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THE ZERO-DIVISOR GRAPH UNDER A GROUP ACTION
IN A COMMUTATIVE RING

Juncheol Han

Abstract. Let R be a commutative ring with identity, X the set of
all nonzero, nonunits of R and G the group of all units of R. We will
investigate some ring theoretic properties of R by considering Γ(R), the
zero-divisor graph of R, under the regular action on X by G as follows:
(1) If R is a ring such that X is a union of a finite number of orbits under
the regular action on X by G, then there is a vertex of Γ(R) which is
adjacent to every other vertex in Γ(R) if and only if R is a local ring
or R ' Z2 × F where F is a field; (2) If R is a local ring such that X
is a union of n distinct orbits under the regular action of G on X, then
all ideals of R consist of {{0}, J, J2, . . . , Jn, R} where J is the Jacobson
radical of R; (3) If R is a ring such that X is a union of a finite number of
orbits under the regular action on X by G, then the number of all ideals
is finite and is greater than equal to the number of orbits.

1. Introduction and basic definitions

The zero-divisor graph of a commutative ring has been studied extensitively
by Akbari, Anderson, Frazier, Lauve, Livinston and Maimani in [1, 2, 3] since
its concept had been introduced by Beck in [4]. Recently, zero-divisor graph
of a noncommutative ring (resp. a semigroup) has studied by Redmond and
Wu (resp. F. DeMeyer and L. Demeyer) in [9, 10, 11] (resp [5]). Zero-divisor
graph is very useful to find the algebraic structures and properties of rings.
In this paper, the zero-divisor graph of a commutative ring is also studied by
considering some group action.

Throughout this paper all rings are assumed to be rings with identity 1 6= 0.
For a commutative ring R, let Z(R) be the set of all zero-divisors of R, and Γ(R)
be the zero-divisor graph of R consisting of all vertices in Z(R)∗ = Z(R) \ {0},
the set of all nonzero zero-divisors of R, and edges x←→ y, which means that
xy = 0 for x, y ∈ Z(R)∗. In this paper, a loop (i.e., an edge from some vertex to
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itself) can be considered an edge in a zero-divisor graph Γ(R). Recall that Γ(R)
is connected if there is a path between any two distinct vertices. For vertices
x and y of Γ(R), if there exists a path between x and y, we will denote d(x, y)
by the length of the shortest path between x and y, otherwise, d(x, y) = ∞.
The diameter of Γ(R) (denoted by diam(Γ(R)) is defined by the supremum of
d(x, y) for all distinct vertices x and y in Γ(R). In particular, if x = y and
d(x, x) = k ≥ 3, then the path is called the cycle of length k. If Γ(R) contains
a cycle, then the girth of Γ(R) (denoted by g(Γ(R))) is defined by the length of
the shortest cycle in Γ(R), otherwise, g(Γ(R)) = ∞. In [6, Proposition 1.3.2],
if Γ(R) contains a cycle, then 1 + 2diam(Γ(R)) ≥ g(Γ(R)). We say that Γ(R)
is complete if xy = 0 for any distinct vertices x, y in Γ(R). In [3], Anderson and
Livingston have shown that for a commutative ring R, (1) Γ(R) is connected
and 3 ≥ diam(Γ(R)); (2) there is a vertex of Γ(R) which is adjacent to every
other vertex in Γ(R) if and only if R ' Z2 × A (A is an integral domain) or
Z(R) is an annihilator ideal.

Let R be a ring, X(R) (simply, denoted by X) the set of all nonzero, nonunits
of R, G(R) (simply, denoted by G) the group of all units of R and J , the
Jacobson radical of R. In this paper, we will consider a group action of G on
X given by ((g, x) −→ gx) from G × X to X, called the regular action. If
φ : G×X −→ X is the regular action, then for each x ∈ X, we define the orbit
of x by o(x) = {φ(g, x) : ∀g ∈ G}. Recall that G is transitive on X (or G acts
transitively on X) if there is an x ∈ X with o(x) = X and the group action on
X by G is trivial if o(x) = {x} for all x ∈ X. In [7], it has been shown that if
X is a union of a finite n number of orbits under the regular action of G on X,
then (1) xn+1 = 0 for all x ∈ J , and X is the set of all nonzero left zero-divisors
of R; (2) R is a local ring, Jn 6= (0) and Jn+1 = (0) if and only if there exists
x ∈ J such that xn 6= (0) if and only if J > J2 > · · · > Jn−1 > Jn 6= (0).

