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ANNIHILATORS IN ONE-SIDED IDEALS GENERATED BY

COEFFICIENTS OF ZERO-DIVIDING POLYNOMIALS

Tai Keun Kwak, Dong Su Lee, and Yang Lee

Abstract. Nielsen and Rege-Chhawchharia called a ring R right McCoy

if given nonzero polynomials f(x), g(x) over R with f(x)g(x) = 0, there
exists a nonzero element r ∈ R with f(x)r = 0. Hong et al. called a ring
R strongly right McCoy if given nonzero polynomials f(x), g(x) over R

with f(x)g(x) = 0, f(x)r = 0 for some nonzero r in the right ideal of R
generated by the coefficients of g(x). Subsequently, Kim et al. observed
similar conditions on linear polynomials by finding nonzero r’s in various
kinds of one-sided ideals generated by coefficients. But almost all results

obtained by Kim et al. are concerned with the case of products of linear
polynomials. In this paper we examine the nonzero annihilators in the
products of general polynomials.

1. Introduction

A ring is usually called reduced if it has no nonzero nilpotent elements. Cohn
[5] called a ring R reversible if ab = 0 implies ba = 0 for a, b ∈ R. Due to Nar-
bonne [21], a ring R is called semicommutative if ab = 0 implies aRb = 0 for
a, b ∈ R. Reduced rings are reversible and reversible rings are semicommuta-
tive, but not conversely in general. Rege and Chhawchharia called R an Ar-

mendariz ring [24, Definition 1.1] if whenever any polynomials f(x), g(x) ∈ R[x]
satisfy f(x)g(x) = 0, then ab = 0 for each coefficient a of f(x) and b of g(x).
Any reduced ring is Armendariz by [3, Lemma 1], but the class of semicom-
mutative rings and the class of Armendariz rings don’t imply each other by
[24, Example 3.2] and [8, Example 14]. McCoy [20] showed that if two poly-
nomials annihilate each other over a commutative ring then each polynomial
has a nonzero annihilator in the base ring. In [10], Weiner showed this fact
fails in noncommutative rings. Based on this result, Nielsen [22] and Rege
and Chhawchharia [24] called a noncommutative ring R right McCoy (resp.,
left McCoy) if whenever any nonzero polynomials f(x), g(x) ∈ R[x] satisfy
f(x)g(x) = 0, then f(x)c = 0 (resp., cg(x) = 0) for some nonzero c ∈ R,
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and a ring R is called McCoy if it is both left and right McCoy. Armendariz
rings are clearly McCoy but the converse does not hold by [24, Remark 4.3].
A ring is called Abelian if every idempotent is central. It is well-known that
semicommutative rings and Armendariz rings are Abelian. Nielsen developed
and extended the concept of a McCoy ring. In particular, he showed that any
reversible ring is McCoy [22, Theorem 2] and gave an example that is a semi-
commutative ring but not McCoy [22, Section 3]. Nielsen also showed that the
McCoy condition is not left-right symmetric [22, Section 3 and Section 4].

Hong et al. [7] called a ring R (possibly without identity) strongly right

(resp., left) McCoy if f(x)g(x) = 0 implies f(x)r = 0 (resp., rg(x) = 0) for
some nonzero r in the right (resp., left) ideal of R generated by the coefficients
of g(x) (resp., f(x)), where f(x) and g(x) are nonzero polynomials in R[x].
Strongly McCoy property for rings is not left-right symmetric by [11, Remark
2.6]. Reversible rings are strongly both left and right McCoy by [7, Theorem
1.6] or the proof of [22, Theorem 2]. Strongly right McCoy rings are clearly
right McCoy, but not conversely by [7, Example 1.9].

Recently, the strongly McCoy condition for a ring is generalized by Kim et
al. [11]. A ring R (possibly without identity) is called right linearly right-ideal-

McCoy (resp., right linearly left-ideal-McCoy) [11, Definition 2.1] if f(x)g(x) =
0 implies f(x)r = 0 for some nonzero r in the right (resp., left) ideal of R
generated by the set of all coefficients of g(x), where f(x) and 0 6= g(x) are
linear polynomials in R[x]. The left linearly left-ideal-McCoy and left linearly

right-ideal-McCoy can be defined symmetrically. Strongly right McCoy rings
are clearly right linearly right-ideal-McCoy but not conversely by [11, Example
2.5(1)].

