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ON RADICALLY-SYMMETRIC IDEALS

Ebrahim Hashemi

Abstract. A ring R is called symmetric, if abc = 0 implies acb = 0 for
a, b, c ∈ R. An ideal I of a ring R is called symmetric (resp. radically-

symmetric) if R/I (resp. R/
√
I) is a symmetric ring. We first show

that symmetric ideals and ideals which have the insertion of factors prop-
erty are radically-symmetric. We next show that if R is a semicommu-
tative ring, then Tn(R) and R[x]/(xn) are radically-symmetric, where
(xn) is the ideal of R[x] generated by xn. Also we give some examples

of radically-symmetric ideals which are not symmetric. Connections be-
tween symmetric ideals of R and related ideals of some ring extensions are
also shown. In particular we show that if R is a symmetric (or semicom-
mutative) (α, δ)-compatible ring, then R[x;α, δ] is a radically-symmetric

ring. As a corollary we obtain a generalization of [13].

0. Introduction

Throughout this paper R denotes an associative ring with identity and
R[x;α, δ] will stands for the Ore extension of R, where α is an endomor-
phism and δ an α-derivation of R, that is, δ is an additive map such that
δ(ab) = δ(a)b + α(a)δ(b) for all a, b ∈ R. Recall from [14] that an ideal I of a
ring R has the insertion of factors property (or simply, IFP) if ab ∈ I implies
aRb ⊆ I for a, b ∈ R (H. E. Bell in 1970 introduced this notion for I = 0).
Observe that every completely semiprime ideal I (i.e., a2 ∈ I implies a ∈ I)
of R has the IFP [13, Lemma 3.2(a)]. If I = 0 has the IFP, then R has the
IFP (i.e., semicommutative). A ring R is called reduced if it has no non-zero
nilpotent element. By [5], reduced rings have the IFP. If R has the IFP, then
it is Abelian (i.e., all idempotents are central).

Liang, Wang and Liu [13] introduced weakly semicommutative rings which
are a generalization of semicommutative rings. A ring R is called weakly semi-
commutative if for any a, b ∈ R, ab = 0 implies arb is a nilpotent element for
any r ∈ R.
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According to Hong et al. [6], for an endomorphism α of a ring R, a α-ideal
I (i.e., α(I) ⊆ I) is called to be α-rigid if aα(a) ∈ I implies a ∈ I for a ∈ R.
They studied connections between α-rigid ideals of R and related ideals of some
ring extensions.

Recall from [3], that an ideal I is called α-compatible if for each a, b ∈ R,
ab ∈ I ⇔ aα(b) ∈ I. Moreover, I is said to be δ-compatible if for each a, b ∈ R,
ab ∈ I ⇒ aδ(b) ∈ I. If I is both α-compatible and δ-compatible, it called
a (α, δ)-compatible ideal. If I = 0 is a (α, δ)-compatible ideal, we say that R
is a (α, δ)-compatible ring. The definition is quite natural, in the light of its
similarity with the notion of α-rigid ideals, in [3], the author show that I is a
α-rigid ideal if and only if I is α-compatible and completely semiprime.

Following Lambek [12], an ideal I of a ring R is symmetric if abc ∈ I implies
acb ∈ I for a, b, c ∈ R. A ring R is called symmetric if I = 0 is a symmetric
ideal of R. It is obvious that each ideal of a commutative ring is symmetric.
Reduced rings are symmetric by the results of Anderson and Camillo [1], but
there are many non-reduced commutative (so symmetric) rings.

Kim and Lee [10] proved that if R is Armendariz, then the ordinary poly-
nomial ring over R is symmetric if and only if R is symmetric. There is an
example [8] of symmetric ring R for which the ring of polynomials R[x] is not
symmetric.

We say an ideal I of a ring R is radically-symmetric if
√
I is a symmetric

ideal of R. If I = 0 is a radically-symmetric ideal of R, we say R is a radically-
symmetric ring.

