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ON RADICALLY-SYMMETRIC IDEALS

EBRAHIM HASHEMI

ABSTRACT. A ring R is called symmetric, if abc = 0 implies acb = 0 for
a,b,c € R. An ideal I of a ring R is called symmetric (resp. radically-
symmetric) if R/I (resp. R/+T) is a symmetric ring. We first show
that symmetric ideals and ideals which have the insertion of factors prop-
erty are radically-symmetric. We next show that if R is a semicommu-
tative ring, then 75, (R) and R[z]/(z™) are radically-symmetric, where
(z™) is the ideal of R[z] generated by z™. Also we give some examples
of radically-symmetric ideals which are not symmetric. Connections be-
tween symmetric ideals of R and related ideals of some ring extensions are
also shown. In particular we show that if R is a symmetric (or semicom-
mutative) (a, §)-compatible ring, then R[z;a, 4] is a radically-symmetric
ring. As a corollary we obtain a generalization of [13].

0. Introduction

Throughout this paper R denotes an associative ring with identity and
R[z; o, 6] will stands for the Ore extension of R, where a is an endomor-
phism and ¢ an a-derivation of R, that is, § is an additive map such that
d(ab) = 6(a)b+ a(a)d(b) for all a,b € R. Recall from [14] that an ideal I of a
ring R has the insertion of factors property (or simply, IFP) if ab € I implies
aRb C I for a,b € R (H. E. Bell in 1970 introduced this notion for I = 0).
Observe that every completely semiprime ideal I (i.e., a*> € I implies a € I)
of R has the IFP [13, Lemma 3.2(a)]. If I = 0 has the IFP, then R has the
IFP (i.e., semicommutative). A ring R is called reduced if it has no non-zero
nilpotent element. By [5], reduced rings have the IFP. If R has the IFP, then
it is Abelian (i.e., all idempotents are central).

Liang, Wang and Liu [13] introduced weakly semicommutative rings which
are a generalization of semicommutative rings. A ring R is called weakly semi-
commutative if for any a,b € R,ab = 0 implies arb is a nilpotent element for
any r € R.
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According to Hong et al. [6], for an endomorphism « of a ring R, a a-ideal
I (i.e.,, a(I) C 1) is called to be a-rigid if aa(a) € I implies a € I for a € R.
They studied connections between a-rigid ideals of R and related ideals of some
ring extensions.

Recall from [3], that an ideal T is called a-compatible if for each a,b € R,
ab € I & aa(b) € 1. Moreover, I is said to be d-compatible if for each a,b € R,
ab € T = ad(b) € I. If I is both a-compatible and d-compatible, it called
a (a, d)-compatible ideal. If I = 0 is a («, §)-compatible ideal, we say that R
is a (a, 0)-compatible ring. The definition is quite natural, in the light of its
similarity with the notion of a-rigid ideals, in [3], the author show that I is a
a-rigid ideal if and only if I is a-compatible and completely semiprime.

Following Lambek [12], an ideal I of a ring R is symmetric if abc € I implies
ach € I for a,b,c € R. A ring R is called symmetric if I = 0 is a symmetric
ideal of R. It is obvious that each ideal of a commutative ring is symmetric.
Reduced rings are symmetric by the results of Anderson and Camillo [1], but
there are many non-reduced commutative (so symmetric) rings.

Kim and Lee [10] proved that if R is Armendariz, then the ordinary poly-
nomial ring over R is symmetric if and only if R is symmetric. There is an
example [8] of symmetric ring R for which the ring of polynomials R[] is not
symmetric.

We say an ideal I of a ring R is radically-symmetric if /T is a symmetric
ideal of R. If I = 0 is a radically-symmetric ideal of R, we say R is a radically-
symmetric ring.

In this paper we will show that for each n > 2, there exists a non-zero
radically-symmetric ideal of the n x n upper triangular matrix ring over the
ring of integers Z that is not symmetric. Also we will show that each ideal of
R which has the IFP and each symmetric ideal of R are radically-symmetric.
Thus radically-symmetric rings are a generalization of symmetric rings. We
next show that if R is a semicommutative ringn, then T;,(R) and R[z]/(z") are
radically-symmetric, where (z™) is the ideal generated by z™.

A natural question for a given class of ring is: How does the given class
behave with respect to polynomial extensions? In Section 2, connections be-
tween symmetric ideals of R and related ideals of some ring extensions are also
shown. In particular we will show that:

(1) If I is a symmetric (a,d)-compatible ideal of R, then I[x;«,d] is a
radically-symmetric ideal of R[z;a, d].

