ON RADICALLY-SYMMETRIC IDEALS

Ebrahim Hashemi

Abstract

A ring R is called symmetric, if $a b c=0$ implies $a c b=0$ for $a, b, c \in R$. An ideal I of a ring R is called symmetric (resp. radicallysymmetric) if R / I (resp. R / \sqrt{I}) is a symmetric ring. We first show that symmetric ideals and ideals which have the insertion of factors property are radically-symmetric. We next show that if R is a semicommutative ring, then $T_{n}(R)$ and $R[x] /\left(x^{n}\right)$ are radically-symmetric, where $\left(x^{n}\right)$ is the ideal of $R[x]$ generated by x^{n}. Also we give some examples of radically-symmetric ideals which are not symmetric. Connections between symmetric ideals of R and related ideals of some ring extensions are also shown. In particular we show that if R is a symmetric (or semicommutative) (α, δ)-compatible ring, then $R[x ; \alpha, \delta]$ is a radically-symmetric ring. As a corollary we obtain a generalization of [13].

0. Introduction

Throughout this paper R denotes an associative ring with identity and $R[x ; \alpha, \delta]$ will stands for the Ore extension of R, where α is an endomorphism and δ an α-derivation of R, that is, δ is an additive map such that $\delta(a b)=\delta(a) b+\alpha(a) \delta(b)$ for all $a, b \in R$. Recall from [14] that an ideal I of a ring R has the insertion of factors property (or simply, IFP) if $a b \in I$ implies $a R b \subseteq I$ for $a, b \in R(\mathrm{H} . \mathrm{E}$. Bell in 1970 introduced this notion for $I=0)$. Observe that every completely semiprime ideal I (i.e., $a^{2} \in I$ implies $a \in I$) of R has the IFP [13, Lemma 3.2(a)]. If $I=0$ has the IFP, then R has the IFP (i.e., semicommutative). A ring R is called reduced if it has no non-zero nilpotent element. By [5], reduced rings have the IFP. If R has the IFP, then it is Abelian (i.e., all idempotents are central).

Liang, Wang and Liu [13] introduced weakly semicommutative rings which are a generalization of semicommutative rings. A ring R is called weakly semicommutative if for any $a, b \in R, a b=0$ implies arb is a nilpotent element for any $r \in R$.

[^0]According to Hong et al. [6], for an endomorphism α of a ring R, a α-ideal I (i.e., $\alpha(I) \subseteq I$) is called to be α-rigid if $a \alpha(a) \in I$ implies $a \in I$ for $a \in R$. They studied connections between α-rigid ideals of R and related ideals of some ring extensions.

Recall from [3], that an ideal I is called α-compatible if for each $a, b \in R$, $a b \in I \Leftrightarrow a \alpha(b) \in I$. Moreover, I is said to be δ-compatible if for each $a, b \in R$, $a b \in I \Rightarrow a \delta(b) \in I$. If I is both α-compatible and δ-compatible, it called a (α, δ)-compatible ideal. If $I=0$ is a (α, δ)-compatible ideal, we say that R is a (α, δ)-compatible ring. The definition is quite natural, in the light of its similarity with the notion of α-rigid ideals, in [3], the author show that I is a α-rigid ideal if and only if I is α-compatible and completely semiprime.

Following Lambek [12], an ideal I of a ring R is symmetric if $a b c \in I$ implies $a c b \in I$ for $a, b, c \in R$. A ring R is called symmetric if $I=0$ is a symmetric ideal of R. It is obvious that each ideal of a commutative ring is symmetric. Reduced rings are symmetric by the results of Anderson and Camillo [1], but there are many non-reduced commutative (so symmetric) rings.

Kim and Lee [10] proved that if R is Armendariz, then the ordinary polynomial ring over R is symmetric if and only if R is symmetric. There is an example [8] of symmetric ring R for which the ring of polynomials $R[x]$ is not symmetric.

We say an ideal I of a ring R is radically-symmetric if \sqrt{I} is a symmetric ideal of R. If $I=0$ is a radically-symmetric ideal of R, we say R is a radicallysymmetric ring.

In this paper we will show that for each $n \geq 2$, there exists a non-zero radically-symmetric ideal of the $n \times n$ upper triangular matrix ring over the ring of integers \mathbb{Z} that is not symmetric. Also we will show that each ideal of R which has the IFP and each symmetric ideal of R are radically-symmetric. Thus radically-symmetric rings are a generalization of symmetric rings. We next show that if R is a semicommutative ringn, then $T_{n}(R)$ and $R[x] /\left(x^{n}\right)$ are radically-symmetric, where $\left(x^{n}\right)$ is the ideal generated by x^{n}.

A natural question for a given class of ring is: How does the given class behave with respect to polynomial extensions? In Section 2, connections between symmetric ideals of R and related ideals of some ring extensions are also shown. In particular we will show that:
(1) If I is a symmetric (α, δ)-compatible ideal of R, then $I[x ; \alpha, \delta]$ is a radically-symmetric ideal of $R[x ; \alpha, \delta]$.
(2) If I is a (α, δ)-compatible ideal of R and has the IFP, then $I[x ; \alpha, \delta]$ is a radically-symmetric ideal of $R[x ; \alpha, \delta]$. As a corollary, if R is a symmetric (α, δ)-compatible ring, then $R[x ; \alpha, \delta]$ is a radically-symmetric. Also, if R is a semicommutative (α, δ)-compatible ring, then $R[x ; \alpha, \delta]$ is a radicallysymmetric ring and hence weakly semicommutative ring. As a corollary we obtain a generalization of [13].