In this paper we will show that for each n ≥ 2, there exists a non-zero
radically-symmetric ideal of the n × n upper triangular matrix ring over the
ring of integers Z that is not symmetric. Also we will show that each ideal of
R which has the IFP and each symmetric ideal of R are radically-symmetric.
Thus radically-symmetric rings are a generalization of symmetric rings. We
next show that if R is a semicommutative ringn, then Tn(R) and R[x]/(xn) are
radically-symmetric, where (xn) is the ideal generated by xn.

A natural question for a given class of ring is: How does the given class
behave with respect to polynomial extensions? In Section 2, connections be-
tween symmetric ideals of R and related ideals of some ring extensions are also
shown. In particular we will show that:

(1) If I is a symmetric (α, δ)-compatible ideal of R, then I[x;α, δ] is a
radically-symmetric ideal of R[x;α, δ].

(2) If I is a (α, δ)-compatible ideal of R and has the IFP, then I[x;α, δ]
is a radically-symmetric ideal of R[x;α, δ]. As a corollary, if R is a symmet-
ric (α, δ)-compatible ring, then R[x;α, δ] is a radically-symmetric. Also, if
R is a semicommutative (α, δ)-compatible ring, then R[x;α, δ] is a radically-
symmetric ring and hence weakly semicommutative ring. As a corollary we
obtain a generalization of [13].
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1. Examples

Recall that for an ideal I of R,
√
I equals the intersection of all prime ideals

containing I.

Definition 1.1. For an ideal I of a ring R we say I is radically-symmetric if√
I is a symmetric ideal of R. If I = 0 is a radically-symmetric ideal of R, we

say R is a radically-symmetric ring.

Lemma 1.2. For an ideal I of a ring R, the following statements are equivalent:

(1) I is symmetric;
(2) For any a1, . . . , an ∈ R, a1 · · · an ∈ I implies ai1ai2 · · · ain ∈ I for each

{i1, i2, . . . , in} = {1, 2, . . . , n}.

Proof. (1)⇒(2). For n = 3 we have 1a1(a2a3) = a1a2a3 ∈ I. Hence a2a3a1 =
1(a2a3)a1 ∈ I, since I is symmetric. By a similar argument one can show
that ai1ai2ai3 ∈ I for each {i1, i2, i3} = {1, 2, 3}. Now let a1 · · · an ∈ I.
Then (a1a2)a3 · · · an ∈ I. By induction on n, (a1a2)ai3 · · · ain ∈ I for each
{i3, . . . , in} = {3, . . . , n}. Since a1a2(a3 · · · an) ∈ I and I is symmetric, a1(a3· · ·
an)a2 ∈ I. Then by the induction hypothesis, (a1a3)ai3 · · · ain ∈ I for each
{i3, . . . , in} = {2, 4, . . . , n}. Continuing this process yields (a1at)ai3 · · · ain ∈ I
for each t = 2, . . . , n and {i3, . . . , in} = {2,. . . , n}−{t}. Therefore a1ai2· · · ain ∈
I for each {i2, . . . , in} = {2, . . . , n}. By a similar argument we can show that
ai1ai2 · · · ain ∈ I for each {i1, i2, . . . , in} = {1, 2, . . . , n}.

(2)⇒(1). It is clear. □

Definition 1.3. For an ideal I of a ring R we say I has the radically insertion
of factors property (or simply, radically IFP) if

√
I has the IFP. If I = 0 has

the radically IFP, we say R has the radically IFP.

Clearly, if I = 0 has the IFP, then R has the IFP (i.e., R is semicommu-
tative). The following example shows that, there exists a ring R such that all
non-zero ideals of R have the IFP but R does not has the IFP.

Example 1.4. Let R = ( F F
0 F ), where F is a division ring. The only non-zero

proper ideals of R are I1 = ( F F
0 0 ), I2 = ( 0 F

0 F ) and I3 = ( 0 F
0 0 ). Huh, Lee and

Smoktunowicz [8], show that R/Ii is semicommutative for each i, but R isn’t
semicommutative.