(2) If I is a (a,d)-compatible ideal of R and has the IFP, then I[z;«,d]
is a radically-symmetric ideal of R[x;«,d]. As a corollary, if R is a symmet-
ric (a, d)-compatible ring, then R[x;a,d] is a radically-symmetric. Also, if
R is a semicommutative («,d)-compatible ring, then R[x;«,d] is a radically-
symmetric ring and hence weakly semicommutative ring. As a corollary we
obtain a generalization of [13].
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1. Examples

Recall that for an ideal I of R, v/I equals the intersection of all prime ideals
containing 1.

Definition 1.1. For an ideal I of a ring R we say [ is radically-symmetric if
VT is a symmetric ideal of R. If I = 0 is a radically-symmetric ideal of R, we
say R is a radically-symmetric ring.

Lemma 1.2. For anideal I of a ring R, the following statements are equivalent:
(1) I is symmetric;
(2) For any ay,...,an € R, a1 ---a, € I implies a;,aiz---a;, €1 for each
{il,ig,...,in} = {1,2,...,’[7,}.

Proof. (1)=(2). For n = 3 we have laj(aga3) = ajaza3 € I. Hence asaza; =
1(azas)a; € I, since I is symmetric. By a similar argument one can show
that a;,a;,a;, € I for each {ij,is,i3} = {1,2,3}. Now let a;---a, € I.
Then (ayaz)as---an € I. By induction on n, (aiaz)as, ---a;, € I for each
{i3,...,in} = {3,...,n}. Since ajazs(as---a,) € I and I is symmetric, a1 (ag- -
an)az € I. Then by the induction hypothesis, (ajas)a;, ---a;, € I for each
{i3,...,in} = {2,4,...,n}. Continuing this process yields (a1a¢)a;, - -+ a;, €I
foreacht =2,...,nand {is,...,in} = {2,...,n}—{t}. Therefore aja;z---a;, €

I for each {ig,...,in} = {2,...,n}. By a similar argument we can show that
a;, a2 - a;, € I for each {iy,ia,...,in} ={1,2,...,n}.
(2)=(1). It is clear. O

Definition 1.3. For an ideal I of a ring R we say I has the radically insertion
of factors property (or simply, radically IFP) if VT has the IFP. If I = 0 has
the radically IFP, we say R has the radically IFP.

Clearly, if I = 0 has the IFP, then R has the IFP (i.e., R is semicommu-
tative). The following example shows that, there exists a ring R such that all
non-zero ideals of R have the IFP but R does not has the TFP.

Example 1.4. Let R = (4 L), where F is a division ring. The only non-zero
proper ideals of R are [, = (5 £), I, = (JE£) and I3 = (J £). Huh, Lee and
Smoktunowicz [8], show that R/I; is semicommutative for each i, but R isn’t
semicommutative.

By using Lemma 1.2 we have the following result.
Corollary 1.5. Symmetric ideals have the IFP.

Proposition 1.6. Let an ideal I has the IFP. Then I is a radically-symmetric
tdeal.

Proof. First we show that /T = {a € R|a" € I for some n > 1}. Clearly v/T C
{a € R|a™ € I for some n > 1}. Let a € {a € R|a™ € I for some n > 1}.
Then a™ € I for some n > 1. Hence aryars ---ar, € I for each rq,7r9,...,7, €
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R, since T has the IFP. Thus (aR)™ C I. If P is a prime ideal of R containing
I, then (aR)" C I C P implies a € P. Hence a € VI and VI = {a € R|a" €
I for some n > 1}.

Now, let abc € v/I. Then (abc)™ € I for some positive integer n. Since I has
the IFP, by a simple computation one can show that (acb)?® € I. Therefore I
is a radically-symmetric ideal of R. O

Corollary 1.7. Let R be a semicommutative ring. Then R is a radically-
symmetric ring.

For aring R, let R,,(R) be the set of all n x n upper-triangular matrices with
constant main diagonal. Clearly, R,,(R) is a subring of T,,(R), the n x n upper
triangular matrix ring over R. It is well known R, (R) = R[x]/(x™), where (z™)
is the ideal of R[x] generated by z". In the following we will see the converse
of Proposition 1.6 is not true.