In this paper, we continue study of the McCoy condition for one-sided ideals
generated by the coefficients of zero-dividing polynomials which extends the
concept of linearly left-ideal-McCoy property.

Throughout this note every ring is associative with identity unless otherwise
stated. We use R[x] to denote the polynomial ring with an indeterminate x
over a ring R. Let Cf(x) denote the set of all coefficients of f(x) ∈ R[x] and
RCf(x) (resp., Cf(x)R) denote the left (resp., right) ideal of R generated by
Cf(x). Denote the n by n full (resp., upper triangular) matrix ring over a ring
R by Matn(R) (resp., Un(R)). Use Eij for the matrix with (i, j)-entry 1 and
elsewhere 0. Zn denotes the ring of integers modulo n.

2. Property of right left-ideal-McCoy rings

Due to Lambek [18], an ideal I of a ring R is called symmetric if rst ∈ I
implies rts ∈ I for all r, s, t ∈ R. If the zero ideal of a ring R is symmetric then
R is also called symmetric; while Anderson and Camillo [2] used the term ZC3

for this concept. Commutative rings and reduced rings are clearly symmetric.
Symmetric rings are clearly reversible but not conversely in general.
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Thinking about [7, Corollary 1.2] in the context of a noncommutative ring,
we will say that a ring R has the condition (†) if whenever f(x)g(x) = 0
where f(x) =

∑m

i=0 aix
i and g(x) =

∑n

j=0 bjx
j are nonzero in R[x], there is

a product at1at2 · · · ath , with ati ∈ {a0, . . . , am} for each i (if any), and some
bt ∈ {b0, . . . , bn}, such that (at1 · · · ath)bt 6= 0 but f(x)(at1 · · ·ath)bt = 0.

Symmetric rings satisfy the condition (†) by [7, Proposition 1.7], and re-
versible rings also satisfy the condition (†) for the product of linear polynomials
by the proof of [4, Proposition 5.3].

We start with the following definition which not only generalizes the con-
dition (†) but also strengthens the concept of right linearly left-ideal-McCoy
rings.

Using the definitions in [11], a ring R (possibly without identity) is called
right left-ideal-McCoy (resp., right right-ideal-McCoy) if f(x)g(x) = 0 implies
f(x)r = 0 for some nonzero r in the left (resp., right) ideal of R generated by
Cg(x) for two polynomials f(x) and 0 6= g(x) in R[x]. The left right-ideal-McCoy

and left left-ideal-McCoy can be defined symmetrically.

Remark 2.1. (1) Note that our definition of a right right-ideal McCoy (resp.,
left left-ideal McCoy) ring is precisely what Hong et al. defined as a strongly
right (resp., left) McCoy ring in [7]. The class of right left-ideal-McCoy rings
and the class of strongly right McCoy rings do not imply each other by [11,
Example 2.5].

(2) The class of right left-ideal-McCoy rings and the class of left right-ideal-
McCoy rings are independent of each other by [11, Example 2.4].

(3) Armendariz rings are obviously both right left(right)-ideal-McCoy and
left right(left)-ideal-McCoy.

(4) Right left-ideal-McCoy rings are clearly right McCoy, but not conversely
by [11, Example 2.2(2)]. Right left-ideal-McCoy rings are also right linearly
left-ideal-McCoy. The ring R in [22, Section 3] is a semicommutative ring but
not right McCoy and hence it is not right left-ideal-McCoy. However, R is right
linearly left-ideal-McCoy by [11, Proposition 2.3]. On the other hand, the ring
in [11, Example 2.5(2)] (see also [8, Example 14]) is right left-ideal-McCoy but
not semicommutative.

(5) Matn(A) and Un(A) over any ring A for n ≥ 2 are not right McCoy by
[9, Example 1.3 and Example 1.6] and so they are not right left-ideal-McCoy.

Theorem 2.2. (1) A reversible ring is both left left-ideal-McCoy and right

right-ideal-McCoy.