1. Examples

Recall that for an ideal I of R, \sqrt{I} equals the intersection of all prime ideals containing I.
Definition 1.1. For an ideal I of a ring R we say I is radically-symmetric if \sqrt{I} is a symmetric ideal of R. If $I=0$ is a radically-symmetric ideal of R, we say R is a radically-symmetric ring.

Lemma 1.2. For an ideal I of a ring R, the following statements are equivalent:
(1) I is symmetric;
(2) For any $a_{1}, \ldots, a_{n} \in R, a_{1} \cdots a_{n} \in I$ implies $a_{i_{1}} a_{i 2} \cdots a_{i_{n}} \in I$ for each $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}=\{1,2, \ldots, n\}$.
Proof. (1) $\Rightarrow(2)$. For $n=3$ we have $1 a_{1}\left(a_{2} a_{3}\right)=a_{1} a_{2} a_{3} \in I$. Hence $a_{2} a_{3} a_{1}=$ $1\left(a_{2} a_{3}\right) a_{1} \in I$, since I is symmetric. By a similar argument one can show that $a_{i_{1}} a_{i_{2}} a_{i_{3}} \in I$ for each $\left\{i_{1}, i_{2}, i_{3}\right\}=\{1,2,3\}$. Now let $a_{1} \cdots a_{n} \in I$. Then $\left(a_{1} a_{2}\right) a_{3} \cdots a_{n} \in I$. By induction on n, $\left(a_{1} a_{2}\right) a_{i_{3}} \cdots a_{i_{n}} \in I$ for each $\left\{i_{3}, \ldots, i_{n}\right\}=\{3, \ldots, n\}$. Since $a_{1} a_{2}\left(a_{3} \cdots a_{n}\right) \in I$ and I is symmetric, $a_{1}\left(a_{3} \cdots\right.$ $\left.a_{n}\right) a_{2} \in I$. Then by the induction hypothesis, $\left(a_{1} a_{3}\right) a_{i_{3}} \cdots a_{i_{n}} \in I$ for each $\left\{i_{3}, \ldots, i_{n}\right\}=\{2,4, \ldots, n\}$. Continuing this process yields $\left(a_{1} a_{t}\right) a_{i_{3}} \cdots a_{i_{n}} \in I$ for each $t=2, \ldots, n$ and $\left\{i_{3}, \ldots, i_{n}\right\}=\{2, \ldots, n\}-\{t\}$. Therefore $a_{1} a_{i 2} \cdots a_{i_{n}} \in$ I for each $\left\{i_{2}, \ldots, i_{n}\right\}=\{2, \ldots, n\}$. By a similar argument we can show that $a_{i_{1}} a_{i 2} \cdots a_{i_{n}} \in I$ for each $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}=\{1,2, \ldots, n\}$.
$(2) \Rightarrow(1)$. It is clear.
Definition 1.3. For an ideal I of a ring R we say I has the radically insertion of factors property (or simply, radically IFP) if \sqrt{I} has the IFP. If $I=0$ has the radically IFP, we say R has the radically IFP.

Clearly, if $I=0$ has the IFP, then R has the IFP (i.e., R is semicommutative). The following example shows that, there exists a ring R such that all non-zero ideals of R have the IFP but R does not has the IFP.

Example 1.4. Let $R=\left(\begin{array}{c}F \\ 0\end{array} \underset{F}{F}\right)$, where F is a division ring. The only non-zero proper ideals of R are $I_{1}=\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right), I_{2}=\left(\begin{array}{c}0 \\ 0 \\ 0\end{array}\right)$ and $I_{3}=\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right)$. Huh, Lee and Smoktunowicz [8], show that R / I_{i} is semicommutative for each i, but R isn't semicommutative.

By using Lemma 1.2 we have the following result.
Corollary 1.5. Symmetric ideals have the IFP.
Proposition 1.6. Let an ideal I has the IFP. Then I is a radically-symmetric ideal.
Proof. First we show that $\sqrt{I}=\left\{a \in R \mid a^{n} \in I\right.$ for some $\left.n \geq 1\right\}$. Clearly $\sqrt{I} \subseteq$ $\left\{a \in R \mid a^{n} \in I\right.$ for some $\left.n \geq 1\right\}$. Let $a \in\left\{a \in R \mid a^{n} \in I\right.$ for some $\left.n \geq 1\right\}$. Then $a^{n} \in I$ for some $n \geq 1$. Hence $a r_{1} a r_{2} \cdots a r_{n} \in I$ for each $r_{1}, r_{2}, \ldots, r_{n} \in$
R, since I has the IFP. Thus $(a R)^{n} \subseteq I$. If P is a prime ideal of R containing I, then $(a R)^{n} \subseteq I \subseteq P$ implies $a \in P$. Hence $a \in \sqrt{I}$ and $\sqrt{I}=\left\{a \in R \mid a^{n} \in\right.$ I for some $n \geq 1\}$.

Now, let $a b c \in \sqrt{I}$. Then $(a b c)^{n} \in I$ for some positive integer n. Since I has the IFP, by a simple computation one can show that $(a c b)^{2 n} \in I$. Therefore I is a radically-symmetric ideal of R.