For a subset S of Z(R)∗, we will denote the induced subgraph of Γ(R) with
vertices in S by ΓS(R), that is, x, y ∈ S are adjacent in ΓS(R) if and only if
x and y are adjacent in Γ(R). In particular, if R is a commutative ring such
that X is a union of a finite number of orbits under the regular action of G on
X, then X is the set of all nonzero zero-divisors of R, i.e., X = Z(R)∗, and so
Γ(R) = ΓX(R). In Section 2, for a commutative ring R such that X is a union
of a n orbits under the regular action on X by G, we will investigate some ring
theoretic properties of R by considering Γ(R), the zero-divisor graph of R, as
follows: (1) if n = 1, then Γ(R) is complete; (2) there is an element x ∈ X such
that x is adjacent to every other vertex in Γ(R) if and only if R is a local ring
or R ' Z2×F (F is a field); (3) if R is a local ring, then every ideal of R is an
annihilator of some element x ∈ X (denoted by ann(x)); (3) the number of all
ideals in R is equal to the number of all annihilators in R and is greater than
or equal to n, the number of orbits.

Recall that a ring R is called von Neumann regular (simply, regular) (resp.
unit-regular) if for every x ∈ R there exists y ∈ R (resp. g ∈ G) such that
xyx = x (resp. xgx = x). Note that for a commutative ring R, R is regular if
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and only if R is unit-regular. In Section 3, we will investigate some properties
of a commutative regular ring R as follows: (1) ΓX(R) is complete if and only
if the set of all idempotents in R is orthogonal and the regular action of G on
X is trivial; (2) if 2 = 2·1 is a unit in R, then there exists a cycle of length 4
in Γ(R).

2. Zero-divisor graph under the regular action

For each x ∈ X, we will denote the set of every element which is adjacent
to x by av(x). In fact, av(x) = ann(x)∗ = ann(x) \ {0}.
Proposition 2.1. Let R be a commutative ring. If the regular action of G on
X is transitive, then ΓX(R) is complete.

Proof. It follows from [7, Theorem 2.2]. ¤
Example 1 (See Example 2.1 in [3]). Let R1 = Z9 and R2 = Z2 × Z2. Even
though R1 is not isomorphic to R2, Γ(R1) = Γ(R2). On the other hand, we
can note that (1) all the vertices of Γ(R1) are nilpotent but all the vertices of
Γ(R2) are not nilpotent; (2) the adjacency matrix of R1 is not also equal to
the one of R2; (3) the regular action in R1 is transitive but the regular action
in R2 is trivial.

Example 2 (See Example 2.1 in [3]). Let R1 = Z2[x, y]/〈x2, xy, y2〉 and R2 =
F4[x]/〈x2〉. Even though R1 is not isomorphic to R2, but Γ(R1) = Γ(R2). On
the other hand, we can note that (1) all the vertices of Γ(R1) (resp. Γ(R2))
are nilpotent; (2) the adjacency matrix of R1 is equal to the one of R2; (3) the
regular action in R1 is trivial but the regular action in R2 is transitive.

Proposition 2.2. Let R be a commutative ring such that X is a union of
2 orbits o(x) and o(y) under the regular action on X by G. If Γo(x)(R) and
Γo(y)(R) are complete, then ΓX(R) is complete.

