• 제목/요약/키워드: Time-to-digital converter (TDC)

검색결과 31건 처리시간 0.019초

시간-디지털 변환기의 성능 개선에 대한 연구 (A Study on the Performance Improvement of a Time-to-Digital Converter)

  • 안태원;이종석;문용
    • 전자공학회논문지 IE
    • /
    • 제49권1호
    • /
    • pp.1-6
    • /
    • 2012
  • 본 논문에서는 시간-디지털 변환기의 성능 개선을 위하여, 높은 해상도의 2단 시간-디지털 변환기(TDC)를 설계하였다. TDC 중간에 2단 버니어 시간 증폭기(2-S VTA)를 사용하여 2단 구조를 갖도록 하였다. 2단 버니어 시간 증폭기는 기존의 시간 증폭기에 비해 이득이 64 이상으로 매우 크기 때문에 전체 2단 TDC의 해상도를 높인다. TDC는 버니어 구조를 사용하였기 때문에 고급 공정에 제한받지 않고, 높은 해상도를 얻을 수 있다. 제안하는 2단 TDC는 $0.18{\mu}m$ CMOS 공정으로 설계하였고, 전원 전압은 1.8V로 모의실험 하였다. 전체 입력 범위는 512ps이고 전체 해상도는 0.125ps이다.

버니어 지연단을 이용한 26ps, 8비트 게이티드 링 오실레이터 시간-디지털 변환기의 설계 (Design of a 26ps, 8bit Gated-Ring Oscillator Time-to-Digital Converter using Vernier Delay Line)

  • 진현배;박형민;김태호;강진구
    • 대한전자공학회논문지SD
    • /
    • 제48권2호
    • /
    • pp.7-13
    • /
    • 2011
  • 본 논문에서는 디지털 위상고정루프(All-digital PLL)를 구성하는 핵심 블록인 시간-디지털 변환기(Time-to-Digital Converter)를 제안하고 구현하였다. 본 연구에서는 게이티드 링 오실레이터 시간-디지털 변환기(GRO-TDC)의 기본 구조에 버니어 지연단(VDL)을 이용하여 다중 위상을 얻음으로써 보다 높은 해상도를 얻을 수 있는 구조를 제안하였다. 게이티드 링 오실레이터(GRO)는 총 7개의 지연셀을 사용하였고, 버니어 지연단(VDL) 3단을 이용하여 총 21개의 다중 위상을 사용하여 시간-디지털 변환기(TDC)를 설계하였다. 제안한 회로는 $0.13{\mu}m$ 1P-6M CMOS 공정을 사용하여 설계 및 구현하였다. 측정결과, 제안한 시간-디지털 변환기(TDC)의 최대 입력 주파수는 100MHz이고, 해상도는 26ps로 측정되었으며, 출력은 8-비트이며, 검출이 가능한 최대 위상 차이는 5ns의 위상 차이까지 검출이 가능하였다. 전력 소비는 측정된 Enable 신호의 크기에 따라 최소 8.4mW에서 최대 12.7mW로 측정되었다.

카운터를 사용하는 시간-디지털 변환기의 설계 (Design of a Time-to-Digital Converter Using Counter)

  • 최진호
    • 한국정보통신학회논문지
    • /
    • 제20권3호
    • /
    • pp.577-582
    • /
    • 2016
  • 전류 컨베이어를 사용하는 카운터 타입의 동기형 시간-디지털 변환기를 공급전압 3volts에서 $0.18{\mu}m$ CMOS 공정을 이용하여 설계하였다. 비동기 시간-디지털 변환기의 단점을 보완하기 위해 클록은 시작신호가 인가되면 시작신호와 동기화되어 생성된다. 비동기형 시간-디지털 변환기에서 디지털 출력 값의 에러는 클록주기인 $-T_{CK}$에서 $T_{CK}$이다. 그러나 동기형 시간-디지털 변환기의 경우 에러는 0에서 $T_{CK}$이다. 시작신호와 클록의 동기화로 인하여 시간간격 신호를 디지털 값으로 변환할 때 출력 값의 에러 범위는 감소한다. 또한 고주파의 외부 클럭을 사용하지 않음에 따라 회로의 구성이 간단하다. 설계된 시간-디지털 변환기의 동작은 HSPICE 시뮬레이션을 통하여 확인하였다.