Corollary 1.7. Let R be a semicommutative ring. Then R is a radicallysymmetric ring.

For a ring R, let $R_{n}(R)$ be the set of all $n \times n$ upper-triangular matrices with constant main diagonal. Clearly, $R_{n}(R)$ is a subring of $T_{n}(R)$, the $n \times n$ upper triangular matrix ring over R. It is well known $R_{n}(R) \cong R[x] /\left(x^{n}\right)$, where $\left(x^{n}\right)$ is the ideal of $R[x]$ generated by x^{n}. In the following we will see the converse of Proposition 1.6 is not true.
Example 1.8. Let $J=\left\{\left.\left(\begin{array}{cccc}0 & a_{12} & a_{13} & a_{14} \\ 0 & 0 & a_{23} & a_{24} \\ 0 & 0 & 0 & a_{34} \\ 0 & 0 & 0 & 0\end{array}\right) \right\rvert\, a_{i j} \in 2 p \mathbb{Z}\right\}$ be an ideal of $R_{4}(\mathbb{Z})$, where $p \neq 2$ is a prime number and \mathbb{Z} is the set of integers. Then $\left(\begin{array}{llll}0 & p & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & p \\ 0 & 0 & 0 & 0\end{array}\right)=$ $\left(\begin{array}{llll}0 & 0 & 0 & 2 p \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \in J$, but $\left(\begin{array}{llll}0 & p & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & p \\ 0 & 0 & 0 & 0\end{array}\right)=\left(\begin{array}{llll}0 & 0 & 0 & 3 p^{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \notin J$. Hence J doesn't has the IFP, but J is radically-symmetric, by Proposition 1.11.

By a similar way as used in Example 1.8, we can construct numerous radical-ly-symmetric ideals of $R_{n}(\mathbb{Z})$ such that don't have the IFP for $n \geq 4$.
Example 1.9. Let $J=\left\{\left.\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33}\end{array}\right) \right\rvert\, a_{i j} \in 2 p \mathbb{Z}\right\}$ be an ideal of $T_{3}(\mathbb{Z})$, where p is a prime number and \mathbb{Z} is the set of integers. Then $\left(\begin{array}{lll}p & p & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & p\end{array}\right)=$ $\left(\begin{array}{lll}0 & 0 & 4 p \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \in J$, but $\left(\begin{array}{lll}p & p & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & p\end{array}\right)=\left(\begin{array}{cccc}0 & 0 & 7 p \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \notin J$. Hence J doesn't has the IFP, but is radically-symmetric by Proposition 1.15.

Let J be an ideal of $R_{n}(R)$ and

$$
I=\left\{a \in R \left\lvert\,\left(\begin{array}{cccc}
a & a_{12} & \cdots & a_{1 n} \\
0 & a & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a
\end{array}\right) \in J\right. \text { for some } a_{i j} \in R\right\}
$$

Then I is an ideal of R.
Proposition 1.10. Let J be an ideal of $R_{n}(R)$ such that $R_{n}(I) \subseteq J$, where I is the ideal that mentioned above. Let $A=\left(\begin{array}{cccc}a & a_{12} & \cdots & a_{1 n} \\ 0 & a & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a\end{array}\right) \in R_{n}(R)$ such that $a^{k} \in I$ for some non-negative integer k. Then $A^{n k} \in J$.

Proof. We proceed by induction on n. Let $n=2$. For a positive integer $k, A^{k}=$ $\left(\begin{array}{cc}a^{k} & b_{12} \\ 0 & a^{k}\end{array}\right)$ and that $A^{2 k}=\left(\begin{array}{cc}a^{2 k} & a^{k} b_{12}+b_{12} a^{k} \\ 0 & a^{2 k}\end{array}\right)$. Hence $A^{2 k} \in J$, since $a^{2 k}, a^{k} b_{12}+$ $b_{12} a^{k} \in I$. Now, let $A=\left(\begin{array}{ccccc}a & a_{12} & \cdots & a_{1 n} \\ 0 & a & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a\end{array}\right) \in R_{n}(R)$ such that $a^{k} \in I$ for a nonnegative integer k. Consider $A^{(n-1) k}=\left(\begin{array}{cccc}a^{(n-1) k} & b_{12} & \cdots & b_{1 n} \\ 0 & a^{(n-1) k} & \cdots & b_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a^{(n-1) k}\end{array}\right)$ and $A^{k}=$ $\left(\begin{array}{cccc}a^{k} & c_{12} & \cdots & c_{1 n} \\ 0 & a^{k} & \cdots & c_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a^{k}\end{array}\right)$. By the induction hypothesis all $b_{i j}$'s, except $b_{1 n}$, are in I. Let $x=a^{k} b_{1 n}+c_{12} b_{2 n}+\cdots+c_{1 n} a^{(n-1) k}$. Then $A^{n k}=\left(\begin{array}{ccccc}a^{n k} & y_{12} & \cdots & y_{1 n-1} & x \\ 0 & a^{n k} & \cdots & y_{2 n-1} & y_{2 n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a^{n k} & y_{n-1 n} \\ 0 & 0 & \cdots & 0 & a^{n k}\end{array}\right) \in$ J, since $a^{n k}, x$ and all $y_{i j}$'s are in I.

