• Title/Summary/Keyword: W_LSB

Search Result 122, Processing Time 0.028 seconds

Monolithic and Resolution with design of 10bit Current output Type Digital-to-Analog Converter (개선된 선형성과 해상도를 가진 10비트 전류 출력형 디지털-아날로그 변환기의 설계)

  • Song, Jun-Gue;Shin, Gun-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.187-191
    • /
    • 2007
  • This paper describes a 3.3V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method with monotonicity, glitch energy. The output stage utilizes here implements a return-to-zero circuit to obtain the dynamic performance. Most of D/A converters in decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. the designed D/A converter using the CMOS n-well $0.35{\mu}m$ process0. The experimental data shows that the rise/fall time, settling time, and INL/DNL are 1.90ns/2.0ns, 12.79ns, and a less than ${\pm}2.5/{\pm}0.7$ LSB, respectively. The power dissipation of the D/A converter with a single power supply of 3.3V is about 250mW.

  • PDF

A Design of 10bit current output Type Digital-to-Analog converter with self-Calibration Techique for high Resolution (고해상도를 위한 DAC 오차 보정법을 가진 10-비트 전류 출력형 디지털-아날로그 변환기 설계)

  • Song, Jung-Gue;Shin, Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.691-698
    • /
    • 2008
  • This paper describes a 3.3V 10 bit CMOS digital-to-analog converter with a divided architecture of a 7 MSB and a 3 LSB, which uses an optimal Thermal-to-Binary Decoding method with monotonicity, glitch energy. The output stage utilizes here implements a return-to-zero circuit to obtain the dynamic performance. Most of D/A converters in decoding circuit is complicated, occupies a large chip area. For these problems, this paper describes a D/A converter using an optimal Thermal-to-Binary Decoding method. the designed D/A converter using the CMOS n-well $0.35{\mu}m$ process0. The experimental data shows that the rise/fall time, settling time, and INL/DNL are 1.90ns/2.0ns, 12.79ns, and a less than ${\pm}2.5/{\pm}0.7\;LSB$, respectively. The power dissipation of the D/A converter with a single power supply of 3.3V is about 250mW.

A 500MSamples/s 6-Bit CMOS Folding and Interpolating AD Converter (500MSamples/s 6-비트 CMOS 폴딩-인터폴레이팅 아날로그-디지털 변환기)

  • Lee Don-Suep;Kwack Kae-Dal
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1442-1447
    • /
    • 2004
  • In this paper, a 6-Bit CMOS Folding and Interpolating AD Converter is presented. The converter is considered to be useful as an integrated part of a VLSI circuit handling both analog and digital signals as in the case of HDD or LAN applications. A built-in analog circuit for VLSI of a high-speed data communication requires a small chip area, low power consumption, and fast data processing. The proposed folding and interpolating AD Converter uses a very small number of comparators and interpolation resistors, which is achieved by cascading a couple of folders working in different principles. This reduced number of parts is a big advantage for a built-in AD converter design. The design is based on 0.25m double-poly 2 metal n-well CMOS process. In the simulation, with the applied 2.5V and a sampling frequency of 500MHz, the measurements are as follows: power consumption of 27mw, INL and DNL of $\pm$0.1LSB, $\pm$0.15LSB each, SNDR of 42dB with an input signal of 10MHz.

A Pipelined 60Ms/s 8-bit Analog to Digital Converter (8-bit 60Ms/s 파이프라인 아날로그 디지털 변환기)

  • 조은상;정강민
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.253-256
    • /
    • 2001
  • This paper introduces the design of high-speed analog- to-digital converter for high-definition TV, camcorders, portable equipments and implemented in a 0.65${\mu}{\textrm}{m}$ CMOS technology. Key circuits developed for low power and high speed A/D converter are a dynamic comparator that consumes no static power, a source follower buffered op amp that achives wide bandwidth using large input devices. The converter achieves low power dissipation of 40-mW at 3.3-V power supply. Measured performance includes 0.53 LSB of INL and 0.48 LSB of DNL while sampling at 60MHz.

  • PDF

6Bit 2.704Gs/s DAC for DS-CDMA UWB (DS-CDMA UWB를 위한 6Bit 2.704Gs/s DAC)

  • Jung, Jae-Jin;Koo, Ja-Hyun;Lim, Shin-Il;Kim, Suki
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.619-620
    • /
    • 2006
  • This paper presents a design of a 6-bit 2.704Gsamples/s D/A converter (DAC) for DS-CDMA UWB transceivers. The proposed DAC was designed with a current steering segmented 4+2 architecture for high frequency sampling rate. For low glitches, optimized deglitch circuit is adopted for the selection of current sources. The measured integral nonlinearity (INL) is -0.081 LSB and the measured differential nonlinearity (DNL) is -0.065 LSB. The DAC implemented in a 0.13um CMOS technology shows s spurious free dynamic range (SFDR) of 50dB from dc to Nyquist frequency. The prototype DAC consumes 28mW for a Nyquist sinusoidal output signal at a 2.704Gsamples/s. The chip has an active area of $0.76mm^2$.