0 a1z a1z a4

Example 1.8. Let J= {(8 o ass 2?3) |a;; EQpZ} be an ideal of R4(Z), where
0\ /0000
o)fo0001) _
0 000p> -
0

00 0 O
000 2p 0p10 8888 888(1) 000 3p?
0000 | €. but {9000 | {0000 )|000p)=1{0800 8 )&/ Hence
000 0 0000 0000 0000 000 0

n

By a similar way as used in Example 1.8, we can construct numerous radical-
ly-symmetric ideals of R, (Z) such that don’t have the IFP for n > 4.

0p
p # 2is a prime number and Z is the set of integers. Then (§ §

ayi ai2 ais
Example 1.9. Let J = {( 8 az ax:
a,

3
33

) la;; € 2pZ} be an ideal of T3(Z), where

1 001
p is a prime number and Z is the set of integers. Then (§§8) (8812)) =

(88433) € J, but (gg(l)) ((1)(2)8) (88%) = (8870])) ¢ J. Hence J doesn’t
00 0 000/ \002/ \00p 00 0
has the IFP, but is radically-symmetric by Proposition 1.15.

Let J be an ideal of R, (R) and

a a2 o aig
0 a e aon

I=<SacRl| . . | ) € J for some a;; € R
0 0 - a

Then [ is an ideal of R.
Proposition 1.10. Let J be an ideal of R,,(R) such that R,(I) C J, where I

a ayz2 -+ Qin
0 a - aon

is the ideal that mentioned above. Let A= | . . . . | € R,(R) such that
60 ~ a
ak € I for some non-negative integer k. Then A™ € J.
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Proof. We proceed by induction on n. Let n = 2. For a positive integer k, A¥ =
(aok bl}g) and that A%F = (a% akblfg,fw“k). Hence A%* ¢ J, since a®*, aFbio +
a a

0
a a2 -+ QAin
0 a - azn
biga® € I. Now,let A= 1| . . . . € R, (R) such that akf € I for a non-
00 - a
am= bRy bin
0 amDE b
negative integer k. Consider A("—DF — and AF =
0 0 . gnik
ak C12 *** Cin
0 af - cop . . . s .
. By the induction hypothesis all b;;’s, except by,,, are in I. Let
y yp jSs P )
0 0 - a*
ank Yi2 0 Yin-—1 T
0 a™ - yon 1 yon
xr = akb1n+012b2n+- . -+clna(”_1)k. Then A™F = . : : S
0 0 - a™ yu1,
0 0 - 0 a"®
J, since a™*, z and all Yi;'s are in 1. [l

Proposition 1.11. Let J be an ideal of R,(R) such that R,(I) C J, where
I is the ideal that mentioned above. If I has the IFP, then J is a radically-
symmetric ideal of R, (R) for each n > 2.

@ aiz -+ Qin b biz -+ bin ccia v Cin

0 a - azn 0 b - ban 0 ¢ - can
Proof. Let A= . . . . |,B=|. . . andC=|. . . . €

00 « a 00 - b 00 « ¢

R,(R) such that ABC € v/J. Then (abc)® € I for some positive integer k.
Since I has the IFP, one can show that (acb)?* € I. Thus ACB € V/J, by
Proposition 1.10. Therefore J is a radically-symmetric ideal of R, (R). (]

By using Proposition 1.11 we have the following theorem.

Theorem 1.12. Let R be a semicommutative ring. Then R, (R) is a radically-
symmetric ring.

a1 aiz -+ ain
0 a2 - az2n

Lemma 1.13. Let J = S la;; € I;;,1 <i<n,i<j<my,
0 0 - anm

such that I;; C Iig for1 <i<n,i <j<s<nandlsy CIj forj=1,...,n,

1 <i<s<nandlyis an ideal of R for each i,j. Then J is an ideal of

T.(R).

Proof. 1t is straightforward. (I
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Proposition 1.14. Let J be an ideal of T,,(R) that mentioned in Lemma 1.13.