By using Lemma 1.2 we have the following result.

Corollary 1.5. Symmetric ideals have the IFP.

Proposition 1.6. Let an ideal I has the IFP. Then I is a radically-symmetric
ideal.

Proof. First we show that
√
I = {a ∈ R |an ∈ I for some n ≥ 1}. Clearly

√
I ⊆

{a ∈ R |an ∈ I for some n ≥ 1}. Let a ∈ {a ∈ R |an ∈ I for some n ≥ 1}.
Then an ∈ I for some n ≥ 1. Hence ar1ar2 · · · arn ∈ I for each r1, r2, . . . , rn ∈
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R, since I has the IFP. Thus (aR)n ⊆ I. If P is a prime ideal of R containing

I, then (aR)n ⊆ I ⊆ P implies a ∈ P . Hence a ∈
√
I and

√
I = {a ∈ R |an ∈

I for some n ≥ 1}.
Now, let abc ∈

√
I. Then (abc)n ∈ I for some positive integer n. Since I has

the IFP, by a simple computation one can show that (acb)2n ∈ I. Therefore I
is a radically-symmetric ideal of R. □
Corollary 1.7. Let R be a semicommutative ring. Then R is a radically-
symmetric ring.

For a ring R, let Rn(R) be the set of all n×n upper-triangular matrices with
constant main diagonal. Clearly, Rn(R) is a subring of Tn(R), the n×n upper
triangular matrix ring over R. It is well known Rn(R) ∼= R[x]/(xn), where (xn)
is the ideal of R[x] generated by xn. In the following we will see the converse
of Proposition 1.6 is not true.

Example 1.8. Let J=

{( 0 a12 a13 a14
0 0 a23 a24
0 0 0 a34
0 0 0 0

)
|aij ∈2pZ

}
be an ideal of R4(Z), where

p ̸= 2 is a prime number and Z is the set of integers. Then

(
0 p 1 0
0 0 0 0
0 0 0 0
0 0 0 0

)(
0 0 0 0
0 0 0 1
0 0 0 p
0 0 0 0

)
=(

0 0 0 2p
0 0 0 0
0 0 0 0
0 0 0 0

)
∈ J , but

(
0 p 1 0
0 0 0 0
0 0 0 0
0 0 0 0

)(
0 0 0 0
0 0 3 0
0 0 0 0
0 0 0 0

)(
0 0 0 0
0 0 0 1
0 0 0 p
0 0 0 0

)
=

(
0 0 0 3p2

0 0 0 0
0 0 0 0
0 0 0 0

)
/∈ J . Hence

J doesn’t has the IFP, but J is radically-symmetric, by Proposition 1.11.

By a similar way as used in Example 1.8, we can construct numerous radical-
ly-symmetric ideals of Rn(Z) such that don’t have the IFP for n ≥ 4.

Example 1.9. Let J =
{( a11 a12 a13

0 a22 a23
0 0 a33

)
|aij ∈ 2pZ

}
be an ideal of T3(Z), where

p is a prime number and Z is the set of integers. Then
(

p p 1
0 0 0
0 0 0

)(
0 0 1
0 0 2
0 0 p

)
=(

0 0 4p
0 0 0
0 0 0

)
∈ J , but

(
p p 1
0 0 0
0 0 0

)(
1 0 0
0 2 0
0 0 2

)(
0 0 1
0 0 2
0 0 p

)
=

(
0 0 7p
0 0 0
0 0 0

)
/∈ J . Hence J doesn’t

has the IFP, but is radically-symmetric by Proposition 1.15.

Let J be an ideal of Rn(R) and

I =

a ∈ R|


a a12 · · · a1n
0 a · · · a2n
...

...
. . .

...
0 0 · · · a

 ∈ J for some aij ∈ R

 .

Then I is an ideal of R.

Proposition 1.10. Let J be an ideal of Rn(R) such that Rn(I) ⊆ J , where I

is the ideal that mentioned above. Let A =

 a a12 ··· a1n
0 a ··· a2n

...
...