Proof. Note that the set of all the vertices of Γ(R) is X = o(x) ∪ o(y). Since
ΓX(R) is connected by [3, Theorem 2.3], there exists a ∈ o(x) and b ∈ o(y)
such that ab = 0. Let x1 ∈ o(x) (resp. y1 ∈ o(y)) be arbitrary. Then x1 = ga
and y1 = hb for some g, h ∈ G, and then x1y1 = (gh)(ab) = 0. Hence X is
complete. ¤
Lemma 2.3. Let R be a commutative ring such that X is a union of finite
number of orbits under the regular action on X by G. Then for each x ∈ X,
av(x) is a union of finite number of orbits.

Proof. It follows from the observation that av(x) =
⋃

y∈av(x) o(y) for each
x ∈ X. ¤
Theorem 2.4. Let R be a commutative ring such that X is a union of a finite
number of orbits under the regular action on X by G. Then there is a vertex
of Γ(R) which is adjacent to every other vertex in Γ(R) if and only if R is a
local ring or R ' Z2 × F where F is a field.
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Proof. (⇒) Suppose that there is a vertex of Γ(R) which is adjacent to every
other vertex in Γ(R). Then R ' Z2 × A (A is an integral domain) or Z(R) is
an annihilator ideal by [1, Theorem 2.5]. Let X be a union of n distinct orbits
under the regular action on X by G. Then Z(R)∗ = X by [7, Lemma 2.1].
Since Z(R)∗ = X, in case that R ' Z2 × A, A must be a field; in case that
Z(R) is an annihilator ideal, Z(R) = X ∪ {0} is an ideal, which means that R
is a local ring.

(⇐) Suppose that R is a local ring. Then there exists x ∈ X such that
xn 6= 0 = xn+1 and X = o(x) ∪ o(x2) ∪ · · · ∪ o(xn) by [7, Lemma 2.3]. Thus
av(xn) = X and so there is a vertex of Γ(R) which is adjacent to every other
vertex in Γ(R). Suppose that R ' Z2 × F where F is a field. Without loss
of generality, we can let R = Z2 × F . Then there exists (1, 0) ∈ R such that
av((1, 0)) = X, and so there is a vertex of Γ(R) which is adjacent to every
other vertex in Γ(R). ¤
Corollary 2.5. Let R be a finite commutative ring. Then there is a vertex of
Γ(R) which is adjacent to every other vertex in Γ(R) if and only if R is a local
ring or R ' Z2 × F where F is a finite field.

Proof. Since R is a finite commutative ring, clearly X is a union of finite number
of orbits under the regular action of G on X. Hence it follows from Theorem
2.4. ¤
Proposition 2.6. Let R be a commutative ring with X = o(x) ∪ o(x2) ∪ · · · ∪
o(xn) under the regular action on X by G for some positive integer n. If n = 1
and |X| ≥ 3, or n = 2 and o(x2) 6= {x2}, or n = 3 and o(xi) 6= {xi} for some
i = 2 or 3, or n ≥ 4, then there exists a cycle of length 3 in Γ(R).