Proposition 1.11. Let J be an ideal of $R_{n}(R)$ such that $R_{n}(I) \subseteq J$, where I is the ideal that mentioned above. If I has the IFP, then J is a radicallysymmetric ideal of $R_{n}(R)$ for each $n \geq 2$.

Proof. Let $A=\left(\begin{array}{cccc}\left.\begin{array}{cccc}a_{12} & \cdots & a_{1 n} \\ 0 & a & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a\end{array}\right), B=\left(\begin{array}{cccc}b & b_{12} & \cdots & b_{1 n} \\ 0 & b & \cdots & b_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b\end{array}\right) \text { and } C=\left(\begin{array}{cccc}c & c_{12} & \cdots & c_{1 n} \\ 0 & c & \cdots & c_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c\end{array}\right) \in, ~(1) & \end{array}\right)$ $R_{n}(R)$ such that $A B C \in \sqrt{J}$. Then $(a b c)^{k} \in I$ for some positive integer k. Since I has the IFP, one can show that $(a c b)^{2 k} \in I$. Thus $A C B \in \sqrt{J}$, by Proposition 1.10. Therefore J is a radically-symmetric ideal of $R_{n}(R)$.

By using Proposition 1.11 we have the following theorem.
Theorem 1.12. Let R be a semicommutative ring. Then $R_{n}(R)$ is a radicallysymmetric ring.

Lemma 1.13. Let $J=\left\{\left.\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ 0 & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n n}\end{array}\right) \right\rvert\, a_{i j} \in I_{i j}, 1 \leq i \leq n, i \leq j \leq n\right\}$, such that $I_{i j} \subseteq I_{i s}$ for $1 \leq i \leq n, i \leq j \leq s \leq n$ and $I_{s j} \subseteq I_{i j}$ for $j=1, \ldots, n$, $1 \leq i \leq s \leq n$ and $I_{i j}$ is an ideal of R for each i, j. Then J is an ideal of $T_{n}(R)$.

Proof. It is straightforward.

Proposition 1.14. Let J be an ideal of $T_{n}(R)$ that mentioned in Lemma 1.13. Let $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ 0 & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n n}\end{array}\right) \in T_{n}(R)$ such that $a_{i i}^{k} \in I_{i i}$ for some non-negative integer k and $i=1, \ldots, n$. Then $\left(A^{2 k+1}\right)^{n-1} \in J$.

Proof. We proceed by induction on n. For $n=2$, let $A=\left(\begin{array}{cc}a_{11} & a_{12} \\ 0 & a_{22}\end{array}\right)$. Since $A^{2 k+1}=\left(\begin{array}{cc}a_{11}^{2 k+1} & x \\ 0 & a_{22}^{2 k+1}\end{array}\right)$, where $x=\sum a_{11}^{i} a_{12} a_{22}^{j}, i+j=2 k, i, j \geq 0$, we have $A^{2 k+1} \in J$. Now, assume $n \geq 3$ and $A \in T_{n}(R)$. Consider $\left(A^{2 k+1}\right)^{n-2}=$ $\left(\begin{array}{cccc}a_{11}^{(2 k+1)(n-2)} & b_{12} & \cdots & b_{1 n} \\ 0 & a_{22}^{(2 k+1)(n-2)} & \cdots & b_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n n}^{(2 k+1)(n-2)}\end{array}\right)$ and $A^{2 k+1}=\left(\begin{array}{cccc}a_{11}^{2 k+1} & c_{12} & \cdots & c_{1 n} \\ 0 & a_{22}^{2 k+1} & \cdots & c_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n n}^{2 k+1}\end{array}\right)$.
By the induction hypothesis all $b_{i j}$'s, except $b_{1 n}$, are in I. Hence $(1, n)$-entry of $\left(A^{2 k+1}\right)^{n-1}$ is $x=a_{11}^{(2 k+1)} b_{1 n}+c_{12} b_{2 n}+\cdots+c_{1 n-1} b_{n-1 n}+c_{1 n} a_{n n}^{(2 k+1)(n-2)} \in I$, since $a_{11}^{(2 k+1)}, a_{n n}^{(2 k+1)}, b_{2 n}, \ldots, b_{n-1 n} \in I$. Therefore $\left(A^{2 k+1}\right)^{n-1} \in J$.

Proposition 1.15. Let J be an ideal of $T_{n}(R)$ that mentioned in Lemma 1.13. If each $I_{i i}, 1 \leq i \leq n$ has the IFP, then J is radically-symmetric.
Proof. Let $A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ 0 & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n n}\end{array}\right), B=\left(\begin{array}{cccc}b_{11} & b_{12} & \cdots & b_{1 n} \\ 0 & b_{22} & \cdots & b_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & b_{n n}\end{array}\right)$ and $C=\left(\begin{array}{cccc}c_{11} & c_{12} & \cdots & c_{1 n} \\ 0 & c_{22} & \cdots & c_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c_{n n}\end{array}\right)$ $\in T_{n}(R)$ such that $A B C \in \sqrt{J}$. Then $\left(a_{i i} b_{i i} c_{i i}\right)^{k} \in I_{i i}$ for a positive integer k and each i. Since $I_{i i}$ has the IFP, one can show that $\left(a_{i i} c_{i i} b_{i i}\right)^{2 k} \in I_{i i}$ for each i. Thus $A C B \in \sqrt{J}$, by Proposition 1.14. Therefore J is a radically-symmetric ideal of $T_{n}(R)$.