(2) If R is a reversible ring, then R is either left right-ideal McCoy or right

left-ideal McCoy.

Proof. (1) The case of right right-ideal-McCoy is proved by the proof of [7, The-
orem 1.6(1)], and the case of left left-ideal-McCoy is proved by the symmetric
version of the proof of [7, Theorem 1.6(1)].

(2) Let R be a reversible ring and suppose that f(x)g(x) = 0 for 0 6= f(x) =
∑m

i=0 aix
m, g(x) =

∑n

j=0 bjx
n ∈ R[x]. By the proof of [7, Theorem 1.6(1)],
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there exists r = al00 a
l1
1 · · ·altt ∈ R (t ≤ m and lk ≥ 0 for k ∈ {0, . . . , t}) with

g(x)r 6= 0 and aibjr = 0 for all i and j. Since R is reversible, we also have

0 = (al00 a
l1
1 · · · altt )aibj for all i and j.

Case 1. If (al00 a
l1
1 · · · altt )f(x) = 0, then f(x)(al00 a

l1
1 · · · altt ) = 0 since R is

reversible; hence we get

ai(a
l0
0 a

l1
1 · · · altt )bj = 0 for all i and j.

But (al00 a
l1
1 · · ·altt )g(x) 6= 0, so (al00 a

l1
1 · · · altt )bj0 6= 0 for some j0. This yields

f(x)(al00 a
l1
1 · · · altt )bj0 = 0 with (al00 a

l1
1 · · ·altt )bj0 ∈ RCg(x).

Case 2. If (al00 a
l1
1 · · ·altt )f(x) 6= 0, then (al00 a

l1
1 · · ·altt )ai0 6= 0 for some i0.

This yields

(al00 a
l1
1 · · · altt )ai0g(x) = 0 with (al00 a

l1
1 · · · altt )ai0 ∈ Cf(x)R. �

In fact, we do not know whether reversible rings are both left right-ideal-
McCoy and right left-ideal-McCoy.

Question. Are reversible rings both left right-ideal-McCoy and right left-ideal-
McCoy?

Observe that the right left-ideal-McCoy condition and semicommutativity
of rings do not imply each other by Remark 2.1(4). However, we have the
following.

Theorem 2.3. If R[x] is a semicommutative ring, then R satisfies the condi-

tion (†) (hence is right left-ideal-McCoy).

Proof. Let R[x] be a semicommutative ring. We apply the method in the
proof of [7, Theorem 1.1]. Put f(x)g(x) = 0 with 0 6= f(x) =

∑m

i=0 aix
i

and 0 6= g(x) =
∑n

j=0 bjx
j in R[x]. We can assume that am 6= 0, bn 6= 0.

If f(x)bn = 0, then we are done. Assume f(x)bn 6= 0. Then aig(x) 6= 0
for some i ∈ {0, 1, . . . ,m}. Let k be the largest integer such that akg(x) 6=
0. Since f(x)g(x) = 0, we get akbn = 0. Note that akg(x) is a nonzero
polynomial and its degree is less than n. Since R[x] is semicommutative, we
have f(x)(akg(x)) = 0.

If we replace g(x) with akg(x) in the argument above, then we can also
find al or 0 6= akbh for some 0 ≤ h ≤ n − 1 such that al(akg(x)) 6= 0 and
f(x)akbh = 0. Note f(x)(alak)g(x) = 0. Continuing this process, we finally
obtain at1 , . . . , ath and bt with t1 = k, h ≤ n, {at1 , . . . , ath} ⊆ {a0, . . . , am},
and t ∈ {0, 1, . . . , n} such that 0 6= (ath · · · at1)g(x) = (ath · · · at1)bt ∈ R and

f(x)((ath · · ·at1)bt) = 0.

Thus R satisfies the condition (†), entailing that R is right left-ideal-McCoy. �

This theorem provides the following interesting new result.

Corollary 2.4. If R[x] is a semicommutative ring, then R is right McCoy.
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The converse of Theorem 2.3 does not hold: Indeed, the ring R in [11,
Example 2.5(2)] is right left-ideal-McCoy (and so right McCoy) but not semi-
commutative. Thus R[x] is not semicommutative.

