x). Hence $a_n b_m \in \sqrt{I}$, since \sqrt{I} is α -compatible. Thus $a_n f_i^j(b_m) \subseteq \sqrt{I}$ for each $0 \le i \le j$, by Proposition 2.3. Since the coefficient of x^{m+n-1} is $a_n \alpha^n(b_{m-1}) + a_{n-1} \alpha^{n-1}(b_m) + a_n r$, where r is a sum of such elements $\gamma \in f_{n-1}^n(b_m)$ and $a_n r \in \sqrt{I}$, we have $a_n \alpha^n(b_{m-1}) + a_n r$.

 $a_{n-1}\alpha^{n-1}(b_m) \in \sqrt{I}$. Hence $a_n\alpha^n(b_{m-1})b_m + a_{n-1}\alpha^{n-1}(b_m)b_m \in \sqrt{I}$ and that $a_{n-1}\alpha^{n-1}(b_m)b_m \in \sqrt{I}$, since $a_n\alpha^n(b_{m-1})b_m \in \sqrt{I}$. Thus $a_{n-1}b_m \in \sqrt{I}$, by Proposition 2.3 and Lemma 2.5(1). Hence $a_nb_{m-1} \in \sqrt{I}$. Consequently,

$$a_n f_i^j(b_m) \bigcup a_{n-1} f_i^j(b_m) \bigcup a_n f_i^j(b_{m-1}) \subseteq \sqrt{I}$$
 for each $0 \le i \le j$.

The coefficient of x^{m+n-2} is $a_n\alpha^n(b_{m-2})+a_{n-1}\alpha^{n-1}(b_{m-1})+a_{n-2}\alpha^{n-2}(b_m)+t$, where t is a sum of such elements $\gamma\in\bigcup_{0\leq i\leq j}[a_nf_i^j(b_m)\bigcup a_{n-1}f_i^j(b_m)\bigcup a_nf_i^j(b_{m-1})]$. By a similar way as above, one can show that $a_nb_{m-2},a_{n-1}b_{m-1},a_{n-2}b_m\in\sqrt{I}$. Continuing this process yields $a_ib_j\in\sqrt{I}$ for each i,j.

Conversely, suppose that $a_i b_j \in \sqrt{I}$ for each i, j. Since \sqrt{I} is (α, δ) -compatible, $f(x)g(x) \in \sqrt{I}[x; \alpha, \delta]$.

(2) Let $h(x) = c_0 + c_1 x + \cdots + c_k x^k \in R[x; \alpha, \delta]$ and $f(x)g(x) \in \sqrt{I}[x; \alpha, \delta]$. Then $a_i b_j \in \sqrt{I}$ for each i, j, by (1). Since \sqrt{I} has the IFP, we have $a_i c_r b_j \in \sqrt{I}$ for each i, j, r. Then $f(x)h(x)g(x) \in \sqrt{I}[x; \alpha, \delta]$, since \sqrt{I} is a (α, δ) -compatible ideal of R. Therefore $\sqrt{I}[x; \alpha, \delta]$ has the IFP.

Proposition 2.8. Let I be a (α, δ) -compatible ideal of R and has the IFP. Then $\sqrt{I[x; \alpha, \delta]} = \sqrt{I[x; \alpha, \delta]} = \{f \in R[x; \alpha, \delta] | f^k \in I[x; \alpha, \delta] \text{ for some } k \geq 1\}.$

Proof. By Lemma 2.6, it is enugh to show that $\sqrt{I}[x;\alpha,\delta] \subseteq \sqrt{I[x;\alpha,\delta]}$. We show that if Q is a prime ideal of $R[x;\alpha,\delta]$ containing $I[x;\alpha,\delta]$, then $\sqrt{I} \subseteq Q$. Let $a \in \sqrt{I}$. Then $a^k \in I$ for some $k \geq 1$. Hence $ag_1ag_2 \cdots ag_k \in I[x;\alpha,\delta]$ for each $g_1,g_2,\ldots,g_k \in R[x;\alpha,\delta]$, since I is (α,δ) -compatible and has the IFP. Thus $(aR[x;\alpha,\delta])^k \subseteq I[x;\alpha,\delta] \subseteq Q$ implies $a \in Q$. Therefore $\sqrt{I}[x;\alpha,\delta] \subseteq Q$ and $\sqrt{I}[x;\alpha,\delta] \subseteq \sqrt{I}[x;\alpha,\delta]$.