Low-Power, All Digital Phase-Locked Loop with a Wide-Range, High Resolution TDC

  • Pu, Young-Gun;Park, An-Soo;Park, Joon-Sung;Lee, Kang-Yoon
    • ETRI Journal
    • /
    • 제33권3호
    • /
    • pp.366-373
    • /
    • 2011
  • In this paper, we propose a low-power all-digital phase-locked loop (ADPLL) with a wide input range and a high resolution time-to-digital converter (TDC). The resolution of the proposed TDC is improved by using a phase-interpolator and the time amplifier. The phase noise of the proposed ADPLL is improved by using a fine resolution digitally controlled oscillator (DCO) with an active inductor. In order to control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. The die area of the ADPLL is 0.8 $mm^2$ using 0.13 ${\mu}m$ CMOS technology. The frequency resolution of the TDC is 1 ps. The DCO tuning range is 58% at 2.4 GHz and the effective DCO frequency resolution is 0.14 kHz. The phase noise of the ADPLL output at 2.4 GHz is -120.5 dBc/Hz with a 1 MHz offset. The total power consumption of the ADPLL is 12 mW from a 1.2 V supply voltage.

Delay Time Reliability of Analog and Digital Delay Elements for Time-to-Digital Converter

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제8권1호
    • /
    • pp.103-106
    • /
    • 2010
  • In this paper, the delay times were evaluated to develop highly reliable time-to-digital converter(TDC) in analog and digital delay element structures. The delay element can be designed by using current source or inverter. In case of using inverter, the number of inverter has to be controlled to adjust the delay time. And in case of using current source, the current for charging and discharging is controlled. When the current source is used the delay time of the delay element is not sensitive with varying the channel width of CMOS. However, when the inverter is used the delay time is directly related to the channel width of CMOS. Therefore to obtain good reliability in TDC circuit the delay element using current source is more stable compared to inverter in the viewpoint of the variation of fabrication process.

0.357 ps의 해상도와 200 ps의 입력 범위를 가진 2단계 시간-디지털 변환기의 설계 (A Design of 0.357 ps Resolution and 200 ps Input Range 2-step Time-to-Digital Converter)

  • 박안수;박준성;부영건;허정;이강윤
    • 대한전자공학회논문지SD
    • /
    • 제47권5호
    • /
    • pp.87-93
    • /
    • 2010
  • 본 논문에서는 디지털 위상동기루프에서 사용하는 고해상도와 넓은 입력 범위를 가지는 2 단계 시간-디지털 변환기(TDC)구조를 제안한다. 디지털 위상동기루프에서 디지털 오실레이터의 출력 주파수와 기준 주파수와의 위상 차이를 비교하는데 사용하는 TDC는 고해상도로 구현되어야 위상고정루프의 잡음 특성을 좋게 한다. 기존의 TDC의 구조는 인버터로 구성된 지연 라인으로 이루어져 있어 그 해상도는 지연 라인을 구성하는 인버터의 지연 시간에 의해 결정되며, 이는 트랜지스터의 크기에 의해 결정된다. 따라서 특정 공정상에서 TDC의 해상도는 어느 값 이상으로 높일 수 없는 문제점이 있다. 본 논문에서는 인버터보다 작은 값의 지연 시간을 구현하기 위해 위상-인터폴레이션 기법을 사용하였으며, 시간 증폭기를 사용하여 작은 지연 시간을 큰 값으로 증폭하여 다시 TDC에 입력하는 2 단계로 구성하여 고해상도의 TDC를 설계하였다. 시간 증폭기의 이득에 영향을 주는 두 입력의 시간 차이를 작은 값으로 구현하기 위해 지연 시간이 다른 두 인버터의 차이를 이용하여 매우 작은 값의 시간 차이를 구현하여 시간증폭기의 성능을 높였다. 제안하는 TDC는 $0.13{\mu}m$ CMOS 공정으로 설계 되었으며 전체 면적은 $800{\mu}m{\times}850{\mu}m$이다. 1.2 V의 공급전압에서 12 mA의 전류를 사용하며 0.357 ps의 해상도와 200 ps의 입력 범위를 가진다.

시작신호 및 멈춤신호와 동기화된 클록을 사용하는 시간-디지털 변환기 (Time-to-Digital Converter Using Synchronized Clock with Start and Stop Signals)

  • 최진호
    • 한국정보통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.893-898
    • /
    • 2017
  • 카운터 타입의 시간-디지털 변환기를 공급전압 1.5volts에서 $0.18{\mu}mCMOS$ 공정을 이용하여 설계하였다. 일반적인 시간-디지털 변환기에서는 클록의 주기가 $T_{CK}$일 때, 시작신호와 클록의 시간차에 의해 최대 $T_{CK}$의 변환 에러가 발생한다. 그리고 멈춤신호와 클록의 시간차로 인해 -$T_{CK}$의 에러가 발생한다. 그러나 본 논문에서 제안한 시간-디지털 변환기는 이러한 단점을 보완하기 위해 클록은 시작신호 및 멈춤신호와 동기화하여 회로 내에서 생성되도록 설계하였다. 설계된 시간-디지털 변환기에서 시작신호와 클록의 시간차에 의한 변환에러는 발생하지 않으며, 멈춤신호에 의한 변환에러의 크기는 (1/2)$T_{CK}$로 감소된다.