Example 2.5. (1) The class of right left-ideal-McCoy rings is not closed under
homomorphic images. For the ring of quaternions R with integer coefficients
is a domain, and so right left-ideal-McCoy. For any odd prime integer q, the
ring R/qR is isomorphic to Mat2(Zq) by [6, Exercise 2A], and thus R/qR is
not right left-ideal-McCoy by Remark 2.1(4).

(2) The class of right left-ideal-McCoy rings is not closed under subrings.
We refer to [11, Example 2.13(2)]. Let K be a field and K〈e, a, b, c〉 be the
free algebra with noncommuting indeterminates e, a, b, c over K. Set R be the
factor ring of K〈e, a, b, c〉 with the relations

e2 = e, ae = a, ea = 0, eb = be = 0, ec = ce = c

a2 = b2 = c2 = ab = ac = ba = bc = ca = cb = 0.

By the same argument as in [11, Example 2.13(2)], we can see that R is right
left-ideal-McCoy. Consider the subring S = {α + βe + γa | α, β, γ ∈ K} of
R. Let f(x) = a + (e − 1)x, g(x) = a + ex in S[x]. Then f(x)g(x) = 0 and
SCg(x) = {βe + γa | β, γ ∈ K}. If f(x)d = 0 for 0 6= d = βe + γa ∈ SCg(x)

then βa = 0 and βe+ γa = 0 and so β = 0 = γ, a contradiction. Thus S is not
right left-ideal-McCoy.

Rings satisfying the condition (†) are clearly right left-ideal-McCoy but not
conversely by Example 2.5(2). In fact, consider the right left-ideal-McCoy ring
R in Example 2.5(2) and the polynomials f(x) = a+(e− 1)x, g(x) = a+ ex in
R[x] with f(x)g(x) = 0. Then f(x)ae = −ax 6= 0 and f(x)(e − 1)a = ax 6= 0.
Thus R does not satisfy the condition (†).

Note that Abelian rings and right left-ideal-McCoy rings are independent
each other by [11, Example 2.13(3)] and Example 2.5(2): Indeed, the right left-
ideal-McCoy ring R in Example 2.5(2) is not Abelian since e is an idempotent
but it does not commute with a.

A ring R is called (von Neumann) regular if for each a ∈ R there exists b ∈ R
such that a = aba.

Proposition 2.6. For a regular ring R, the following conditions are equivalent:
(1) R is reduced;
(2) R is semicommutative;
(3) R is Abelian;
(4) R is right left-ideal-McCoy; and
(5) R is right McCoy.

Proof. (1)⇔(2)⇔(3) are well-known. (3)⇔(5) follows from [15, Theorem 20].
(3)⇒(4) Suppose that R is Abelian. Then R is reduced and so R is right
left-ideal-McCoy. (4)⇒(5) is clear. �
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A ring R is usually called π-regular if for each a ∈ R there exist a positive
integer n, depending on a, and b ∈ R such that an = anban. Regular rings are
obviously π-regular. The condition “R is regular” in Proposition 2.6 cannot be
weakened by the condition “R is π-regular”. That is, there exists a π-regular
and right left-ideal-McCoy ring R which is not reduced: For example,

R =











a b c
0 a d
0 0 a



 | a, b, c, d ∈ A







for a division ring A is Armendariz by [12, Proposition 2] and hence right
left-ideal-McCoy.

There exists a ring R which is not right left-ideal-McCoy such that R/I and
I are right left-ideal-McCoy for any proper ideal I of R.

Example 2.7. For a division ring F , we consider a ring R = U2(F ). Then
R is not right left-ideal-McCoy by Remark 2.1(5). The only nonzero proper
ideals of R are

I1 =

(

F F
0 0

)

, I2 =

(

0 F
0 F

)

and I3 =

(

0 F
0 0

)

.

Then R/I1 and R/I2 are isomorphic to F and

R/I3 =

{(

a 0
0 c

)

+ I3 | a, c ∈ F

}

is a reduced ring, and hence each R/Ii (for i = 1, 2, 3) is right left-ideal-McCoy.
Note that I3 is clearly right left-ideal-McCoy. By [16, Example 2.14], I1 and

I2 are Armendariz, and hence they are right left-ideal-McCoy.