...
...

0 0 ··· a

 ∈ Rn(R) such that

ak ∈ I for some non-negative integer k. Then Ank ∈ J .
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Proof. We proceed by induction on n. Let n = 2. For a positive integer k, Ak =(
ak b12
0 ak

)
and that A2k =

(
a2k akb12+b12a

k

0 a2k

)
. Hence A2k ∈ J , since a2k, akb12 +

b12a
k ∈ I. Now, let A =

 a a12 ··· a1n
0 a ··· a2n

...
...

. . .
...

0 0 ··· a

 ∈ Rn(R) such that ak ∈ I for a non-

negative integer k. Consider A(n−1)k =

 a(n−1)k b12 ··· b1n
0 a(n−1)k ··· b2n
...

...
. . .

...
0 0 ··· a(n−1)k

 and Ak =

 ak c12 ··· c1n
0 ak ··· c2n
...

...
. . .

...
0 0 ··· ak

. By the induction hypothesis all bij ’s, except b1n, are in I. Let

x = akb1n+c12b2n+ · · ·+c1na
(n−1)k. Then Ank =


ank y12 ··· y1n−1 x

0 ank ··· y2n−1 y2n

...
...

. . .
...

...
0 0 ··· ank yn−1n

0 0 ··· 0 ank

 ∈

J , since ank, x and all yij ’s are in I. □

Proposition 1.11. Let J be an ideal of Rn(R) such that Rn(I) ⊆ J , where
I is the ideal that mentioned above. If I has the IFP, then J is a radically-
symmetric ideal of Rn(R) for each n ≥ 2.

Proof. Let A=

 a a12 ··· a1n
0 a ··· a2n

...
...

. . .
...

0 0 ··· a

, B=

 b b12 ··· b1n
0 b ··· b2n
...

...
. . .

...
0 0 ··· b

 and C=

 c c12 ··· c1n
0 c ··· c2n
...

...
. . .

...
0 0 ··· c

 ∈

Rn(R) such that ABC ∈
√
J . Then (abc)k ∈ I for some positive integer k.

Since I has the IFP, one can show that (acb)2k ∈ I. Thus ACB ∈
√
J , by

Proposition 1.10. Therefore J is a radically-symmetric ideal of Rn(R). □

By using Proposition 1.11 we have the following theorem.

Theorem 1.12. Let R be a semicommutative ring. Then Rn(R) is a radically-
symmetric ring.

Lemma 1.13. Let J =


 a11 a12 ··· a1n

0 a22 ··· a2n

...
...

...
...

0 0 ··· ann

 |aij ∈ Iij , 1 ≤ i ≤ n, i ≤ j ≤ n

,

such that Iij ⊆ Iis for 1 ≤ i ≤ n, i ≤ j ≤ s ≤ n and Isj ⊆ Iij for j = 1, . . . , n,
1 ≤ i ≤ s ≤ n and Iij is an ideal of R for each i, j. Then J is an ideal of
Tn(R).

Proof. It is straightforward. □
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Proposition 1.14. Let J be an ideal of Tn(R) that mentioned in Lemma 1.13.

Let A =

 a11 a12 ··· a1n
0 a22 ··· a2n

...
...

...
...

0 0 ··· ann

 ∈ Tn(R) such that akii ∈ Iii for some non-negative

integer k and i = 1, . . . , n. Then (A2k+1)n−1 ∈ J .

Proof. We proceed by induction on n. For n = 2, let A = ( a11 a12
0 a22

). Since

A2k+1 =
(

a2k+1
11 x

0 a2k+1
22

)
, where x =

∑
ai11a12a

j
22, i + j = 2k, i, j ≥ 0, we

have A2k+1 ∈ J . Now, assume n ≥ 3 and A ∈ Tn(R). Consider (A2k+1)n−2 =
a
(2k+1)(n−2)
11 b12 ··· b1n

0 a
(2k+1)(n−2)
22 ··· b2n

...
...

