DOI QR코드

DOI QR Code

Effect of Process Parameters on TSV Formation Using Deep Reactive Ion Etching

DRIE 공정 변수에 따른 TSV 형성에 미치는 영향

  • Kim, Kwang-Seok (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Lee, Young-Chul (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Ahn, Jee-Hyuk (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Song, Jun Yeob (Korea Institute of Machinery & Materials) ;
  • Yoo, Choong D. (Department of Mechanical Engineering, KAIST) ;
  • Jung, Seung-Boo (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 김광석 (성균관대학교 신소재공학부) ;
  • 이영철 (성균관대학교 신소재공학부) ;
  • 안지혁 (성균관대학교 신소재공학부) ;
  • 송준엽 (한국기계연구원 지능기계연구센터) ;
  • 유중돈 (한국과학기술원 기계공학과) ;
  • 정승부 (성균관대학교 신소재공학부)
  • Received : 2010.05.12
  • Published : 2010.11.25

Abstract

In the development of 3D package, through silicon via (TSV) formation technology by using deep reactive ion etching (DRIE) is one of the key processes. We performed the Bosch process, which consists of sequentially alternating the etch and passivation steps using $SF_6$ with $O_2$ and $C_4F_8$ plasma, respectively. We investigated the effect of changing variables on vias: the gas flow time, the ratio of $O_2$ gas, source and bias power, and process time. Each parameter plays a critical role in obtaining a specified via profile. Analysis of via profiles shows that the gas flow time is the most critical process parameter. A high source power accelerated more etchant species fluorine ions toward the silicon wafer and improved their directionality. With $O_2$ gas addition, there is an optimized condition to form the desired vertical interconnection. Overall, the etching rate decreased when the process time was longer.

Keywords

Acknowledgement

Supported by : 산업기술연구회

References

  1. Y. Wu, C. Chang, C. Wang, C. Kao, C. Kuo, and A. Ku, Microelectronic Engineering 86, 33 (2009). https://doi.org/10.1016/j.mee.2008.08.015
  2. J. A. Kittla, K. Opsomera, M. Popovicia, N. Menoua, B. Kaczera, X. P. Wanga, C. Adelmanna, M. A. Pawlaka, K. Tomidaa, A. Rothschilda, B. Govoreanua, R. Degraevea, M. Schaekersa, M. Zahida, A. Delabiea, J. Meersschauta, W. Polspoela, S. Climaa, G. Pourtoisa, W. Knaepenb, C. Detavernierb, V. V. Afanas'evc, T. Blombergd, D. Pierreuxe, J. Swertse, P. Fischere, J. W. Maese, D. Mangerf, W. Vandervorsta, T. Conarda, A. Franqueta, P. Faviaa, H. Bendera, B. Brijsa, S. Van Elshochta, M. Jurczaka, J. Van Houdta, and D. J. Woutersa, Microelectronic Engineering 86, 1789 (2009). https://doi.org/10.1016/j.mee.2009.03.045
  3. M. S. Yoon, J. Microelectron. Packag. Soc. 16, 1 (2009).
  4. M. Samber, E. Grunsven, G. Kums, A. Lugt, and H. Vries, Mater. Res. Soc. Symp. Proc. (eds. Roozeboom F., Bower C., Garrou P., Koyanagi M., Ramm P.), Vol. 1112, pp. 189-200, Mater. Res. Soc. Warrendale, PA, USA (2009).
  5. N. Ranganathan, L. Ebin, L. Linn, L. Vincent, O. Navas, V. Kripesh, and N. Balasubramanian, Proc. of ECTC 2008, pp. 859-865 Lake Buena Vista, FL, USA (2008).
  6. K. Lee and T. Oh, J. Microelectron. Packag. Soc. 13, 57 (2006).
  7. J. Kim, J. Jung, S. Kim, and Park, J. J. of KWS. 23, 129 (2005).
  8. Y. Park and I. Jeon, J. Kor. Inst. Met. & Mater. 42, 603 (2004).
  9. F. Said and S. Al, IEEE Trans. Comp., Packag., Manufact. Technol. 21, 2 (1998). https://doi.org/10.1109/96.659500
  10. J. M. Yannou, Yole Development, pp. 9-264 (2008).
  11. S. Park, T. Oh, Y. Eum, and J. Moon, J. Kor. Inst. Met. & Mater. 14, 63 (2007).
  12. S. Hyun and C. Lee, J. of KWJS 27, 4 (2009).
  13. P. Laermer, P. Schilp, and R. Bosch Gmbh, U.S. Patent 5501893, 1996; German Patent DE4 241 045C1 (1994).
  14. H. Jansen, M. de Boer, S. Unnikrishnan, M. Louwerse, and M. Elwenspoek, J. Micromech. Microeng. 19, 033001 (2009). https://doi.org/10.1088/0960-1317/19/3/033001
  15. P. Garrou, C. Bower, and P. Ramm, Handbook of 3D Integration Technology and Applications of 3D Integrated Circuits, Wiley-VCH, pp. 47-91 (2008).
  16. K. Baek, D. Kim, K. Park, J. Kang, K. Lee, and L. Do, J. of the KSPE 26, 32 (2009).
  17. J. Vardaman, 3-D Through-Silicon Vias Become a Reality, http://www.semiconductor.net/article/CA6445435.html (2007).
  18. I. U. Abhulimen, S. Polamreddy, S. Burkett, L. Cai, and L. Schaper, J. Vac. Sci. Technol. B 25, 1762 (2007). https://doi.org/10.1116/1.2787869
  19. Y. Lee, J. Kim, K. Kim, and S. Jung, J. of KWJS 27, 32 (2009).
  20. K. Jung, W. Song, H. Lim, and C. Lee, J. V. Sci. Technol. B 28, 143 (2010). https://doi.org/10.1116/1.3280131
  21. G. Yeom, Plasma Etching Technology, Munundang, pp. 217-221 (2005).