Recall that a ring R is left (resp., right) weakly regular [23] if I2 = I for
every left (resp., right) ideal I of R.

By the similar argument to the proofs of [11, Proposition 2.10(2) and Propo-
sition 2.12], we have the following proposition.

Proposition 2.8. (1) Let R be a right left-ideal-McCoy ring and I a proper

ideal of R. If R is a left weakly regular ring, then I is right left-ideal-McCoy

as a ring.

(2) The class of right left-ideal-McCoy rings is closed under direct limits.

(3) Let Γ be a chain, Rγ (γ ∈ Γ) be rings with Rα ⊆ Rβ for α < β, and
Rλ (λ ∈ Λ ⊆ Γ) be right left-ideal-McCoy rings. If Λ is dense in Γ, then

R = ∪γ∈ΓRγ is right left-ideal-McCoy.

(4) Let R =
∏

λ∈ΛRλ be the direct product of rings Rλ. Then R is right

left-ideal-McCoy if and only if Rλ is for every λ ∈ Λ.
(5) Let R =

∑

λ∈ΛRλ be a direct sum of rings Rλ. Then R is right left-

ideal-McCoy if and only if Rλ is for every λ ∈ Λ.
(6) For a central idempotent e of a ring R, R is right left-ideal-McCoy if

and only if eR and (1 − e)R are.
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3. Extensions of right left-ideal-McCoy rings

Given a ring R and n ≥ 2, consider the subrings

Dn(R) = {(mij) ∈ Un(R) | m11 = · · · = mnn} and

Vn(R) = {m = (mij) ∈ Dn(R) | mst = m(s+1)(t+1) for s = 1, . . . , n− 2 and

t = 2, . . . , n− 1}

of Un(R).
Recall that for a reduced ring R and 3 ≥ n, Dn(R)[x] is semicommutative

by [16, Remark 2.2(3)] and hence Dn(R) is right left-ideal-McCoy by Theorem
2.3.

Proposition 3.1. For a ring R and n ≥ 2, if Dn(R) is right left-ideal-McCoy,

then so is R.

Proof. Suppose that Dn(R) is right left-ideal-McCoy. Let f(x) and 0 6= g(x)
be polynomials in R[x] with f(x)g(x) = 0 where f(x) =

∑m

i=0 aix
i, 0 6= g(x) =

∑l

j=0 bjx
j . We take F (x) =

∑m

i=0 Aix
i and G(x) =

∑l

j=0 Bjx
j , where

Ai =











ai 0 · · · 0
0 ai · · · 0
...

... · · ·
...

0 0 · · · ai











, Bj =











0 0 · · · bj
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0











for each i and j. Then

F (x) =











f(x) 0 · · · 0
0 f(x) · · · 0
...

... · · ·
...

0 0 · · · f(x)











, G(x) =











0 0 · · · g(x)
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0











and F (x)G(x) = 0. Since Dn(R) is right left-ideal-McCoy, there exists a

nonzero C = (cst) ∈ Dn(R)CG(x) such that F (x)C = 0. Say C =
∑l

j=0 DjBj

whereDj ∈ Dn(R). For j = 0, 1, . . . , l, letDj = (d
(j)
st ) with d

(j)
st = d(j) for s = t.

Then cst =
∑l

j=0 d
(j)bj 6= 0 for s = 1, t = n and otherwise 0. Thus f(x)c1n = 0

and 0 6= c1n ∈ RCg(x), showing that R is right left-ideal-McCoy. �

Considering the structure of Dn(R) related to ideals, one may think of the
possibility of the existence of annihilators in the ideals generated by the coeffi-
cients of given zero-dividing polynomials in Proposition 3.1. We will study this
in near future works.

Question. If R is a right left-ideal-McCoy ring, is Dn(R) also right left-ideal-
McCoy (n ≥ 3)?

However, we have the following.
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Theorem 3.2. For a ring R and n ≥ 2, the following conditions are equivalent:
(1) R is right left-ideal-McCoy; and
(2) Vn(R) is right left-ideal-McCoy.