aiil ai2 -+ Qin
0 a2z -+ az2p

Let A = L € T,,(R) such that a¥, € I,; for some non-negative
0 0 - amn

integer k and i = 1,...,n. Then (A?*t1)n=1 ¢ J.
%" ans). Since

Proof. We proceed by induction on n. For n = 2, let A = (%

2k+41
A2k+1 — (alg a2:+1>7 where z = 2%1@12@227 i+ j = 2ki,57 > 0, we
22

have A?**! ¢ J. Now, assume n > 3 and A € T),(R). Consider (A2k+1)n—2

a§21k+1)(n72) b1z bin afft™t ez e
(2k+1)(n—2) 2k 1
0 al? ban 0 a2Etl o oy,
and A%F+1 =
6 0 (2k+1)(n 2) 0 0 azté+1

nn

By the induction hypothesis all bi;’s, except bip, are in I. Hence (1, n)-entry of
(A%H)n Yisa = a(11k+1)bln +cioban + -+ Cin—1bn—1n +Clna%2f+1)(n 2 €l,
since a:ﬁkﬂ), %%fﬂ) bons - -y bn_1n € I. Therefore (A2F+1)n=1 ¢ J. O

Proposition 1.15. Let J be an ideal of T,,(R) that mentioned in Lemma 1.13.
If each I;, 1 < i < n has the IFP, then J is radically-symmetric.

ai1 a2 - a@in bi1 b1z -+ bin €11 €12 Cin

0 aszz -+ az2n 0 bay -+ bop 0 cos - Con
Proof. Let A= . . . . |,B=|. . . . JandC=

0 0 - an. 0 0 - b 0 0 - cun

€ T,.(R) such that ABC € \/J. Then (aiibiicii)* € I; for a positive integer k
and each i. Since I;; has the IFP, one can show that (a;;c;;bi;)%F € I;; for each
i. Thus ACB € v/J, by Proposition 1.14. Therefore J is a radically-symmetric
ideal of T),(R). O

By using Proposition 1.15 we have the following theorem.

Theorem 1.16. If R is a semicommutative ring, then T, (R) is a radically-
symmetric ring for each n > 2.

2. Extensions of symmetric ideals

Definition 2.1. For an ideal I of R, we say that I is a-compatible if for each
a,b € R, ab € I & aa(b) € I. Moreover, I is said to be §-compatible if for each
a,b € R, ab e I = ad(b) € I. If I is both a-compatible and d-compatible, we
say that I is («, d)-compatible. If T = 0 is a («, §)-compatible ideal, we say R
is a (a, 9)-compatible ring.

Note that there exists a ring R for which all non-zero proper ideals are
a-compatible but R isn’t a-compatible. For example, consider the ring R =
(£ L), where F is a field, and the endomorphism « of R is defined by a((& %)) =
(89) for a,b,c € F.
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Proposition 2.2 ([3]). Let R be a ring, J an ideal of R and a : R — R an
endomorphism of R. Then the following conditions are equivalent:

(1) J is an a-rigid ideal of R;

(2) J is a-compatible, semiprime and has the IFP,

(3) J is a-compatible and completely semiprime.
If § is an «-derivation of R, then the following are equivalent:

(4) J is an a-rigid 6-ideal of R;

(5) J is («, §)-compatible, semiprime and has the IFP;

(6) J is («, d)-compatible and completely semiprime.

Proposition 2.3. Let I be a («,d)-compatible ideal of R and a,b € R.
(1) If ab € I, then aa™(b),a™(a)b € I for every positive integer n. Con-
versely, if ac®(b) or a*(a)b € I for some positive integer k, then ab € I.
(2) Ifab € I, then a™(a)d™(b),6™(a)a™(b) € I for each non-negative inte-
gers m, m.

Proof. (1) If ab € I, then a"(a)a™(b) € I, since I is a-ideal. Hence a™(a)b € I,
since I is a-compatible. If a*(a)b € I, then o (a)a®(b) € I, and so ab € I,
since I is a-compatible.

(2) It is enough to show that d(a)a(b) € I. If ab € I, then by (1) and
d-compatibility of I, a(a)d(b) € I. Hence §(a)b = 6(ab) — a(a)d(b) € I. Thus
d(a)b € I and 6(a)a(b) € I, since I is a-compatible. O

Lemma 2.4. Let I be a (a,d)-compatible ideal of R. If (ab)* € I for some
k>0, then (ac(b))*, (ad(b))* € I.

Proof. Since I is a-compatible and (ab)* = (ab) - - - (ab) € I we have ac(b)a(ab
---ab)=ac(bab- - -ab) € I. Hence ac(b)(ab---ab) € I, since I is a-compatible.
Now, aa(b)aa(b)a(ab---ab) = aa(b)aa(b---ab) € I. Continuing this proce-
dure yields (ac(b))¥ € I. Since I is §-compatible and (ab)* = (ab)--- (ab) €
I, we have ad(bab---ab) = ad(b)(ab---ab) + ax(b)d(ab---ab) € I. Since
ac(b)(ab---ab) € I and I is §-compatible, we have aa(b)d(ab---ab) € I. Thus
ad(b)(ab---ab) € I. Continuing this procedure yields (ad(b))* € I. O

Lemma 2.5. Let I be a (o, )-compatible ideal of R and has the IFP. Then

(1) VT is a (o, 8)-compatible ideal of R and has the IFP.
(2) I[x;a,8] and VI[z; 0] are ideals of R[z;, d].