Proof. If n = 1, i.e., the regular action is transitive, then Γ(R) is complete by
Proposition 2.1. Since |X| ≥ 3, there exists a cycle of length 3 in Γ(R). If
n = 2 and o(x2) 6= {x2}, then there exists g ∈ G such that gx2 6= x2. Since
X = o(x) ∪ o(x2) and x2g ∈ X, gx2 = hx or hx2 for some h ∈ G. Thus
x2 −→ x −→ gx2 −→ x2 is a cycle of length 3. If n = 3 and or(xi) 6= {xi}
for some i = 2 or 3, then there exists g ∈ G such that gxi 6= xi. Since
X = o(x)∪ o(x2)∪ o(x3) and gxi ∈ X, gxi = hx or hx2 or hx3 for some h ∈ G.
Thus x3 −→ x2 −→ gxi −→ x3 is a cycle of length 3. Finally, if n ≥ 4, then
clearly xn−2 −→ xn−1 −→ xn −→ xn−2 is a cycle of length 3. ¤
Theorem 2.7. Let R be a local commutative ring such that X is a union of
n distinct orbits under the regular action of G on X. Then the set of all the
distinct nonzero proper ideals of R consists of {{0}, J, J2, . . . , Jn, R}.
Proof. Since R is a local ring with identity such that X is a union of n dis-
tinct orbits under the regular action of G on X, there exists x ∈ X such
that xn 6= 0 = xn+1, X = o(x) ∪ o(x2) ∪ · · · ∪ o(xn) by [7, Lemma 2.3] and
also Jn 6= {0} = Jn+1 by [7, Lemma 2.9]. Thus J ⊃ J2 ⊃ · · · ⊃ Jn and
J i 6= Jj for all i, j = 1, . . . , n (i 6= j). Consider av(x), av(x2), . . . , av(xn).
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Since xn−i+1, xn−i+2, . . . , xn ∈ av(xi) for all i = 1, 2, . . . , n, we can have
that av(xi) = o(xn−i+1) ∪ o(xn−i+2) ∪ · · · ∪ o(xn). Also we can note that
av(xj) 6= av(xk) and av(xj) ⊃ av(xk) for all j, k (n ≥ j > k ≥ 1). Next, we
will show that Jk = ann(xn−k+1)(= av(xn−k+1) ∪ {0}) for all k = 1, . . . , n
by using induction on n. When n = 1, J = ann(x) since X = av(x). As-
sume that Jk = ann(xn−k+1) holds. To show that Jk+1 = ann(xn−k), let
y(6= 0) ∈ Jk+1 be arbitrary. Then y = y1y2 for some y1 ∈ Jk, y2 ∈ J . By
assumption, y1 ∈ ann(xn−k+1) and y2 ∈ ann(xn). Since ann(xn−k+1) \ {0} =
av(xn−k+1) = o(xk) ∪ o(xk+1) ∪ · · · ∪ o(xn) and ann(xn) \ {0} = av(xn) =
o(x) ∪ o(x2) ∪ · · · ∪ o(xn), y1 = axk, y2 = bx for some a, b ∈ R \ {0}. Thus
yxn−k = y1y2x

n−k = abxk+1xn−k = abxn+1 = 0, which implies y ∈ av(xn−k).
Hence Jk+1 ⊂ ann(xn−k). To show the convere inclusion holds, let z ∈
ann(xn−k) be arbitrary. Then zxn−k = 0. Since ann(xn−k)\{0} = av(xn−k) =
o(xk+1) ∪ o(xk+2) ∪ · · · ∪ o(xn), z ∈ o(xi) for some i (n ≥ i ≥ k + 1), and so
z = gxi for some g ∈ G. Thus z = gxi = (gx)(xi−1) ∈ Jk+1 since gx ∈ J
and xi−1 ∈ Jk. Thus Jk+1 ⊃ ann(xn−k). Hence we have Jk+1 = ann(xn−k).
Let A = {J, J2, . . . , Jn}. Therefore, Jk = ann(xn−k+1)(= av(xn−k+1) ∪ {0})
for all k = 1, . . . , n. Finally, we will show that for any nonzero proper ideal
I of R, I ∈ A. Since I is a nonzero ideal of R, there exists y ∈ X. Since
X = o(x) ∪ o(x2) ∪ · · · ∪ o(xn), y ∈ o(xi) for some i, and then o(xi) ⊂ I. Since
xi ∈ I and I is an ideal of R, xi+1, . . . , xn ∈ I, and so o(xi), . . . , o(xn) ⊂ I,
which implies that J i = o(xi) ∪ · · · ∪ o(xn) ∪ {0} ⊆ I. If I 6= J i, then there
exists z ∈ I \ J i. Then z ∈ o(xj) for some j (i > j ≥ 1). By the same
argument given as above, Jj ⊆ I (i > j). If I 6= Jj , then we will continue
in this way. Since A = {J, J2, . . . , Jn} is a finite set of ideals in R, I must
be Jk for some k (n ≥ k ≥ 1). Hence the set of all ideals of R consists of
{{0}, J, J2, . . . , Jn, R}. ¤

For any set S, we denote the cardinality of S by |S|.
Corollary 2.8. Let R be a local commutative ring such that X is a union of
n orbits under the regular action of G on X. If S = {av(a) : ∀a ∈ X}, then
S = {J i \ {0} : i = 1, . . . , n}, and so |S| = n.