Proof. We apply the proof of [11, Theorem 2.8]. (1)⇒(2) Note that Vn(R)[x] ∼=
Vn(R[x]) for any n ≥ 2. Suppose that R is right left-ideal-McCoy. Let
f(x) and 0 6= g(x) be polynomials in Vn(R)[x] with f(x)g(x) = 0 where

f(x) =
∑m

i=0 Aix
i, 0 6= g(x) =

∑l

j=0 Bjx
j with Ai = (a

(i)
st ) and Bj = (b

(j)
uv ) for

s, t, u, v ∈ {1, 2, . . . , n}. We can write

f(x) =











f11(x) f12(x) · · · f1n(x)
0 f11(x) · · · f2n(x)
...

... · · ·
...

0 0 · · · f11(x)











, g(x) =











g11(x) g12(x) · · · g1n(x)
0 g11(x) · · · g2n(x)
...

... · · ·
...

0 0 · · · g11(x)











with fst(x) =
∑m

i=0 a
(i)
st x

i, guv(x) =
∑l

j=0 b
(j)
uv xj . Note that

fst(x) = f(s+1)(t+1)(x) and

gst(x) = g(s+1)(t+1)(x) for s = 1, . . . , n− 2 and t = 2, . . . , n− 1.

Since f(x)g(x) = 0, we have f11(x)g11(x) = 0.

Case 1. g11(x) 6= 0.

Since R is right left-ideal-McCoy and f11(x)g11(x) = 0, there exists 0 6= α =
∑l

j=0 hjb
(j)
11 ∈ RCg11(x) such that f11(x)α = 0, where hj ∈ R for any j. If we

let

d =

l
∑

j=0

(E1nhj)Bj ∈ Vn(R)Cg(x)

then d = E1nα 6= 0 and f(x)d = 0.

Case 2. g11(x) = 0.

In this case, we can find the largest k with respect to the property of gkt(x) 6=
0 for some t. Then k < t and gkj(x) = 0 for all j = 1, . . . , t − 1. This yields
f11(x)gkt(x) = 0. Since R is right left-ideal-McCoy, there exists 0 6= β =
∑l

j=0 hjb
(j)
kt ∈ RCgkt(x) such that f11(x)β = 0, where hj ∈ R for any j. If we

let

d′ =
l

∑

j=0

((E1k + E2(1+k) + · · ·+ E(t−k+1)t)hj)Bj ∈ Vn(R)Cg(x),

then d′ = E1nβ 6= 0 and f(x)d′ = 0.
By Cases 1 and 2, Vn(R) is right left-ideal-McCoy.
(2)⇒(1) is the same as the proof of Proposition 3.1. �

Recall that for a ring R and an (R,R)-bimodule M , the trivial extension of
R by M is the ring T (R,M) = R⊕M with the usual addition and the following
multiplication: (r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2). This is isomorphic to
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the ring of all matrices ( r m
0 r ), where r ∈ R and m ∈ M and the usual matrix

operations are used.

Corollary 3.3. For a ring R, the following conditions are equivalent:
(1) R is right left-ideal-McCoy;
(2) The trivial extension T (R,R) of R is right left-ideal-McCoy; and
(3) R[x]/(xn) is a right left-ideal-McCoy ring for any positive integer n,

where (xn) is an ideal of R[x] generated by xn.

Proof. (1)⇔(2) follows directly from Theorem 3.2, since T (R,R) ∼= V2.
(1)⇔(3) Vn(R) ∼= R[x]/(xn) by [19]. �

Let R be an algebra over a commutative ring S. Recall that the Dorroh

extension of R by S is the Abelian group R ⊕ S with multiplication given by
(r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2) for ri ∈ R and si ∈ S.

Recall that an element u of a ring R is right regular if ur = 0 implies r = 0
for r ∈ R. Similarly, left regular elements can be defined. An element is regular
if it is both left and right regular (and hence not a zero divisor).

Applying the proofs of [11, Theorem 3.1, Proposition 3.2 and Proposition
3.3], we have the following.