Proof. (1) By the proof of Proposition 1.6, /I = {a € R|a™ € I for some n >
1}, hence the result follows from Lemma 2.4 and Proposition 2.3.
(2) Tt follows from (e, §)-compatibility of I and v/T. O

In [6, Example 2], the authors show that there exists a non-zero ideal I
of a ring R such that has the IFP but ideal I[z] of R[z] isn’t symmetric. In
the sequel we will show that if I has the IFP, then I[z] is radically-symmetric
and hence has the radically IFP. More generally, we will show that: (1) If T
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is a (a, d)-compatible ideal of R and has the IFP, then the ideal I[z;a,d] of
R[z; a, 0] is radically-symmetric and hence has the radically IFP.

For non-empty subsets A, B of R and r € R, put AB = {abla € A,b € B},
A% = {1} and rA = {rala € A}.
Notation. Let o be an endomorphism, § an a-derivation of R, 0 < i < j
and a € R. Let us write fz-j for the set of all “words” in « and ¢ in which
there are i factors of « and j — i factors of 4. For instance, fj(a) = {ai(a)},

fg(a) ={67(a)} and fj-;l(a) = {a?"15(a),a’26a(a),. .., 0" (a)}.

Lemma 2.6. Let I be a (a,d)-compatible ideal of R and has the IFP. Then
VI, ] = {f € Rlz; o, 0] |f* € I[z; 0, 8] for some k > 1}.

Proof. Note that v/T = {a € R|a™ € I for some n > 1}, by the proof of Propo-
sition 1.6. Let f(z) = ap+---+an2™ € {f € R[z;, 9] |f" € I[x; e, d] for some
k > 1}. Then (f(z))* € I[z; a, §] for some positive integer k and a,,a™(a,) - - -
a®"=1(qa,) € I, since it is the leading coefficient of (f(z))*. Hence a, €
V1, since /T is a-compatible. Since v/I[x;a,d] is an ideal of R[z;c,d] and
an € VI, we have a,z" € VI[z;a,8). There exists g(x),h(z) € Rlz;a,d]
such that f(z)* = (ao + --- + an_12" " H* + a,2"g(z) + h(x)a,r". Hence
(ap 4 - + an_12" )% € VI[z;, 6], since VI[z;,d] is an ideal of R[z; v, d]
and a,z™ € ﬁ[m, a, d]. By using induction on n, we have a; € VT for each i.
Thus {f € R[z;a, 0] |f* € I[z;a,d] for some k > 1} C VI[z;a,d)].

Now, let f(z) = ag + -+ + anz™ € VI[z;0,0]. Then a]* € I for some
m; > 1. Let k =mgo+---+m, + 1. Then

(F@)F = (0l (@)™ - (@na™) ) - (@ (@) - (a,a”) ),

where ig, + i1+ +ip, =1land 0 < i, < 1forr=1,...,k. Each coefficient
of (all* (ayx)t -+ (apa™)in1) - - (al* (ayx)™* - - - (apaz™)™*) is a sum of such el-
emments 7 € (203 (a0)) -+ (£ (an))1) -+ ((F205 (a) /% -« (f3n5 (an))inb).
It can be easily checked that there exists a; € {ao, ..., a,} such that iy + i+
oo+ 4 > my. Since ay"t € I and T is («,d)-compatible and has the IFP,
hence by Proposition 2.3, 4 € I. Thus each coefficient of (f(z))* belong to I.
Therefore f(x) € {f € Rlx;a, 6] |f* € I[z;, 8] for some k > 1}. O

Lemma 2.7. Let I be a («,d)-compatible ideal of R and has the IFP and
flx)=ao+ -+ ana", g(x) =bo+ -+ bpa™ € R[x;a,]. Then

(1) f(2)g(z) € VI[z;, 8] if and only if a;b; € VI for each i, j.