Proof. Let I∗a = av(a) for all a ∈ X. Then I∗a is a union of some orbits by
Lemma 2.3. Since Ia = I∗a ∪ {0} = ann(a) is an ideal of R, Ia = Jk for some k
(n ≥ k ≥ 1) by Theorem 2.7. In the proof in Theorem 2.7, Jk = ann(xn−k+1).
Hence we have the result from Theorem 2.7. ¤

Corollary 2.9. Let R be a finite local commutative ring such that X is a union
of n orbits under the regular action of G on X and let m be the number of all
ideals of R. Then

m− 2 = n =
1
|G|

∑

g∈G

|Xg|,

where Xg = {x ∈ X : gx = x}.
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Proof. It follows from the Theorem 2.7 and the Burnside’s formula. ¤
Lemma 2.10. Let R = R1×R2×· · ·×Rt be the direct product of commutative
rings R1, R2, . . . , Rt and let B = {ann(x) : ∀x ∈ X} ∪ {{0}, R} and Bi =
{ann(xi) : ∀x ∈ X} ∪ {{0i}, Ri} for all i = 1, . . . , t where each Xi is the
set of all nonzero, nonunits of Ri and 0i is the additive identity of Ri. Then
B1 ×B2 × · · · ×Bt ⊆ B.

Proof. Let b1 × b2 × · · · × bt ∈ B1 ×B2 × · · · ×Bt be arbitrary.
Case 1. bi 6= {0i}, Ri for all i, i.e., bi = ann(xi) for some xi ∈ Xi.
Thus b1 × b2 × · · · × bt = ann(x1)× ann(x2)× · · · × ann(xt). Then clearly,

ann(x1)× ann(x2)× · · · × ann(xt) = ann((x1, x2, . . . , xt)) ∈ B.
Case 2. bi = {0i} for some i.
Thus b1 × b2 × · · · × bt = ann(x1) × · · · × {0i} × · · · × ann(xt). Then

ann(x1)× · · · × {0i} × · · · × ann(xt) ⊆ ann((x1, . . . , 1i, . . . , xt)) ∈ B, where 1i

is the unity of Ri.
Case 3. bi = Ri for some i.
Thus b1× b2×· · ·× bt = ann(x1)×· · ·×Ri×· · ·×ann(xt). Then ann(x1)×

· · · ×Ri × · · · × ann(xt) ⊆ ann((x1, . . . , 0i, . . . , xt)) ∈ B.
Case 4. bi = {0i} for some i and bj = Rj for some j (i 6= j).
Thus by Case 2 and Case 3, b1 × · · · × bi × · · · × bi × · · · × bt = ann(x1) ×

· · · × {0i} × · · · ×Rj × · · · × ann(xt). Then ann(x1)× · · · × {0i} × · · · ×Rj ×
· · · × ann(xt)) ⊆ ann((x1, . . . , 1i, . . . , 0j , . . . , xt)) ∈ B.

Case 5. bi = {0i} or bi = Ri for all i.
Thus b1×· · ·×bi×· · ·×bt = ann((a1, . . . , . . . , ai, . . . , at)) ∈ B, where ai = 1i

or ai = 0i for all i. ¤
Lemma 2.11. Let R = R1×R2×· · ·×Rt be the direct product of commutative
rings R1, R2, . . . , Rt and let C = {o(x) : ∀x ∈ X} ∪ {{0}, R} and Ci = {o(xi) :
∀x ∈ X}∪{{0i}, Ri} for all i = 1, . . . , t where each Xi is the set of all nonzero,
nonunits of Ri and 0i is the additive identity of Ri. Then C ⊆ C1×C2×· · ·×Ct.