. . .
...

0 0 ··· a(2k+1)(n−2)
nn

 andA2k+1 =


a2k+1
11 c12 ··· c1n

0 a2k+1
22 ··· c2n

...
...

. . .
...

0 0 ··· a2k+1
nn

 .

By the induction hypothesis all bij ’s, except b1n, are in I. Hence (1, n)-entry of

(A2k+1)n−1 is x = a
(2k+1)
11 b1n+ c12b2n+ · · ·+ c1n−1bn−1n+ c1na

(2k+1)(n−2)
nn ∈ I,

since a
(2k+1)
11 , a

(2k+1)
nn , b2n, . . . , bn−1n ∈ I. Therefore (A2k+1)n−1 ∈ J . □

Proposition 1.15. Let J be an ideal of Tn(R) that mentioned in Lemma 1.13.
If each Iii, 1 ≤ i ≤ n has the IFP, then J is radically-symmetric.

Proof. LetA=

a11 a12 ··· a1n
0 a22 ··· a2n

...
...

. . .
...

0 0 ··· ann

, B=

b11 b12 ··· b1n
0 b22 ··· b2n
...

...
. . .

...
0 0 ··· bnn

 and C=

c11 c12 ··· c1n
0 c22 ··· c2n
...

...
. . .

...
0 0 ··· cnn


∈ Tn(R) such that ABC ∈

√
J . Then (aiibiicii)

k ∈ Iii for a positive integer k
and each i. Since Iii has the IFP, one can show that (aiiciibii)

2k ∈ Iii for each

i. Thus ACB ∈
√
J , by Proposition 1.14. Therefore J is a radically-symmetric

ideal of Tn(R). □

By using Proposition 1.15 we have the following theorem.

Theorem 1.16. If R is a semicommutative ring, then Tn(R) is a radically-
symmetric ring for each n ≥ 2.

2. Extensions of symmetric ideals

Definition 2.1. For an ideal I of R, we say that I is α-compatible if for each
a, b ∈ R, ab ∈ I ⇔ aα(b) ∈ I. Moreover, I is said to be δ-compatible if for each
a, b ∈ R, ab ∈ I ⇒ aδ(b) ∈ I. If I is both α-compatible and δ-compatible, we
say that I is (α, δ)-compatible. If I = 0 is a (α, δ)-compatible ideal, we say R
is a (α, δ)-compatible ring.

Note that there exists a ring R for which all non-zero proper ideals are
α-compatible but R isn’t α-compatible. For example, consider the ring R =
( F F
0 F ), where F is a field, and the endomorphism α of R is defined by α(( a b

0 c )) =
( a 0
0 c ) for a, b, c ∈ F .
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Proposition 2.2 ([3]). Let R be a ring, J an ideal of R and α : R → R an
endomorphism of R. Then the following conditions are equivalent:

(1) J is an α-rigid ideal of R;
(2) J is α-compatible, semiprime and has the IFP;
(3) J is α-compatible and completely semiprime.

If δ is an α-derivation of R, then the following are equivalent:
(4) J is an α-rigid δ-ideal of R;
(5) J is (α, δ)-compatible, semiprime and has the IFP;
(6) J is (α, δ)-compatible and completely semiprime.

Proposition 2.3. Let I be a (α, δ)-compatible ideal of R and a, b ∈ R.

(1) If ab ∈ I, then aαn(b), αn(a)b ∈ I for every positive integer n. Con-
versely, if aαk(b) or αk(a)b ∈ I for some positive integer k, then ab ∈ I.

(2) If ab ∈ I, then αm(a)δn(b), δn(a)αm(b) ∈ I for each non-negative inte-
gers m,n.

Proof. (1) If ab ∈ I, then αn(a)αn(b) ∈ I, since I is α-ideal. Hence αn(a)b ∈ I,
since I is α-compatible. If αk(a)b ∈ I, then αk(a)αk(b) ∈ I, and so ab ∈ I,
since I is α-compatible.