  • PDF

A Design of a Highly Linear 3 V 10b Video-Speed CMOS D/A Converter (높은 선형성을 가진 3 V 10b 영상 신호 처리용 CMOS D/A 변환기 설계)

  • 이성훈;전병렬;윤상원;이승훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.28-36
    • /
    • 1997
  • In this work, a highly linear video-speed CMOS current-mode digital-to-analog converter (DAC) is proposed. A newswitching scheme for the current cell matrix of the DAC simultaneously reduces graded and symmetrical errors to improve integral nonlinearities (INL). The proposed DAC is designed to operate at any supply voltage between 3V and 5V, and minimizes the glitch energy of analog outputs with degliching circuits developed in this work. The prototype dAC was implemented in a LG 0.8um n-well single-poly double-metal CMOS technology. Experimental results show that the differential and integral nonlinearities are less than .+-. LSB and .+-.0.8LSB respectively. The DAC dissipates 75mW at a 3V single power supply and occupies a chip area of 2.4 mm * 2.9mm.

  • PDF

Design of an 8 bit CMOS low power and high-speed current-mode folding and interpolation A/D converter (8비트 저전력 고속 전류구동 폴딩.인터폴레이션 CMOS A/D 변환기 설계)

  • 김경민;윤황섭
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.58-70
    • /
    • 1997
  • In this paper, an 8bit CMOS low power, high-speed current-mode folding and interpolation A/D converter is designed with te LG semicon $0.8\mu\textrm{m}$ N-well single-poly/double-metal CMOS process to be integrated into a portable image signal processing system such as a digital camcoder. For good linearity and low power consumption, folding amplifiers and for high speed performance of the A/D converter, analog circuitries including folding block, current-mode interpolation circuit and current comparator are designed as a differential-mode. The fabricated 8 bit A/D converter occupies the active chip area of TEX>$2.2mm \times 1.6mm$ and shows DNL of $\pm0.2LSB$, INL of <$\pm0.5LSB$, conversion rate of 40M samples/s, and the measured maximum power dissipation of 33.6mW at single +5V supply voltage.

  • PDF

Design of an 1.8V 6-bit 100MS/s 5mW CMOS A/D Converter with Low Power Folding-Interpolation Techniques (저 전력 Folding-Interpolation기법을 적용한 1.8V 6-bit 100MS/s 5mW CMOS A/D 변환기의 설계)

  • Moon Jun-Ho;Hwang Sang-Hoon;Song Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.8 s.350
    • /
    • pp.19-26
    • /
    • 2006
  • In this paper, CMOS analog-to-digital converter (ADC) with a 6-bit 100MSPS at 1.8V is described. The architecture of the proposed ADC is based on a folding type ADC using resistive interpolation technique for low power consumption. Further, the number of folding blocks (NFB) is decreased by half of them compared to the conventional ones. A moebius-band averaging technique is adopted at the proposed ADC to improve performance. With the clock speed of 100MSPS, the ADC achieves an effective resolution bandwidth (ERBW) of 50MHz, while consuming only 4.5mW of power. The measured result of figure-of-merit (FoM) is 0.93pJ/convstep. The INL and DNL are within ${\pm}0.5 LSB$, respectively. The active chip occupies an area of $0.28mm^2$ in 0.18um CMOS technology.

Characteristic of $LiNbO_3$ Domain Inversion and Fabrication of Electrooptic Device Application using Domain Reversal ($LiNbO_3$ 기판의 도메인 반전 특성과 이를 이용한 기능성 광변조기의 제작)

  • Jeong, W.J.;Kim, W.K.;Yang, W.S.;Lee, H.M.;Kwon, S.W.;Song, M.K.;Lee, H.Y.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.20-25
    • /
    • 2007
  • The periodic domain-inversion in the selective areas of $Ti:LiNbO_3$ Mach-Zender waveguides was performed and band-pass modulators and single sideband (SSB) modulators were fabricated by using domain-reversal. The domain wall velocity was precisely controlled by real-time analysis of a poling-induced response current under an applied voltage. The domain wall velocity was significantly affected by the crystal orientation of the domain wall propagation which influenced the final domain geometry. In a certain case, the decomposition of $LiNbO_3$ crystal was observed, for example, under the condition of too fast domain wall propagation. The fabricated band-pass modulator with a periodic domain-inversion structure showed the maximum modulation efficiency at 30.3 GHz with 5.1 GHz 3dB-bandwidth, and SSB modulator was measured to show 33 dB USB suppression over LSB at 5.8 GHz RF.

60 GHz Optical Carrier Generator using Quasi-Velocity-Matching Technique (Quasi-Velocity-Matching물 이용한 60 GHz 광캐리어 발생기)

  • Kim, W.K.;Yang, W.S.;Lee, H.M.;Lee, H.Y.;Jeong, W.J.;Kwon, S.W.
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.181-185
    • /
    • 2006
  • A novel 60GHz optical carrier generator with a polarization domain-inverted structure is suggested and is demonstrated. The two arms of the Mach-Zehnder optical waveguide are periodically poled for quasi-phase velocity matching between the optical wave at 1550nm and the RF wave at 30 GHz. The center frequency of band-pass modulation and the 3 dB bandwidth of the fabricated modulator were measured to be 30.3 GHz and 5.1 GHz, respectively. Sub-carriers with the frequency difference of 60GHz waeregenerated under appropriate DC biac voltage application while the carrier was suppressed to lead to the power ratio between the modulated sub-carrier and the suppressed fundamental carrier of 28 dB, which proves that double sideband- suppressed carrier(DSB-SC) operation can be realized by the suggested single device.