Proof. Let c ∈ C be arbitrary
Case 1. c = {0} or c = R.
Then clearly, c ∈ C1 × C2 × · · · × Ct.
Case 2. c = o(x) for some x = (x1, . . . , xt) ∈ X.

Subcase 1. xi ∈ Xi for all i.
Subcase 2. xi = 0i for some i.

Then c = o(x) = o((x1, . . . , 0i, . . . , xt)) ⊆ o(x1) × · · · × {0i} × · · · × o(xt) ∈
C1 × · · · × Ci × · · · × Ct.

Subcase 3. xi = 1i for some i.
Then c = o(x) = o((x1, . . . , 1i, . . . , xt)) ⊆ o(x1) × · · · × Ri × · · · × o(xt) ∈

C1 × · · · × Ci × · · · × Ct.
Subcase 4. xi = 0i for some i and xj = 1j for some j (i 6= j).

Thus by Subcase 2 and Subcase 3, c = o(x) = o((x1, . . . , xi, . . . , xt)) ⊆
o(x1)×· · ·×{0i}×· · ·×Rj×· · ·×o(xt) ∈ C1×· · ·×Ci×· · ·×Cj×· · ·×Ct. ¤
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Remark 1. Let R be a commutative ring such that X is a union of a finite
number of orbits under the regular action of G on X. Then R is an Artinian
ring since I \ {0} is a union of some orbits for every ideal I of R by Lemma
2.3. Therefore, R is a finite direct product of Artinian local rings, say R =
R1 ×R2 × · · · ×Rt with each Ri Artinian local ring (i = 1, . . . , n).

Theorem 2.12. Let R be a commutative ring such that X is a union of a
finite number of orbits under the regular action of G on X and let R = R1 ×
R2 × · · · ×Rt where each Ri is Artinian local ring (i = 1, . . . , n) as mentioned
in Remark 1. Then

(1) for all ideal I of R, I = I1×I2×· · ·×It where Ii ∈ {{0i}, Ji, J
2
i , . . . , Jni

i ,
Ri} ({0i} is the zero ideal of Ri and Ji is the Jacobson radical of Ri

with Jni
i 6= {0i} = J

ni+1
i ) for all i = 1, . . . , t.

(2) the number of all nonzero proper ideals of R is (n1 +2) · · · (nt +2)− 2,
is equal to |{av(x) : ∀x ∈ X}| and greater than or equal to |{o(x) :
∀x ∈ X}|.

Proof. (1) Note that any ideal I of R is of the form I1 × I2 × · · · × It where Ii

is an ideal of Ri for all i = 1, . . . , n. Since Ri is a local commutative ring for
all i = 1, . . . , n, Ii ∈ {{0i}, Ji, J

2
i , . . . , Jni

i , Ri} by Theorem 2.7 and so we have
the result.

(2) Let A (resp. Ai) be the set of all ideals of R (resp. the set of all ideals
of Ri) for all i1, . . . , t, B = {ann(x) : ∀x ∈ X} ∪ {{0}, R} and C = {o(x) :
∀x ∈ X} ∪ {{0}, R}. By (1), A = A1 × · · · × At and so |A| =

∏t
i=1 |Ai| =

(n1 + 2) · · · (nt + 2). In the proof of Theorem 2.7, we have that

(∗) Ai = {{0i}, Ji, . . . , J
ni
i , Ri}

with J
ni+1
i = {oi} and Jki

i = ann(xni−ki+1
i ) for some xi ∈ Xi, the set of all

nonzero, nonunits of Ri for all i = 1, . . . , t where ni ≥ ki ≥ 1. Since for all
x ∈ X, ann(x) is a nonzero proper ideal of R, B ⊆ A, and so (|A| − 2) ≥
|{ann(x) : ∀x ∈ X}|. Let Bi = {ann(xi) : ∀xi ∈ X} ∪ {{0i}, Ri} for all
i = 1, . . . , t. Clearly, Ai ⊆ Bi for all i = 1, . . . , t. By above (∗), we have Bi ⊆ Ai