(2) It is enough to show that δ(a)α(b) ∈ I. If ab ∈ I, then by (1) and
δ-compatibility of I, α(a)δ(b) ∈ I. Hence δ(a)b = δ(ab) − α(a)δ(b) ∈ I. Thus
δ(a)b ∈ I and δ(a)α(b) ∈ I, since I is α-compatible. □

Lemma 2.4. Let I be a (α, δ)-compatible ideal of R. If (ab)k ∈ I for some
k ≥ 0, then (aα(b))k, (aδ(b))k ∈ I.

Proof. Since I is α-compatible and (ab)k = (ab) · · · (ab) ∈ I we have aα(b)α(ab
· · · ab)=aα(bab · · · ab) ∈ I. Hence aα(b)(ab · · · ab) ∈ I, since I is α-compatible.
Now, aα(b)aα(b)α(ab · · · ab) = aα(b)aα(b · · · ab) ∈ I. Continuing this proce-
dure yields (aα(b))k ∈ I. Since I is δ-compatible and (ab)k = (ab) · · · (ab) ∈
I, we have aδ(bab · · · ab) = aδ(b)(ab · · · ab) + aα(b)δ(ab · · · ab) ∈ I. Since
aα(b)(ab · · · ab) ∈ I and I is δ-compatible, we have aα(b)δ(ab · · · ab) ∈ I. Thus
aδ(b)(ab · · · ab) ∈ I. Continuing this procedure yields (aδ(b))k ∈ I. □

Lemma 2.5. Let I be a (α, δ)-compatible ideal of R and has the IFP. Then

(1)
√
I is a (α, δ)-compatible ideal of R and has the IFP.

(2) I[x;α, δ] and
√
I[x;α, δ] are ideals of R[x;α, δ].

Proof. (1) By the proof of Proposition 1.6,
√
I = {a ∈ R |an ∈ I for some n ≥

1}, hence the result follows from Lemma 2.4 and Proposition 2.3.

(2) It follows from (α, δ)-compatibility of I and
√
I. □

In [6, Example 2], the authors show that there exists a non-zero ideal I
of a ring R such that has the IFP but ideal I[x] of R[x] isn’t symmetric. In
the sequel we will show that if I has the IFP, then I[x] is radically-symmetric
and hence has the radically IFP. More generally, we will show that: (1) If I
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is a (α, δ)-compatible ideal of R and has the IFP, then the ideal I[x;α, δ] of
R[x;α, δ] is radically-symmetric and hence has the radically IFP.

For non-empty subsets A,B of R and r ∈ R, put AB = {ab|a ∈ A, b ∈ B},
A0 = {1} and rA = {ra|a ∈ A}.
Notation. Let α be an endomorphism, δ an α-derivation of R, 0 ≤ i ≤ j
and a ∈ R. Let us write f j

i for the set of all “words” in α and δ in which

there are i factors of α and j − i factors of δ. For instance, f j
j (a) = {αj(a)},

f j
0 (a) = {δj(a)} and f j

j−1(a) = {αj−1δ(a), αj−2δα(a), . . . , δαj−1(a)}.

Lemma 2.6. Let I be a (α, δ)-compatible ideal of R and has the IFP. Then√
I[x;α, δ] = {f ∈ R[x;α, δ] |fk ∈ I[x;α, δ] for some k ≥ 1}.

Proof. Note that
√
I = {a ∈ R |an ∈ I for some n ≥ 1}, by the proof of Propo-

sition 1.6. Let f(x) = a0+· · ·+anx
n ∈ {f ∈ R[x;α, δ] |fn ∈ I[x;α, δ] for some

k ≥ 1}. Then (f(x))k ∈ I[x;α, δ] for some positive integer k and anα
n(an) · · ·

αk(n−1)(an) ∈ I, since it is the leading coefficient of (f(x))k. Hence an ∈√
I, since

√
I is α-compatible. Since

√
I[x;α, δ] is an ideal of R[x;α, δ] and

an ∈
√
I, we have anx

n ∈
√
I[x;α, δ]. There exists g(x), h(x) ∈ R[x;α, δ]

such that f(x)k = (a0 + · · · + an−1x
n−1)k + anx

ng(x) + h(x)anx
n. Hence

(a0 + · · · + an−1x
n−1)k ∈

√
I[x;α, δ], since

√
I[x;α, δ] is an ideal of R[x;α, δ]

and anx
n ∈

√
I[x;α, δ]. By using induction on n, we have ai ∈

√
I for each i.