By using Proposition 1.15 we have the following theorem.
Theorem 1.16. If R is a semicommutative ring, then $T_{n}(R)$ is a radicallysymmetric ring for each $n \geq 2$.

2. Extensions of symmetric ideals

Definition 2.1. For an ideal I of R, we say that I is α-compatible if for each $a, b \in R, a b \in I \Leftrightarrow a \alpha(b) \in I$. Moreover, I is said to be δ-compatible if for each $a, b \in R, a b \in I \Rightarrow a \delta(b) \in I$. If I is both α-compatible and δ-compatible, we say that I is (α, δ)-compatible. If $I=0$ is a (α, δ)-compatible ideal, we say R is a (α, δ)-compatible ring.

Note that there exists a ring R for which all non-zero proper ideals are α-compatible but R isn't α-compatible. For example, consider the ring $R=$ $\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$, where F is a field, and the endomorphism α of R is defined by $\alpha\left(\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right)=$ $\left(\begin{array}{ll}a & 0 \\ 0 & c\end{array}\right)$ for $a, b, c \in F$.

Proposition 2.2 ([3]). Let R be a ring, J an ideal of R and $\alpha: R \rightarrow R$ an endomorphism of R. Then the following conditions are equivalent:
(1) J is an α-rigid ideal of R;
(2) J is α-compatible, semiprime and has the IFP;
(3) J is α-compatible and completely semiprime.

If δ is an α-derivation of R, then the following are equivalent:
(4) J is an α-rigid δ-ideal of R;
(5) J is (α, δ)-compatible, semiprime and has the IFP;
(6) J is (α, δ)-compatible and completely semiprime.

Proposition 2.3. Let I be $a(\alpha, \delta)$-compatible ideal of R and $a, b \in R$.
(1) If $a b \in I$, then $a \alpha^{n}(b), \alpha^{n}(a) b \in I$ for every positive integer n. Conversely, if $a \alpha^{k}(b)$ or $\alpha^{k}(a) b \in I$ for some positive integer k, then $a b \in I$.
(2) If $a b \in I$, then $\alpha^{m}(a) \delta^{n}(b), \delta^{n}(a) \alpha^{m}(b) \in I$ for each non-negative integers m, n.

Proof. (1) If $a b \in I$, then $\alpha^{n}(a) \alpha^{n}(b) \in I$, since I is α-ideal. Hence $\alpha^{n}(a) b \in I$, since I is α-compatible. If $\alpha^{k}(a) b \in I$, then $\alpha^{k}(a) \alpha^{k}(b) \in I$, and so $a b \in I$, since I is α-compatible.
(2) It is enough to show that $\delta(a) \alpha(b) \in I$. If $a b \in I$, then by (1) and δ-compatibility of $I, \alpha(a) \delta(b) \in I$. Hence $\delta(a) b=\delta(a b)-\alpha(a) \delta(b) \in I$. Thus $\delta(a) b \in I$ and $\delta(a) \alpha(b) \in I$, since I is α-compatible.

Lemma 2.4. Let I be $a(\alpha, \delta)$-compatible ideal of R. If $(a b)^{k} \in I$ for some $k \geq 0$, then $(a \alpha(b))^{k},(a \delta(b))^{k} \in I$.
Proof. Since I is α-compatible and $(a b)^{k}=(a b) \cdots(a b) \in I$ we have $a \alpha(b) \alpha(a b$ $\cdots a b)=a \alpha(b a b \cdots a b) \in I$. Hence $a \alpha(b)(a b \cdots a b) \in I$, since I is α-compatible. Now, $a \alpha(b) a \alpha(b) \alpha(a b \cdots a b)=a \alpha(b) a \alpha(b \cdots a b) \in I$. Continuing this procedure yields $(a \alpha(b))^{k} \in I$. Since I is δ-compatible and $(a b)^{k}=(a b) \cdots(a b) \in$ I, we have $a \delta(b a b \cdots a b)=a \delta(b)(a b \cdots a b)+a \alpha(b) \delta(a b \cdots a b) \in I$. Since $a \alpha(b)(a b \cdots a b) \in I$ and I is δ-compatible, we have $a \alpha(b) \delta(a b \cdots a b) \in I$. Thus $a \delta(b)(a b \cdots a b) \in I$. Continuing this procedure yields $(a \delta(b))^{k} \in I$.

Lemma 2.5. Let I be a (α, δ)-compatible ideal of R and has the IFP. Then
(1) \sqrt{I} is a (α, δ)-compatible ideal of R and has the IFP.
(2) $I[x ; \alpha, \delta]$ and $\sqrt{I}[x ; \alpha, \delta]$ are ideals of $R[x ; \alpha, \delta]$.

Proof. (1) By the proof of Proposition 1.6, $\sqrt{I}=\left\{a \in R \mid a^{n} \in I\right.$ for some $n \geq$ $1\}$, hence the result follows from Lemma 2.4 and Proposition 2.3.
(2) It follows from (α, δ)-compatibility of I and \sqrt{I}.

In [6, Example 2], the authors show that there exists a non-zero ideal I of a ring R such that has the IFP but ideal $I[x]$ of $R[x]$ isn't symmetric. In the sequel we will show that if I has the IFP, then $I[x]$ is radically-symmetric and hence has the radically IFP. More generally, we will show that: (1) If I
is a (α, δ)-compatible ideal of R and has the IFP, then the ideal $I[x ; \alpha, \delta]$ of $R[x ; \alpha, \delta]$ is radically-symmetric and hence has the radically IFP.