Proposition 3.4. (1) Let R be an algebra over a commutative domain S, and
D be the Dorroh extension of R by S. Then R is right left-ideal-McCoy if and

only if D is.

(2) Let ∆ be a multiplicatively closed subset of a ring R consisting of central

regular elements. Then R is right left-ideal-McCoy if and only if ∆−1R is.

(3) If R[x] is a right left-ideal-McCoy ring, then so is R.

We do not know whether the converse of Proposition 3.4(3) holds.

The ring of Laurent polynomials in x, coefficients in a ring R, consists of all
formal sum

∑n

i=k rix
i with obvious addition and multiplication, where ri ∈ R

and k, n are (possibly negative) integers. We denote this ring by R[x;x−1].

Corollary 3.5. For a ring R, the following conditions are equivalent:
(1) R[x] is right left-ideal-McCoy; and
(2) R[x;x−1] is right left-ideal-McCoy.

Proof. (1)⇔(2) It directly follows from Proposition 3.4(2). For, let ∆ =
{1, x, x2, . . .}, then ∆ is clearly a multiplicatively closed subset of R[x] and
R[x;x−1] = ∆−1R[x]. �

A multiplicatively closed (m.c. for short) subset S of a ring R is said to
satisfy the right Ore condition if for each a ∈ R and b ∈ S, there exist a1 ∈ R
and b1 ∈ S such that ab1 = ba1. It is well-known that S satisfies the right
(resp., left) Ore condition and S consists of regular elements if and only if the
right quotient ring RS−1 of R with respect to S exists.
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Theorem 3.6. Let S be an m.c. subset of a ring R, and suppose that S
satisfies the Ore condition and S consists of regular elements. If R is right

left-ideal-McCoy, then so is RS−1.

Proof. Let F (x)G(x) = 0 where F (x) = a0u
−1 + a1u

−1x + · · · + amu−1xm

and 0 6= G(x) = b0v
−1 + b1v

−1x + · · · + bnv
−1xn ∈ RS−1[x] for ai, bj ∈ R

with u, v regular. By hypothesis, there exists a regular u1 for all j’s such that
u−1bj = b′ju

−1
1 for some b′j ∈ R. Now let f(x) =

∑m

i=0 aix
i, g(x) =

∑n

j=0 bjx
j ,

g1(x) =
∑n

j=0 b
′

jx
j . Then

F (x)G(x) = f(x)u−1g(x)v−1 = f(x)g1(x)u
−1
1 v−1

and hence f(x)g1(x) = 0, noting that g(x) 6= 0 and g1(x) 6= 0. Since R is right
left-ideal-McCoy, there exists 0 6= r ∈ RCg1(x) such that f(x)r = 0. So we get
ur 6= 0 and

0 = f(x)r = f(x)u−1ur = F (x)ur.

Let r = r0b
′

0 + r1b
′

1 + · · · + rnb
′

n for some r0, . . . , rn ∈ R. Since b′j = u−1bju1

for all j, we have

0 6= uru−1
1 = u(r0b

′

0 + r1b
′

1 + · · ·+ rnb
′

n)u
−1
1

= u(r0u
−1b0u1 + r1u

−1b1u1 + · · ·+ rnu
−1bnu1)u

−1
1

= ur0u
−1b0 + ur1u

−1b1 + · · ·+ urnu
−1bn ∈

n
∑

j=0

RS−1bj .

Thus 0 6= uru−1
1 v−1 ∈ RS−1CG(x) and F (x)uru−1

1 v−1 = 0, showing that RS−1

is right ideal-McCoy. �

We do not know the answer to the following.

Question. Let S, R and RS−1 as before. If RS−1 is right left-ideal-McCoy
then is R right left-ideal-McCoy?

Finally, we investigate minimal noncommutative right left-ideal-McCoy
rings. The construction of the following rings is due to Xu and Xue [25, Ex-
ample 7].