(2) VI[x;a,d] has the IFP.
Proof. (1) Note that f(z)g(z) = Y7 > (aix’)(bja’). Then ana™(by) €
VI, since it is the leading coefficient of f(x)g(z). Hence ay,by, € V1, since v/T
is a-compatible. Thus ay, f7 (by,) € VT for each 0 < i < j, by Proposition 2.3.
Since the coefficient of ™"~ 1 is a,,a™(by,_1) + an_10™ 1 (by,) + anr, where r
is a sum of such elements v € f7_,(by,) and a,r € VI, we have a,a™(by,_1) +
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an_10" (b, € V/I. Hence an 0" (by—1)bm + a1 (by )by, € V/T and that
10" (b )by, € V1, since an " (by—1)bm € VI. Thus a,_1b, € VI, by
Proposition 2.3 and Lemma 2.5(1). Hence apby,—1 € V1. Consequently,

anf Uan 1f Uanf — 1)C\fforeach0<z<j

The coefficient of ™" ~2 is apa” (b —2)+an 10" (by—1)+an—20" "> (b)) +t,
where ¢ is a sum of such elements v € Uogigj[anfij( ) U @1 £ (bm) U anf!
(bm-1)]. By a similar way as above, one can show thata,b,—2,an—1bm—_1,
An—2bm € VI. Continuing this process yields a;b; € VT for each i, J-

Conversely, suppose that a;b; € VT for each i, j. Since V/T is (o, §)-compati-
ble, f(x)g(x) € VI[z;a, ).

(2) Let h(z) = co + 1w + - + cxa® € R[z;a, 8] and f(x)g(x) € VI[z;a, ).
Then a;b; € VT for each i, j, by (1). Since v/T has the IFP, we have acyb; € VI
for each i, j,7. Then f(z)h(x)g(z) € VI[z;a,d], since VT is a (a, §)-compatible
ideal of R. Therefore vI[z;a, d] has the IFP. O

Proposition 2.8. Let I be a (v, d)-compatible ideal of R and has the IFP. Then
Vza, \[xaé—{fER[:r:a5]|fkel[aca6]forsomek:>1}

Proof. By Lemma 2.6, it is enugh to show that vI[z;a, 6] € \/I[x;a,d]. We
show that if @ is a prime ideal of R[z;a, ] containing I[z; a, 6], then \f I1CQ.
Let a € VI. Then a* € I for some k > 1. Hence agiags ---agy, € I[z;,d]
for each g1, go,...,gx € R[z; @, d], since I is («, §)-compatible and has the IFP.
Thus (aR[z;a,d))F C I[z;a,d] C Q implies a € Q. Therefore vI[z;a,d] C Q
and VI[z;a, 0] C /I[z; v, 6]. O

Theorem 2.9. Let I be a (o, §)-compatible ideal of R and has the IFP. Then
Iz; @, 8] is a radically-symmetric ideal of R[x;a, ).

Proof. Let f(x) = a0+ —Hzna: ,g( )_ b0+ A+bmx™, h(z) = co+- -+t €

Rlz;a, 6] and f(z) € /I[x;a,0] = VI[z;a,6). Then a;(g(z)h(x)) €
VI[z; o, 6] for each = 0, 17 ...,n, by Lemma 2.7. Hence a;bjcy, € VT for each
i,7,k, by Lemma 2.7. Thus a;cib; € VT for each i, j,k, by Proposition 1.6.
Therefore f(x)h(x)g(z) € VI[z;a,d], since VT is (a, §)-compatible. O

By using Theorem 2.9 we have the following result:

Corollary 2.10. Let R be a semicommutative («,d)-compatible ring. Then
R[z; a, 0] is a radically-symmetric ring.

Corollary 2.11. Let R be a semicommutative ring. Then R is a radically-
symmetric Ting.

Lemma 2.12. Let I be a radically-symmetric ideal of R. Then I has the
radically IFP.
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Proof. Let ab € v/I. Then abc € VI for each ¢ € R, since v/T is an ideal of R.
Hence acb € VI, since I is a radically-symmetric ideal of R. Therefore I has
the radically IFP. (]

Corollary 2.13 ([13, Theorem 3.1]). Let R be a semicommutative ai-compatible
ring. Then R[x;a] is a weakly semicommutative ring.

Proof. 1t follows from Lemma 2.12 and Corollary 2.10. O
Since symmetric ideals have the IFP, hence we have the following result:

Theorem 2.14. Let R be a symmetric (., §)-compatible ring. Then R[z; a, d]
is a radically-symmetric ring and hence weakly semicommutative ring.
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