Theorem 2.9. Let I be a (α, δ) -compatible ideal of R and has the IFP. Then $I[x; \alpha, \delta]$ is a radically-symmetric ideal of $R[x; \alpha, \delta]$.

Proof. Let $f(x) = a_0 + \cdots + a_n x^n$, $g(x) = b_0 + \cdots + b_m x^m$, $h(x) = c_0 + \cdots + c_k x^k \in R[x; \alpha, \delta]$ and $f(x)g(x)h(x) \in \sqrt{I[x; \alpha, \delta]} = \sqrt{I}[x; \alpha, \delta]$. Then $a_i(g(x)h(x)) \in \sqrt{I}[x; \alpha, \delta]$ for each $i = 0, 1, \ldots, n$, by Lemma 2.7. Hence $a_i b_j c_k \in \sqrt{I}$ for each i, j, k, by Lemma 2.7. Thus $a_i c_k b_j \in \sqrt{I}$ for each i, j, k, by Proposition 1.6. Therefore $f(x)h(x)g(x) \in \sqrt{I}[x; \alpha, \delta]$, since \sqrt{I} is (α, δ) -compatible.

By using Theorem 2.9 we have the following result:

Corollary 2.10. Let R be a semicommutative (α, δ) -compatible ring. Then $R[x; \alpha, \delta]$ is a radically-symmetric ring.

Corollary 2.11. Let R be a semicommutative ring. Then R is a radically-symmetric ring.

Lemma 2.12. Let I be a radically-symmetric ideal of R. Then I has the radically IFP.

Proof. Let $ab \in \sqrt{I}$. Then $abc \in \sqrt{I}$ for each $c \in R$, since \sqrt{I} is an ideal of R. Hence $acb \in \sqrt{I}$, since I is a radically-symmetric ideal of R. Therefore I has the radically IFP.

Corollary 2.13 ([13, Theorem 3.1]). Let R be a semicommutative α -compatible ring. Then $R[x; \alpha]$ is a weakly semicommutative ring.

Proof. It follows from Lemma 2.12 and Corollary 2.10. \Box

Since symmetric ideals have the IFP, hence we have the following result:

Theorem 2.14. Let R be a symmetric (α, δ) -compatible ring. Then $R[x; \alpha, \delta]$ is a radically-symmetric ring and hence weakly semicommutative ring.

Acknowledgement. The author thanks the referee for reviewing this paper. This research is supported by the Shahrood University of Technology of Iran.

References

- [1] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265–2272.
- [2] E. Hashemi, On ideals which have the weakly insertion of factors property, J. Sci. Islam. Repub. Iran 19 (2008), no. 2, 145–152.
- [3] ______, Compatible ideals and radicals of Ore extensions, New York J. Math. 12 (2006), 349–356.
- [4] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207–224.
- [5] C. Y. Hong, N. Y. Kim, T. K. Kwak, and Y. Lee, Extensions of zip rings, J. Pure Appl. Algebra 195 (2005), no. 3, 231–242.
- [6] C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Rigid ideals and radicals of Ore extensions, Algebra Colloq. 12 (2005), no. 3, 399–412.
- [7] C. Huh, H. K. Kim, and Y. Lee, P.P.-rings and generalized P.P.-rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37–52.
- [8] C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751–761.
- [9] N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477–488.
- [10] ______, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207–223.
- [11] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289–300.
- [12] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), no. 3, 359–368.
- [13] L. Liang, L. Wang, and Z. Liu, On a generalization of semicommutative rings, Taiwanese J. Math. 11 (2007), no. 5, 1359–1368.
- [14] G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709–1724.

DEPARTMENT OF MATHEMATICS

SHAHROOD UNIVERSITY OF TECHNOLOGY

Shahrood 316-3619995161, Iran

 $\textit{E-mail address} : \texttt{hashemi@yahoo.com;eb_hashemi@shahroodut.ac.ir}$