Let A = Z2〈x, y〉, the free algebra with noncommuting indeterminates x, y
over the field Z2. Let I be the ideal of A generated by

x3, y2, yx, x2 − xy

and R1 = A/I. Then R1 has 16 elements. Since R1
∼= D3(Z2), R1 is Armen-

dariz by [16, Remark 2.2(3)] and so right left-ideal-McCoy.
Let B = Z4〈x, y〉 be the free algebra with noncommuting indeterminates

x, y over the field Z4. Let I be the ideal of B generated by

x3, y2, yx, x2 − xy, x2 − 2̄, 2̄x, 2̄y

and R2 = B/I. Then R2 is Armendariz with 16 elements by [16, Example 2.10]
and [25, Example 7]. Thus R2 is obviously right left-ideal-McCoy.
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Let C = Z2〈x, y〉 be the free algebra with noncommuting indeterminates
x, y over the field Z2. Let I be the ideal of C generated by

x3, y3, yx, x2 − xy, y2 − xy

and R3 = C/I. Then R3 is an Armendariz ring by [16, Example 2.10] with 16
elements, and so R3 is right left-ideal-McCoy.

Let D = Z4〈x, y〉 be the free algebra with noncommuting indeterminates
x, y over Z4. Let R4 = D/I where I is the ideal of D generated by

x3, y3, yx, x2 − xy, x2 − 2̄, y2 − 2̄, 2̄x, 2̄y.

Then R4 is an Armendariz ring by [16, Example 2.10] with 16 elements, and
so R4 is right left-ideal-McCoy.

Let

R5 =

{(

a b
0 a2

)

| a, b ∈ GF (22)

}

,

where GF (22) is the Galois field of order 22. Then R5 is an Armendariz ring
by [16, Example 2.10] with 16 elements by [26, Example 2], and so R5 is right
left-ideal-McCoy.

Let R be a finite noncommutative ring and Ri for i ∈ {1, 2, 3, 4, 5} be rings
above. If R is a minimal Armendariz and semicommutative ring, then R is of
order 16 and is isomorphic to Ri for some i by [16, Theorem 2.11], or if R is a
minimal Abelian ring, then R is of order 16 and is isomorphic to Ri for some i
by [14, Proposition 2.3]. Notice that every Ri is Abelian right left-ideal-McCoy.
Therefore, if R is a minimal noncommutative Abelian right left-ideal-McCoy
ring, then R is of order 16 and is isomorphic to Ri for some i ∈ {1, 2, 3, 4, 5},
where Ri’s are the rings in the above.

As a corollary of this fact and [16, Corollary 2.12], R is a minimal noncom-
mutative Abelian right left-ideal-McCoy ring ring if and only if R is a minimal
noncommutative semicommutative ring if and only if R is a minimal noncom-
mutative Armendariz ring.

Now, we consider the structure of minimal right left-ideal-McCoy rings with-
out identity. Recall that a semicommutative ring with identity is Abelian, but
this is no longer valid for the case of rings without identity as follows.

Let D be a domain and

R6 =

(

D D
0 0

)

, R7 =

(

0 D
0 D

)

be subrings of U2(D). Then both R6 and R7 are non-Abelian, semicommutative
and Armendariz by [16, Example 2.13 and Example 2.14]. Thus both R6 and
R7 are right left-ideal-McCoy.

Theorem 3.7. Let R be a ring without identity. If R is a minimal non-Abelian

right left-ideal-McCoy ring, then R is isomorphic to
(

Z2 Z2

0 0

)

or

(

0 Z2

0 Z2

)

.
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Proof. Let R be a minimal right left-ideal-McCoy ring. Then |R| = 4 by the
existence of the right left-ideal-McCoy ring as above, R6 or R7. If R is nilpotent
then R is commutative by [16, Lemma 2.7], a contradiction. If |J(R)| = 0 where
J(R) is the Jacobson radical of R, then R is also commutative by the proof of
[14, Theorem 1.15], a contradiction. Thus we have the result of |J(R)| = 2,
whence we also follow the proof [14, Theorem 1.15] to conclude that R is
isomorphic to

(

Z2 Z2

0 0

)

or

(

0 Z2

0 Z2

)

.
�

Hence, by Theorem 3.7 and [16, Corollary 2.16], if R is a ring without
identity, then R is a minimal non-Abelian right left-ideal-McCoy ring if and
only if R is a minimal non-Abelian semicommutative ring if and only if R is a
minimal non-Abelian Armendariz ring.
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