• Title/Summary/Keyword: Threshold voltage voltage

Search Result 1,291, Processing Time 0.023 seconds

Channel Doping Concentration Dependent Threshold Voltage Movement of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 도핑농도에 대한 문턱전압이동)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2183-2188
    • /
    • 2014
  • This paper has analyzed threshold voltage movement for channel doping concentration of asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET is generally fabricated with low doping channel and fully depleted under operation. Since impurity scattering is lessened, asymmetric DGMOSFET has the adventage that high speed operation is possible. The threshold voltage movement, one of short channel effects necessarily occurred in fine devices, is investigated for the change of channel doping concentration in asymmetric DGMOSFET. The analytical potential distribution of series form is derived from Possion's equation to obtain threshold voltage. The movement of threshold voltage is investigated for channel doping concentration with parameters of channel length, channel thickness, oxide thickness, and doping profiles. As a result, threshold voltage increases with increase of doping concentration, and that decreases with decrease of channel length. Threshold voltage increases with decrease of channel thickness and bottom gate voltage. Lastly threshold voltage increases with decrease of oxide thickness.

Impact of Remanent Polarization and Coercive Field on Threshold Voltage and Drain-Induced Barrier Lowering in NCFET (negative capacitance FET) (NCFET (negative capacitance FET)에서 잔류분극과 항전계가 문턱전압과 드레인 유도장벽 감소에 미치는 영향)

  • Hakkee Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.48-55
    • /
    • 2024
  • The changes in threshold voltage and DIBL were investigated for changes in remanent polarization Pr and coercive field Ec, which determine the characteristics of the P-E hysteresis curve of ferroelectric in NCFET (negative capacitance FET). The threshold voltage and DIBL (drain-induced barrier lowering) were observed for a junctionless double gate MOSFET using a gate oxide structure of MFMIS (metal-ferroelectric-metal-insulator-semiconductor). To obtain the threshold voltage, series-type potential distribution and second derivative method were used. As a result, it can be seen that the threshold voltage increases when Pr decreases and Ec increases, and the threshold voltage is also maintained constant when the Pr/Ec is constant. However, as the drain voltage increases, the threshold voltage changes significantly according to Pr/Ec, so the DIBL greatly changes for Pr/Ec. In other words, when Pr/Ec=15 pF/cm, DIBL showed a negative value regardless of the channel length under the conditions of ferroelectric thickness of 10 nm and SiO2 thickness of 1 nm. The DIBL value was in the negative or positive range for the channel length when the Pr/Ec is 25 pF/cm or more under the same conditions, so the condition of DIBL=0 could be obtained. As such, the optimal condition to reduce short channel effects can be obtained since the threshold voltage and DIBL can be adjusted according to the device dimension of NCFET and the Pr and Ec of ferroelectric.

Analytic Threshold Voltage Model of Recessed Channel MOSFETs

  • Kwon, Yong-Min;Kang, Yeon-Sung;Lee, Sang-Hoon;Park, Byung-Gook;Shin, Hyung-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.61-65
    • /
    • 2010
  • Threshold voltage is one of the most important factors in a device modeling. In this paper, analytical method to calculate threshold voltage for recessed channel (RC) MOSFETs is studied. If we know the fundamental parameter of device, such as radius, oxide thickness and doping concentration, threshold voltage can be obtained easily by using this model. The model predicts the threshold voltage which is the result of 2D numerical device simulation.

Effects of Offset Gate on Programing Characteristics of Triple Polysilicon Flash EEPROM Cell

  • Kim, Nam-Soo;Choe, Yeon-Wook;Kim, Yeong-Seuk
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.132-138
    • /
    • 1997
  • Electrical characteristics of split-gate flash EEPROM with triple polysilicon is investigated in terms of effects of floating gate and offset gate. In order to search for t the effects of offset gate on programming characteristics, threshold voltage and drain current are studied with variation of control gate voltage. The programming process is believed to depend on vertical and horizontal electric field as well as offset gate length. The erase and program threshold voltage are found to be almost constant with variation of control gate voltage above 12V, while endurance test indicates degradation of program threshold voltage. With increase of offset gate length, program threshold voltage becomes smaller and the drain source voltage just after program under constant control gate voltage becomes higher.