For non-empty subsets A, B of R and $r \in R$, put $A B=\{a b \mid a \in A, b \in B\}$, $A^{0}=\{1\}$ and $r A=\{r a \mid a \in A\}$.
Notation. Let α be an endomorphism, δ an α-derivation of $R, 0 \leq i \leq j$ and $a \in R$. Let us write f_{i}^{j} for the set of all "words" in α and δ in which there are i factors of α and $j-i$ factors of δ. For instance, $f_{j}^{j}(a)=\left\{\alpha^{j}(a)\right\}$, $f_{0}^{j}(a)=\left\{\delta^{j}(a)\right\}$ and $f_{j-1}^{j}(a)=\left\{\alpha^{j-1} \delta(a), \alpha^{j-2} \delta \alpha(a), \ldots, \delta \alpha^{j-1}(a)\right\}$.
Lemma 2.6. Let I be $a(\alpha, \delta)$-compatible ideal of R and has the IFP. Then $\sqrt{I}[x ; \alpha, \delta]=\left\{f \in R[x ; \alpha, \delta] \mid f^{k} \in I[x ; \alpha, \delta]\right.$ for some $\left.k \geq 1\right\}$.
Proof. Note that $\sqrt{I}=\left\{a \in R \mid a^{n} \in I\right.$ for some $\left.n \geq 1\right\}$, by the proof of Proposition 1.6. Let $f(x)=a_{0}+\cdots+a_{n} x^{n} \in\left\{f \in R[x ; \alpha, \delta] \mid f^{n} \in I[x ; \alpha, \delta]\right.$ for some $k \geq 1\}$. Then $(f(x))^{k} \in I[x ; \alpha, \delta]$ for some positive integer k and $a_{n} \alpha^{n}\left(a_{n}\right) \cdots$ $\alpha^{k(n-1)}\left(a_{n}\right) \in I$, since it is the leading coefficient of $(f(x))^{k}$. Hence $a_{n} \in$ \sqrt{I}, since \sqrt{I} is α-compatible. Since $\sqrt{I}[x ; \alpha, \delta]$ is an ideal of $R[x ; \alpha, \delta]$ and $a_{n} \in \sqrt{I}$, we have $a_{n} x^{n} \in \sqrt{I}[x ; \alpha, \delta]$. There exists $g(x), h(x) \in R[x ; \alpha, \delta]$ such that $f(x)^{k}=\left(a_{0}+\cdots+a_{n-1} x^{n-1}\right)^{k}+a_{n} x^{n} g(x)+h(x) a_{n} x^{n}$. Hence $\left(a_{0}+\cdots+a_{n-1} x^{n-1}\right)^{k} \in \sqrt{I}[x ; \alpha, \delta]$, since $\sqrt{I}[x ; \alpha, \delta]$ is an ideal of $R[x ; \alpha, \delta]$ and $a_{n} x^{n} \in \sqrt{I}[x ; \alpha, \delta]$. By using induction on n, we have $a_{i} \in \sqrt{I}$ for each i. Thus $\left\{f \in R[x ; \alpha, \delta] \mid f^{k} \in I[x ; \alpha, \delta]\right.$ for some $\left.k \geq 1\right\} \subseteq \sqrt{I}[x ; \alpha, \delta]$.

Now, let $f(x)=a_{0}+\cdots+a_{n} x^{n} \in \sqrt{I}[x ; \alpha, \delta]$. Then $a_{i}^{m_{i}} \in I$ for some $m_{i} \geq 1$. Let $k=m_{0}+\cdots+m_{n}+1$. Then

$$
(f(x))^{k}=\sum\left(a_{0}^{i_{01}}\left(a_{1} x\right)^{i_{11}} \cdots\left(a_{n} x^{n}\right)^{i_{n 1}}\right) \cdots\left(a_{0}^{i_{0 k}}\left(a_{1} x\right)^{i_{1 k}} \cdots\left(a_{n} x^{n}\right)^{i_{n k}}\right)
$$

where $i_{0 r}+i_{1 r}+\cdots+i_{n r}=1$ and $0 \leq i_{r s} \leq 1$ for $r=1, \ldots, k$. Each coefficient of $\left(a_{0}^{i_{01}}\left(a_{1} x\right)^{i_{11}} \cdots\left(a_{n} x^{n}\right)^{i_{n 1}}\right) \cdots\left(a_{0}^{i_{0 k}}\left(a_{1} x\right)^{i_{1 k}} \cdots\left(a_{n} x^{n}\right)^{i_{n k}}\right)$ is a sum of such elements $\gamma \in\left(\left(f_{r_{01}}^{s_{01}}\left(a_{0}\right)\right)^{i_{01}} \cdots\left(f_{r_{n 1}}^{s_{n 1}}\left(a_{n}\right)\right)^{i_{n 1}}\right) \cdots\left(\left(f_{r_{0 k}}^{s_{0 k}}\left(a_{0}\right)\right)^{i_{0 k}} \cdots\left(f_{r_{n k}}^{s_{n k}}\left(a_{n}\right)\right)^{i_{n k}}\right)$. It can be easily checked that there exists $a_{t} \in\left\{a_{0}, \ldots, a_{n}\right\}$ such that $i_{t 1}+i_{t 2}+$ $\cdots+i_{t k} \geq m_{t}$. Since $a_{t}^{m_{t}} \in I$ and I is ($\left.\alpha, \delta\right)$-compatible and has the IFP, hence by Proposition 2.3, $\gamma \in I$. Thus each coefficient of $(f(x))^{k}$ belong to I. Therefore $f(x) \in\left\{f \in R[x ; \alpha, \delta] \mid f^{k} \in I[x ; \alpha, \delta]\right.$ for some $\left.k \geq 1\right\}$.
Lemma 2.7. Let I be $a(\alpha, \delta)$-compatible ideal of R and has the IFP and $f(x)=a_{0}+\cdots+a_{n} x^{n}, g(x)=b_{0}+\cdots+b_{m} x^{m} \in R[x ; \alpha, \delta]$. Then
(1) $f(x) g(x) \in \sqrt{I}[x ; \alpha, \delta]$ if and only if $a_{i} b_{j} \in \sqrt{I}$ for each i, j.
(2) $\sqrt{I}[x ; \alpha, \delta]$ has the IFP.