시간 측정범위 향상을 위한 펄스 트레인 입력 방식의 field-programmable gate array 기반 시간-디지털 변환기 (Field-Programmable Gate Array-based Time-to-Digital Converter using Pulse-train Input Method for Large Dynamic Range)

  • 김도형;임한상
    • 전자공학회논문지
    • /
    • 제52권6호
    • /
    • pp.137-143
    • /
    • 2015
  • Field-programmable gate array (FPGA) 기반 시간-디지털 변환기 (time-to-digital converter: TDC)는 구조가 단순하고, 빠른 변환속도를 갖는 딜레이 라인 (delay-line) 방식을 주로 사용한다. 하지만 딜레이 라인 방식 TDC의 시간 측정범위를 늘리기 위해서는 딜레이 라인의 길이가 길어지므로 사용되는 소자가 많아지고, 비선형성으로 인한 오차가 증가하는 단점이 있다. 따라서 본 논문은 동일한 길이의 딜레이 라인에 펄스 트레인 (pulse-train)을 입력하여 시간 측정범위를 향상시키고, 리소스를 효율적으로 사용하는 방식을 제안한다. 펄스 트레인 입력 방식의 TDC는 긴 시간을 측정하기 위하여 시작신호의 입력과 동시에 4-천이 (transition) 펄스 트레인이 딜레이 라인에 입력된다. 그리고 동기회로 (synchronizer) 대신 천이 상태 검출부를 설계하여 중지신호 입력 시 사용된 천이를 판별하고, 준안정 상태 (meta-stable state)를 피하면서 딜레이 라인의 길이를 줄이는 구조를 갖는다. 제안한 TDC는 72개의 딜레이 셀 (delay cell)을 사용하였고, 파인부 (fine interpolator)의 성능 측정 결과, 시간 측정범위는 5070 ps, 평균 분해능은 20.53 ps, 최대 비선형성은 1.46 LSB였으며, 시간 측정범위는 계단 (step) 파형을 입력신호로 사용하는 기존 방식 대비 약 343 % 향상되었다.

Tracking analog-to-digital 변환기를 이용한 digital phase-locked loop (Digitally controlled phase-locked loop with tracking analog-to-digital converter)

  • 차수호;유창식
    • 대한전자공학회논문지SD
    • /
    • 제42권9호
    • /
    • pp.35-40
    • /
    • 2005
  • 본 논문에서는 1.6Gb/s에서 동작하는 digitally controlled phase-locked loop (DCPLL)를 제안한다. DCPLL은 일반적인 아날로그 PLL과 tracking analog-to-digital 변환기를 결합한 구조이다. 제안한 DCPLL에서는 tracking ADC의 출력이 voltage controlled oscillator (VCO)의 제어 전압을 생성한다. 일반적으로 사용되는 digital PLL (DPLL)은 digitally controlled oscillator (DCO)와 time-to-digit converter (TDC)로 구성된다 DCO와 TDC를 사용한 DPLL은 시간 스텝이 작을 수 록 jitter 특성이 향상되지만 전력소모는 커진다. 이 논문에서 제안한 DCPLL은 DPLL의 핵심요소인 DCO와 TDC를 사용하지 않았기 때문에 jitter, 면적, 전력소모 측면에서 유리하다. DCPLL은 $0.18\mu$m 4-metal CMOS공정을 이용하여 제작하였고 면적은 1mm $\times$0.35mm를 차지한다. 1.8V 단일 전원전압으로 정상동작에서는 59mW, power-down 모드에서는 $984\mu$W 전력을 소모하고 16.8ps rms jitter를 갖는다.

IoT 어플리케이션을 위한 분수분주형 디지털 위상고정루프 설계 (Design of Fractional-N Digital PLL for IoT Application)

  • 김신웅
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.800-804
    • /
    • 2019
  • 본 논문은 2.4 GHz 대역의 IoT용 주파수합성기를 위한 이중-루프 구성의 서브-샘플링 디지털 PLL을 소개한다. PLL은 초기에 주파수 분주기를 사용하는 coarse locking을 수행하며, 이 후 최종적으로는 주파수 분주기를 사용하지 않는 서브-샘플링 방식의 fine locking loop로 스위칭하게 된다. DTC를 사용하여 양자화 에러 제거를 수행하며 이를 통해 특정 타이밍 범위를 갖는 고해상도 TDC를 사용함으로써 낮은 인-밴드 위상잡음 특성을 가질 수 있다. 본 논문에서는 또한 coarse loop와 fine loop간의 위상 오프셋을 제거하기 위한 보정 회로를 제안하였다. Coarse locking이 진행되는 동안 fine loop의 위상 에러를 예측하고, 이를 다시 coarse loop에 보상함으로써 빠른 락킹 타임과 안정적인 동작을 확보하였다. 회로는 SystemVerilog 및 Verilog 언어로 모델링 및 Register-Transfer Level (RTL) 수준으로 설계 되었으며 시뮬레이션을 통해 충분히 그 동작이 검증되었다.