for all i = 1, . . . , t. Therefore, Ai = Bi for all i = 1, . . . , t. By Lemma 2.10, we
have B1 × · · · × Bt ⊆ B. Hence B ⊆ A = A1 × · · · × At = B1 × · · · × Bt = B,
and so A = B. Therefore, |A| − 2 = |{ann(x) : ∀x ∈ X}| = |{av(x) : ∀x ∈ X}|.
On the other hand, let Ci = {o(yi) : ∀yi ∈ X} ∪ {{0i}, Ri} for all i = 1, . . . , t.
By Lemma 2.11, we also have C ⊆ C1×· · ·×Ct, and so |C| ≤ |C1|× · · ·× |Ct|.
Since |Bi| = |{av(yi) : ∀yi ∈ X} ∪ {{0i}, Ri}| = |Ci| for all i = 1, . . . , t by
Corollary 2.8, |A| = |B| = |B1| × · · · × |Bt| = |C1| × · · · × |Ct| ≥ |C|. ¤

We can have the following question:

Question 1. Let R be a commutative ring with identity such that X is a
union of n orbits under the regular action of G on X. Is |{av(x) : ∀x ∈ X}| =
|{o(x) : ∀x ∈ X}|?
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Example 3. Let R = Z36. Then R has 7 nonzero proper ideals. We can
compute that av(x) and o(x) for all x ∈ X as follows: av(2) = 18R =
{18}, av(3) = 12R = {12, 24}, av(4) = 9R = {9, 18, 27}, av(6) = 6R =
{6, 12, 18, 24, 30}, av(9) = 4R = {4, 8, . . . , 32}, av(12) = 3R = {3, 6, . . . , 33},
av(2) = 2R = {2, 4, . . . , 34}; o(18) = {18}, o(6) = {6, 30}, o(9) = {9, 27},
o(12) = {12, 24}, o(3) = {3, 15, 21, 33}, o(2) = {2, 10, 14, 22, 26, 34} and o(4) =
{4, 8, 16, 20, 28, 32}. Note that the number of av(x)s’ is 7 and is equal to the
number of o(x)s’.

Example 4. Let R = Z3[x]/〈x3〉 and for simple notation, denote f(x) =
f(x) + 〈x3〉 ∈ R for all f(x) ∈ Z3[x]. Then X = {x, 2x, x2, 2x2, x + x2, 2x +
x2, x + 2x2, 2x + 2x2} and R has 2 nonzero proper ideals xR and x2R. We can
also compute that av(y) and o(y) for all y ∈ X as follows: av(x) = {x2, 2x2},
av(x2) = {x, 2x, x2, 2x2, x + x2, 2x + x2, x + 2x2, 2x + 2x2}; o(x2) = {x2, 2x2},
o(x) = {x, 2x, x + x2, 2x + x2, x + 2x2, 2x + 2x2}. Note that the number of
av(y)s’ is 2 and is also equal to the number of o(y)s’.

3. Zero-divisor graph of regular rings

In [4], it has been shown that if R is a unit-regular ring, then for every orbit
o(x) (x ∈ X) under the regular action of G on X, there exists some idempotent
e ∈ X such that o(x) = o(e). Note that for a commutative ring R with identity,
R is regular if and only R is unit-regular.

Proposition 3.1. Let R be a commutative regular ring. Then ΓX(R) is com-
plete if and only if the set of all idempotents in R is orthogonal and the regular
action of G on X is trivial, i.e., o(x) = {x} for all x ∈ X.

Proof. (⇒) Suppose that ΓX(R) is complete. Clearly, the set of all idempotents
in R is orthogonal. Assume that the regular action of G on X is not trivial.
Then there exists y ∈ X such that o(y) 6= {y}. By [8, Lemma 2.3], there exists
idempotent e(6= y) ∈ X such that y = ge for some g ∈ G. Since ΓX(R) is
complete and y, e ∈ X, 0 = ye = (ge)e = ge = y, a contradiction. Hence the
regular action of G on X is trivial.