Proof. (1) Note that $f(x) g(x)=\sum_{i=0}^{n} \sum_{j=0}^{m}\left(a_{i} x^{i}\right)\left(b_{j} x^{j}\right)$. Then $a_{n} \alpha^{n}\left(b_{m}\right) \in$ \sqrt{I}, since it is the leading coefficient of $f(x) g(x)$. Hence $a_{n} b_{m} \in \sqrt{I}$, since \sqrt{I} is α-compatible. Thus $a_{n} f_{i}^{j}\left(b_{m}\right) \subseteq \sqrt{I}$ for each $0 \leq i \leq j$, by Proposition 2.3. Since the coefficient of x^{m+n-1} is $a_{n} \alpha^{n}\left(b_{m-1}\right)+a_{n-1} \alpha^{n-1}\left(b_{m}\right)+a_{n} r$, where r is a sum of such elements $\gamma \in f_{n-1}^{n}\left(b_{m}\right)$ and $a_{n} r \in \sqrt{I}$, we have $a_{n} \alpha^{n}\left(b_{m-1}\right)+$
$a_{n-1} \alpha^{n-1}\left(b_{m}\right) \in \sqrt{I}$. Hence $a_{n} \alpha^{n}\left(b_{m-1}\right) b_{m}+a_{n-1} \alpha^{n-1}\left(b_{m}\right) b_{m} \in \sqrt{I}$ and that $a_{n-1} \alpha^{n-1}\left(b_{m}\right) b_{m} \in \sqrt{I}$, since $a_{n} \alpha^{n}\left(b_{m-1}\right) b_{m} \in \sqrt{I}$. Thus $a_{n-1} b_{m} \in \sqrt{I}$, by Proposition 2.3 and Lemma 2.5(1). Hence $a_{n} b_{m-1} \in \sqrt{I}$. Consequently,

$$
a_{n} f_{i}^{j}\left(b_{m}\right) \bigcup a_{n-1} f_{i}^{j}\left(b_{m}\right) \bigcup a_{n} f_{i}^{j}\left(b_{m-1}\right) \subseteq \sqrt{I} \text { for each } 0 \leq i \leq j .
$$

The coefficient of x^{m+n-2} is $a_{n} \alpha^{n}\left(b_{m-2}\right)+a_{n-1} \alpha^{n-1}\left(b_{m-1}\right)+a_{n-2} \alpha^{n-2}\left(b_{m}\right)+t$, where t is a sum of such elements $\gamma \in \bigcup_{0 \leq i \leq j}\left[a_{n} f_{i}^{j}\left(b_{m}\right) \bigcup a_{n-1} f_{i}^{j}\left(b_{m}\right) \bigcup a_{n} f_{i}^{j}\right.$ $\left.\left(b_{m-1}\right)\right]$. By a similar way as above, one can show that $a_{n} b_{m-2}, a_{n-1} b_{m-1}$, $a_{n-2} b_{m} \in \sqrt{I}$. Continuing this process yields $a_{i} b_{j} \in \sqrt{I}$ for each i, j.

Conversely, suppose that $a_{i} b_{j} \in \sqrt{I}$ for each i, j. Since \sqrt{I} is (α, δ)-compatible, $f(x) g(x) \in \sqrt{I}[x ; \alpha, \delta]$.
(2) Let $h(x)=c_{0}+c_{1} x+\cdots+c_{k} x^{k} \in R[x ; \alpha, \delta]$ and $f(x) g(x) \in \sqrt{I}[x ; \alpha, \delta]$. Then $a_{i} b_{j} \in \sqrt{I}$ for each i, j, by (1). Since \sqrt{I} has the IFP, we have $a_{i} c_{r} b_{j} \in \sqrt{I}$ for each i, j, r. Then $f(x) h(x) g(x) \in \sqrt{I}[x ; \alpha, \delta]$, since \sqrt{I} is a (α, δ)-compatible ideal of R. Therefore $\sqrt{I}[x ; \alpha, \delta]$ has the IFP.