Thus {f ∈ R[x;α, δ] |fk ∈ I[x;α, δ] for some k ≥ 1} ⊆
√
I[x;α, δ].

Now, let f(x) = a0 + · · · + anx
n ∈

√
I[x;α, δ]. Then ami

i ∈ I for some
mi ≥ 1. Let k = m0 + · · ·+mn + 1. Then

(f(x))k =
∑

(ai010 (a1x)
i11 · · · (anxn)in1) · · · (ai0k0 (a1x)

i1k · · · (anxn)ink),

where i0r + i1r + · · ·+ inr = 1 and 0 ≤ irs ≤ 1 for r = 1, . . . , k. Each coefficient
of (ai010 (a1x)

i11 · · · (anxn)in1) · · · (ai0k0 (a1x)
i1k · · · (anxn)ink) is a sum of such el-

ements γ ∈ ((fs01
r01 (a0))

i01 · · · (fsn1
rn1

(an))
in1) · · · ((fs0k

r0k
(a0))

i0k · · · (fsnk
rnk

(an))
ink).

It can be easily checked that there exists at ∈ {a0, . . . , an} such that it1+ it2+
· · · + itk ≥ mt. Since amt

t ∈ I and I is (α, δ)-compatible and has the IFP,
hence by Proposition 2.3, γ ∈ I. Thus each coefficient of (f(x))k belong to I.
Therefore f(x) ∈ {f ∈ R[x;α, δ] |fk ∈ I[x;α, δ] for some k ≥ 1}. □

Lemma 2.7. Let I be a (α, δ)-compatible ideal of R and has the IFP and
f(x) = a0 + · · ·+ anx

n, g(x) = b0 + · · ·+ bmxm ∈ R[x;α, δ]. Then

(1) f(x)g(x) ∈
√
I[x;α, δ] if and only if aibj ∈

√
I for each i, j.

(2)
√
I[x;α, δ] has the IFP.

Proof. (1) Note that f(x)g(x) =
∑n

i=0

∑m
j=0(aix

i)(bjx
j). Then anα

n(bm) ∈√
I, since it is the leading coefficient of f(x)g(x). Hence anbm ∈

√
I, since

√
I

is α-compatible. Thus anf
j
i (bm) ⊆

√
I for each 0 ≤ i ≤ j, by Proposition 2.3.

Since the coefficient of xm+n−1 is anα
n(bm−1) + an−1α

n−1(bm) + anr, where r

is a sum of such elements γ ∈ fn
n−1(bm) and anr ∈

√
I, we have anα

n(bm−1) +
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an−1α
n−1(bm) ∈

√
I. Hence anα

n(bm−1)bm + an−1α
n−1(bm)bm ∈

√
I and that

an−1α
n−1(bm)bm ∈

√
I, since anα

n(bm−1)bm ∈
√
I. Thus an−1bm ∈

√
I, by

Proposition 2.3 and Lemma 2.5(1). Hence anbm−1 ∈
√
I. Consequently,

anf
j
i (bm)

∪
an−1f

j
i (bm)

∪
anf

j
i (bm−1) ⊆

√
I for each 0 ≤ i ≤ j.

The coefficient of xm+n−2 is anα
n(bm−2)+an−1α

n−1(bm−1)+an−2α
n−2(bm)+t,

where t is a sum of such elements γ ∈
∪

0≤i≤j [anf
j
i (bm)

∪
an−1f

j
i (bm)

∪
anf

j
i

(bm−1)]. By a similar way as above, one can show thatanbm−2, an−1bm−1,
an−2bm ∈

√
I. Continuing this process yields aibj ∈

√
I for each i, j.