(⇐) Suppose that the set of all idempotents in R is orthogonal and the
regular action of G on X is trivial. Let x, y(x 6= y) ∈ X be arbitrary. By
[8, Lemma 2.3], there exist idempotents e1, e2 ∈ X such that o(x) = o(e1) and
o(y) = o(e2). Since the regular action of G on X is trivial, {x} = o(x) = o(e1) =
{e1} and {y} = o(y) = o(e2) = {e2}, and so x = e1, y = e2. Since x 6= y,
e1 6= e2 and so xy = e1e2 = 0 by assumption. Thus ΓX(R) is complete. ¤

Lemma 3.2. Let R be a commutative regular ring. Then the following are
equivalent:

(1) x2 = x for all x ∈ X;
(2) the regular action of G on X is trivial;
(3) G = {1}.
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Proof. (1)⇒ (2). Suppose that x2 = x for all x ∈ X. Let y ∈ o(x) be arbitrary.
Then y = gx for some g ∈ G. Since y ∈ X, y2 = y by assumption, and then
y2 = (gx)2 = g2x = y = gx, which implies y = gx = x, and so o(x) = {x}.
Thus the regular action of G on X is trivial.

(2)⇒ (3). Suppose that the regular action of G on X is trivial and let e ∈ X
be an idempotent. Then o(e) = {e} and o(1− e) = {1− e}, and so ge = e and
g(1 − e) = 1 − e for all g ∈ G. Thus g − e = g(1 − e) = 1 − e, which implies
g = 1. Thus G = {1}.

(3) ⇒ (1). Suppose that G = {1}. Let x ∈ X be arbitrary. Since G = {1},
o(x) = {x}, and so o(x) = {x} = e for some idempotent e ∈ X by [8, Lemma
2.3]. Hence x2 = x for all x ∈ X. ¤

Corollary 3.3. Let R be a commutative regular ring. Then ΓX(R) is complete
if and only if the set of all idempotents in R is orthogonal and one of the
statements in Lemma 3.2 is satisfied.

Proof. It follows from Proposition 3.1 and Lemma 3.2. ¤

Remark 2. Let R be a ring. If the regular action of G on X is transitive,
then there exists no idempotent in X. Indeed, assume that there exists an
idempotent e ∈ X. Since the regular action of G on X is transitive, X =
o(1 − e), and then e = g(1 − e) for some g ∈ G. Thus 0 = e(1 − e) =
g(1−e)2 = g(1−e), and so 1 = e, a contradiction. Therefore for a unit-regular
(commutative regular) ring R with identity, there is no transitive regular action
of G on X by the above argument and [8, Lemma 2.3].

Proposition 3.4. Let R be a commutative regular ring with X 6= ∅. Then for
each x ∈ X, there exists an idempotent e ∈ X such that av(x) = av(e).

Proof. By [8, Lemma 2.3], for each x ∈ X there exists an idempotent e ∈ X
such that o(x) = 0(e). Thus e = gx for some g ∈ G, and then av(e) =
av(x). ¤

Proposition 3.5. Let R be a commutative regular ring such that 2 = 2·1 is a
unit in R. Then there exists a cycle of length 4 in Γ(R).

Proof. Let e ∈ X be an idempotent. Since 2 = 2 · 1 ∈ G, e 6= 1 − e,−e. Thus
e←→ 1− e←→ −e←→ e− 1←→ e is a cycle of length 4 in Γ(R). ¤

We note that for any idempotent e(6= 0, 1) in a commutative regular ring
R, under the regular action of G on X, o(1 − e) ⊆ av(e). In particular,
if R = F1 × F2 (F1, F2 : fields), then o(1 − e) = av(e) for all idempotent
e(6= 0, 1) ∈ R.

We raise the following question:

Question 2. For any idempotent e(6= 0, 1) in a commutative regular ring R
with identity, when is o(1− e) = av(e)?
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