Proposition 2.8. Let I be a (α, δ)-compatible ideal of R and has the IFP. Then $\sqrt{I[x ; \alpha, \delta]}=\sqrt{I}[x ; \alpha, \delta]=\left\{f \in R[x ; \alpha, \delta] \mid f^{k} \in I[x ; \alpha, \delta]\right.$ for some $\left.k \geq 1\right\}$.
Proof. By Lemma 2.6, it is enugh to show that $\sqrt{I}[x ; \alpha, \delta] \subseteq \sqrt{I[x ; \alpha, \delta]}$. We show that if Q is a prime ideal of $R[x ; \alpha, \delta]$ containing $I[x ; \alpha, \delta]$, then $\sqrt{I} \subseteq Q$. Let $a \in \sqrt{I}$. Then $a^{k} \in I$ for some $k \geq 1$. Hence $a g_{1} a g_{2} \cdots a g_{k} \in I[x ; \alpha, \delta]$ for each $g_{1}, g_{2}, \ldots, g_{k} \in R[x ; \alpha, \delta]$, since I is (α, δ)-compatible and has the IFP. Thus $(a R[x ; \alpha, \delta])^{k} \subseteq I[x ; \alpha, \delta] \subseteq Q$ implies $a \in Q$. Therefore $\sqrt{I}[x ; \alpha, \delta] \subseteq Q$ and $\sqrt{I}[x ; \alpha, \delta] \subseteq \sqrt{I[x ; \alpha, \delta]}$.

Theorem 2.9. Let I be a (α, δ)-compatible ideal of R and has the IFP. Then $I[x ; \alpha, \delta]$ is a radically-symmetric ideal of $R[x ; \alpha, \delta]$.
Proof. Let $f(x)=a_{0}+\cdots+a_{n} x^{n}, g(x)=b_{0}+\cdots+b_{m} x^{m}, h(x)=c_{0}+\cdots+c_{k} x^{k} \in$ $R[x ; \alpha, \delta]$ and $f(x) g(x) h(x) \in \sqrt{I[x ; \alpha, \delta]}=\sqrt{I}[x ; \alpha, \delta]$. Then $a_{i}(g(x) h(x)) \in$ $\sqrt{I}[x ; \alpha, \delta]$ for each $i=0,1, \ldots, n$, by Lemma 2.7. Hence $a_{i} b_{j} c_{k} \in \sqrt{I}$ for each i, j, k, by Lemma 2.7. Thus $a_{i} c_{k} b_{j} \in \sqrt{I}$ for each i, j, k, by Proposition 1.6. Therefore $f(x) h(x) g(x) \in \sqrt{I}[x ; \alpha, \delta]$, since \sqrt{I} is (α, δ)-compatible.

By using Theorem 2.9 we have the following result:
Corollary 2.10. Let R be a semicommutative (α, δ)-compatible ring. Then $R[x ; \alpha, \delta]$ is a radically-symmetric ring.

Corollary 2.11. Let R be a semicommutative ring. Then R is a radicallysymmetric ring.

Lemma 2.12. Let I be a radically-symmetric ideal of R. Then I has the radically IFP.

Proof. Let $a b \in \sqrt{I}$. Then $a b c \in \sqrt{I}$ for each $c \in R$, since \sqrt{I} is an ideal of R. Hence $a c b \in \sqrt{I}$, since I is a radically-symmetric ideal of R. Therefore I has the radically IFP.
Corollary 2.13 ([13, Theorem 3.1]). Let R be a semicommutative α-compatible ring. Then $R[x ; \alpha]$ is a weakly semicommutative ring.

Proof. It follows from Lemma 2.12 and Corollary 2.10.
Since symmetric ideals have the IFP, hence we have the following result:
Theorem 2.14. Let R be a symmetric (α, δ)-compatible ring. Then $R[x ; \alpha, \delta]$ is a radically-symmetric ring and hence weakly semicommutative ring.

Acknowledgement. The author thanks the referee for reviewing this paper. This research is supported by the Shahrood University of Technology of Iran.

References

[1] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272.
[2] E. Hashemi, On ideals which have the weakly insertion of factors property, J. Sci. Islam. Repub. Iran 19 (2008), no. 2, 145-152.
[3] , Compatible ideals and radicals of Ore extensions, New York J. Math. 12 (2006), 349-356.
[4] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207-224.
[5] C. Y. Hong, N. Y. Kim, T. K. Kwak, and Y. Lee, Extensions of zip rings, J. Pure Appl. Algebra 195 (2005), no. 3, 231-242.
[6] C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Rigid ideals and radicals of Ore extensions, Algebra Colloq. 12 (2005), no. 3, 399-412.
[7] C. Huh, H. K. Kim, and Y. Lee, P.P.-rings and generalized P.P.-rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52.
[8] C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761.
[9] N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488.
[10] , Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207223.
[11] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
[12] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), no. 3, 359-368.
[13] L. Liang, L. Wang, and Z. Liu, On a generalization of semicommutative rings, Taiwanese J. Math. 11 (2007), no. 5, 1359-1368.
[14] G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709-1724.
Department of Mathematics
Shahrood University of Technology
Shahrood 316-3619995161, Iran
E-mail address: hashemi@yahoo.com;eb_hashemi@shahroodut.ac.ir

[^0]: Received December 31, 2009.
 2010 Mathematics Subject Classification. 16S36, 20M11, 20 M 12.
 Key words and phrases. insertion of factors property, (α, δ)-compatible ideals, α-rigid ideals, Ore extensions, symmetric rings, semicommutative rings.