Conversely, suppose that aibj ∈
√
I for each i, j. Since

√
I is (α, δ)-compati-

ble, f(x)g(x) ∈
√
I[x;α, δ].

(2) Let h(x) = c0 + c1x+ · · ·+ ckx
k ∈ R[x;α, δ] and f(x)g(x) ∈

√
I[x;α, δ].

Then aibj ∈
√
I for each i, j, by (1). Since

√
I has the IFP, we have aicrbj ∈

√
I

for each i, j, r. Then f(x)h(x)g(x) ∈
√
I[x;α, δ], since

√
I is a (α, δ)-compatible

ideal of R. Therefore
√
I[x;α, δ] has the IFP. □

Proposition 2.8. Let I be a (α, δ)-compatible ideal of R and has the IFP. Then√
I[x;α, δ] =

√
I[x;α, δ] = {f ∈ R[x;α, δ] |fk ∈ I[x;α, δ] for some k ≥ 1}.

Proof. By Lemma 2.6, it is enugh to show that
√
I[x;α, δ] ⊆

√
I[x;α, δ]. We

show that if Q is a prime ideal of R[x;α, δ] containing I[x;α, δ], then
√
I ⊆ Q.

Let a ∈
√
I. Then ak ∈ I for some k ≥ 1. Hence ag1ag2 · · · agk ∈ I[x;α, δ]

for each g1, g2, . . . , gk ∈ R[x;α, δ], since I is (α, δ)-compatible and has the IFP.

Thus (aR[x;α, δ])k ⊆ I[x;α, δ] ⊆ Q implies a ∈ Q. Therefore
√
I[x;α, δ] ⊆ Q

and
√
I[x;α, δ] ⊆

√
I[x;α, δ]. □

Theorem 2.9. Let I be a (α, δ)-compatible ideal of R and has the IFP. Then
I[x;α, δ] is a radically-symmetric ideal of R[x;α, δ].

Proof. Let f(x) = a0+· · ·+anx
n, g(x) = b0+· · ·+bmxm, h(x) = c0+· · ·+ckx

k ∈
R[x;α, δ] and f(x)g(x)h(x) ∈

√
I[x;α, δ] =

√
I[x;α, δ]. Then ai(g(x)h(x)) ∈√

I[x;α, δ] for each i = 0, 1, . . . , n, by Lemma 2.7. Hence aibjck ∈
√
I for each

i, j, k, by Lemma 2.7. Thus aickbj ∈
√
I for each i, j, k, by Proposition 1.6.

Therefore f(x)h(x)g(x) ∈
√
I[x;α, δ], since

√
I is (α, δ)-compatible. □

By using Theorem 2.9 we have the following result:

Corollary 2.10. Let R be a semicommutative (α, δ)-compatible ring. Then
R[x;α, δ] is a radically-symmetric ring.

Corollary 2.11. Let R be a semicommutative ring. Then R is a radically-
symmetric ring.

Lemma 2.12. Let I be a radically-symmetric ideal of R. Then I has the
radically IFP.
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Proof. Let ab ∈
√
I. Then abc ∈

√
I for each c ∈ R, since

√
I is an ideal of R.

Hence acb ∈
√
I, since I is a radically-symmetric ideal of R. Therefore I has

the radically IFP. □
Corollary 2.13 ([13, Theorem 3.1]). Let R be a semicommutative α-compatible
ring. Then R[x;α] is a weakly semicommutative ring.

Proof. It follows from Lemma 2.12 and Corollary 2.10. □
Since symmetric ideals have the IFP, hence we have the following result:

Theorem 2.14. Let R be a symmetric (α, δ)-compatible ring. Then R[x;α, δ]
is a radically-symmetric ring and hence weakly semicommutative ring.
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