• 제목/요약/키워드: Through-Silicon Via

검색결과 154건 처리시간 0.024초

Research Needs for TSV-Based 3D IC Architectural Floorplanning

  • Lim, Sung Kyu
    • Journal of information and communication convergence engineering
    • /
    • 제12권1호
    • /
    • pp.46-52
    • /
    • 2014
  • This article presents key research needs in three-dimensional integrated circuit (3D IC) architectural floorplanning. Architectural floorplaning is done at a very early stage of 3D IC design process, where the goal is to quickly evaluate architectural designs described in register-transfer level (RTL) in terms of power, performance, and reliability. This evaluation is then fed back to architects for further improvement and/or modifications needed to meet the target constraints. We discuss the details of the following research needs in this article: block-level modeling, through-silicon-via (TSV) insertion and management, and chip/package co-evaluation. The goal of block-level modeling is to obtain physical, power, performance, and reliability information of architectural blocks. We then assemble the blocks into multiple tiers while connecting them using TSVs that are placed in between hard IPs and inside soft IPs. Once a full-stack 3D floorplanning is obtained, we evaluate it so that the feedback is provided back to architects.

The Effect of Inhibitors on the Electrochemical Deposition of Copper Through-silicon Via and its CMP Process Optimization

  • Lin, Paul-Chang;Xu, Jin-Hai;Lu, Hong-Liang;Zhang, David Wei;Li, Pei
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권3호
    • /
    • pp.319-325
    • /
    • 2017
  • Through silicon via (TSV) technology is extensively used in 3D IC integrations. The special structure of the TSV is realized by CMP (Chemically Mechanical Polishing) process with a high Cu removal rate and, low dishing, yielding fine topography without defects. In this study, we investigated the electrochemical behavior of copper slurries with various inhibitors in the Cu CMP process for advanced TSV applications. One of the slurries was carried out for the most promising process with a high removal rate (${\sim}18000{\AA}/Min$ @ 3 psi) and low dishing (${\sim}800{\AA}$), providing good microstructure. The effects of pH value and $H_2O_2$ concentration on the slurry corrosion potential and Cu static etching rate (SER) were also examined. The slurry formula with a pH of 6 and 2% $H_2O_2$, hadthe lowest SER (${\sim}75{\AA}/Min$) and was the best for TSV CMP. A novel Cu TSV CMP process was developed with two CMPs and an additional annealing step after some of the bulk Cu had been removed, effectively improving the condition of the TSV Cu surface and preventing the formation of crack defects by variations in wafer stress during TSV process integration.

Pd/Cu/PVP 콜로이드를 이용한 고종횡비 실리콘 관통전극 내 구리씨앗층의 단차피복도 개선에 관한 연구 (A Study on the Seed Step-coverage Enhancement Process (SSEP) of High Aspect Ratio Through Silicon Via (TSV) Using Pd/Cu/PVP Colloids)

  • 이동열;이유진;김현종;이민형
    • 한국표면공학회지
    • /
    • 제47권2호
    • /
    • pp.68-74
    • /
    • 2014
  • The seed step-coverage enhancement process (SSEP) using Pd/Cu/PVP colloids was investigated for the filling of through silicon via (TSV) without void. TEM analysis showed that the Pd/Cu nano-particles were well dispersed in aqueous solution with the average diameter of 6.18 nm. This Pd/Cu nano-particles were uniformly deposited on the substrate of Si/$SiO_2$/Ti wafer using electrophoresis with the high frequency Alternating Current (AC). After electroless Cu deposition on the substrate treated with Pd/Cu/PVP colloids, the adhesive property between deposited Cu layer and substrate was evaluated. The Cu deposit obtained by SSEP with Pd/Cu/PVP colloids showed superior adhesion property to that on Pd ion catalyst-treated substrate. Finally, by implementing the SSEP using Pd/Cu/PVP colloids, we achieved 700% improvement of step coverage of Cu seed layer compared to PVD process, resulting in void-free filling in high aspect ratio TSV.

Joule-heating Induced Crystallization (JIC) of Amorphous Silicon Films

  • Ko, Da-Yeong;Ro, Jae-Sang
    • 마이크로전자및패키징학회지
    • /
    • 제25권4호
    • /
    • pp.101-104
    • /
    • 2018
  • An electric field was applied to a Mo conductive layer in the sandwiched structure of $glass/SiO_2/Mo/SiO_2/a-Si$ to induce Joule heating in order to generate the intense heat needed to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced via Joule heating through a solid state transformation. Blanket crystallization was accomplished within the range of millisecond, thus demonstrating the possibility of a new crystallization route for amorphous silicon films. The grain size of JIC poly-Si can be varied from few tens of nanometers to the one having the larger grain size exceeding that of excimer laser crystallized (ELC) poly-Si according to transmission electron microscopy. We report here the blanket crystallization of amorphous silicon films using the $2^{nd}$ generation glass substrate.

실리콘 관통형 Via(TSV)의 Seed Layer 증착 및 Via Filling 특성 (Characteristic of Through Silicon Via's Seed Layer Deposition and Via Filling)

  • 이현주;최만호;권세훈;이재호;김양도
    • 한국재료학회지
    • /
    • 제23권10호
    • /
    • pp.550-554
    • /
    • 2013
  • As continued scaling becomes increasingly difficult, 3D integration has emerged as a viable solution to achieve higher bandwidths and good power efficiency. 3D integration can be defined as a technology involving the stacking of multiple processed wafers containing integrated circuits on top of each other with vertical interconnects between the wafers. This type of 3D structure can improve performance levels, enable the integration of devices with incompatible process flows, and reduce form factors. Through silicon vias (TSVs), which directly connect stacked structures die-to-die, are an enabling technology for future 3D integrated systems. TSVs filled with copper using an electro-plating method are investigated in this study. DC and pulses are used as a current source for the electro-plating process as a means of via filling. A TiN barrier and Ru seed layers are deposited by plasma-enhanced atomic layer deposition (PEALD) with thicknesses of 10 and 30 nm, respectively. All samples electroplated by the DC current showed defects, even with additives. However, the samples electroplated by the pulse current showed defect-free super-filled via structures. The optimized condition for defect-free bottom-up super-filling was established by adjusting the additive concentrations in the basic plating solution of copper sulfate. The optimized concentrations of JGB and SPS were found to be 10 and 20 ppm, respectively.

Cu 전해도금을 이용한 TSV 충전 기술 (TSV Filling Technology using Cu Electrodeposition)

  • 기세호;신지오;정일호;김원중;정재필
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.11-18
    • /
    • 2014
  • TSV(through silicon via) filling technology is making a hole in Si wafer and electrically connecting technique between front and back of Si die by filling with conductive metal. This technology allows that a three-dimensionally connected Si die can make without a large number of wire-bonding. These TSV technologies require various engineering skills such as forming a via hole, forming a functional thin film, filling a conductive metal, polishing a wafer, chip stacking and TSV reliability analysis. This paper addresses the TSV filling using Cu electrodeposition. The impact of plating conditions with additives and current density on electrodeposition will be considered. There are additives such as accelerator, inhibitor, leveler, etc. suitably controlling the amount of the additive is important. Also, in order to fill conductive material in whole TSV hole, current wave forms such as PR(pulse reverse), PPR(periodic pulse reverse) are used. This study about semiconductor packaging will be able to contribute to the commercialization of 3D TSV technology.

DRIE 공정 변수에 따른 TSV 형성에 미치는 영향 (Effect of Process Parameters on TSV Formation Using Deep Reactive Ion Etching)

  • 김광석;이영철;안지혁;송준엽;유중돈;정승부
    • 대한금속재료학회지
    • /
    • 제48권11호
    • /
    • pp.1028-1034
    • /
    • 2010
  • In the development of 3D package, through silicon via (TSV) formation technology by using deep reactive ion etching (DRIE) is one of the key processes. We performed the Bosch process, which consists of sequentially alternating the etch and passivation steps using $SF_6$ with $O_2$ and $C_4F_8$ plasma, respectively. We investigated the effect of changing variables on vias: the gas flow time, the ratio of $O_2$ gas, source and bias power, and process time. Each parameter plays a critical role in obtaining a specified via profile. Analysis of via profiles shows that the gas flow time is the most critical process parameter. A high source power accelerated more etchant species fluorine ions toward the silicon wafer and improved their directionality. With $O_2$ gas addition, there is an optimized condition to form the desired vertical interconnection. Overall, the etching rate decreased when the process time was longer.

Wafer 레벨에서의 위치에 따른 TSV의 Cu 충전거동 (Cu-Filling Behavior in TSV with Positions in Wafer Level)

  • 이순재;장영주;이준형;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제21권4호
    • /
    • pp.91-96
    • /
    • 2014
  • TSV기술은 실리콘 칩에 관통 홀(through silicon via)을 형성하고, 비아 내부에 전도성 금속으로 채워 수직으로 쌓아 올려 칩의 집적도를 향상시키는 3차원 패키징 기술로서, 와이어 본딩(wire bonding)방식으로 접속하는 기존의 방식에 비해 배선의 거리를 크게 단축시킬 수 있다. 이를 통해 빠른 처리 속도, 낮은 소비전력, 높은 소자밀도를 얻을 수 있다. 본 연구에서는 웨이퍼 레벨에서의 TSV 충전 경향을 조사하기 위하여, 실리콘의 칩 레벨에서부터 4" 웨이퍼까지 전해 도금법을 이용하여 Cu를 충전하였다. Cu 충전을 위한 도금액은 CuSO4 5H2O, H2SO4 와 소량의 첨가제로 구성하였다. 양극은 Pt를 사용하였으며, 음극은 $0.5{\times}0.5 cm^2{\sim}5{\times}5cm^2$ 실리콘 칩과 4" 실리콘 wafer를 사용하였다. 실험 결과, $0.5{\times}0.5cm^2$ 실리콘 칩을 이용하여 양극과 음극과의 거리에 따라 충전률을 비교하여 전극간 거리가 4 cm일 때 충전률이 가장 양호하였다. $5{\times}5cm^2$ 실리콘 칩의 경우, 전류 공급위치로부터 0~0.5 cm 거리에 위치한 TSV의 경우 100%의 Cu충전률을 보였고, 4.5~5 cm 거리에 위치한 TSV의 경우 충전률이 약 95%로 비아의 입구 부분이 완전히 충전되지 않는 경향을 보였다. 전극에서 멀리 떨어져있는 TSV에서 Cu 충전률이 감소하였으며, 안정된 충전을 위하여 전류를 인가하는 시간을 2 hrs에서 2.5 hrs로 증가시켜 4" 웨이퍼에서 양호한 TSV 충전을 할 수 있었다.