  • PDF

Comparison of Current-Voltage Characteristics of Nanosheet FET and FinFET (Nanosheet FET와 FinFET의 전류-전압 특성 비교)

  • Ahn, Eun Seo;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.560-561
    • /
    • 2022
  • In this paper, current-voltage characteristics of various types of Nanosheet FET (NSFET) and FinFET are simulated with 3D device simulator. The threshold voltage and subthreshold swing extracted from the simulated current-voltage characteristics of NSFET and FinFET were compared. Both of threshold voltage and drain current of NSFET are higher than those of FinFET. The subthreshold voltage swing (SS) of NSFET is steeper than that of FinFET.

  • PDF

Analysis of Threshold Voltage for Double Gate MOSFET of Symmetric and Asymmetric Oxide Structure (대칭 및 비대칭 산화막 구조의 이중게이트 MOSFET에 대한 문턱전압 분석)

  • Jung, Hakkee;Kwon, Ohshin;Jeong, Dongsoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.755-758
    • /
    • 2014
  • This paper has analyzed the change of threshold voltage for oxide structure of symmetric and asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET can be fabricated with different top and bottom gate oxide thickness, while the symmetric DGMOSFET has the same top and bottom gate oxide thickness. Therefore optimum threshold voltage is considered for top and bottom gate oxide thickness of asymmetric DGMOSFET, compared with the threshold voltage of symmetric DGMOSFET. To obtain the threshold voltage, the analytical potential distribution is derived from Possion's equation, and Gaussian distribution function is used as doping profile. We investigate for bottom gate voltage, channel length and thickness, and doping concentration how top and bottom gate oxide thickness influences on threshold voltage using this threshold voltage model. As a result, threshold voltage is greatly changed for oxide thickness, and we know the changing trend very differs with bottom gate voltage, channel length and thickness, and doping concentration.

  • PDF

Scaling theory to minimize the roll-off of threshold voltage for ultra fine MOSFET (미세 구조 MOSFET에서 문턱전압 변화를 최소화하기 위한 최적의 스켈링 이론)

  • 정학기;김재홍;고석웅
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.719-724
    • /
    • 2003
  • In this paper, we have presented the simulation results about threshold voltage of nano scale lightly doped drain (LDD) MOSFET with halo doping profile. Device size is scaled down from 100nm to 40nm using generalized scaling. We have investigated the threshold voltage for constant field scaling and constant voltage scaling using the Van Dort Quantum Correction Model (QM) and direct tunneling current for each gate oxide thickness. We know that threshold voltage is decreasing in the constant field scaling and increasing in the constant voltage scaling when gate length is reducing, and direct tunneling current is increasing when gate oxide thickness is reducing. To minimize the roll off characteristics for threshold voltage of MOSFET with decreasing channel length, we know $\alpha$ value must be nearly 1 in the generalized scaling.

Scaling theory to minimize the roll-off of threshold voltage for nano scale MOSFET (나노 구조 MOSFET의 문턱전압 변화를 최소화하기 위한 스케일링 이론)

  • 김영동;김재홍;정학기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.494-497
    • /
    • 2002
  • In this paper, we have presented the simulation results about threshold voltage of nano scale lightly doped drain (LDD) MOSFET with halo doping profile. Device size is scaled down from 100nm to 40nm using generalized scaling. We have investigated the threshold voltage for constant field scaling and constant voltage scaling using the Van Dort Quantum Correction Model(QM) and direct tunneling current for each gate oxide thickness. We know that threshold voltage is decreasing in the constant field scaling and increasing in the constant voltage scaling when gate length is reducing, and direct tunneling current is increasing when gate oxide thickness is reducing. To minimize the roll-off characteristics for threshold voltage of MOSFET with decreasing channel length, we know u value must be nearly 1 in the generalized scaling.

  • PDF

Analysis of Transport Characteristics for FinFET Using Three Dimension Poisson's Equation

  • Jung, Hak-Kee;Han, Ji-Hyeong
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.361-365
    • /
    • 2009
  • This paper has been presented the transport characteristics of FinFET using the analytical potential model based on the Poisson's equation in subthreshold and threshold region. The threshold voltage is the most important factor of device design since threshold voltage decides ON/OFF of transistor. We have investigated the variations of threshold voltage and drain induced barrier lowing according to the variation of geometry such as the length, width and thickness of channel. The analytical potential model derived from the three dimensional Poisson's equation has been used since the channel electrostatics under threshold and subthreshold region is governed by the Poisson's equation. The appropriate boundary conditions for source/drain and gates has been also used to solve analytically the three dimensional Poisson's equation. Since the model is validated by comparing with the three dimensional numerical simulation, the subthreshold current is derived from this potential model. The threshold voltage is obtained from calculating the front gate bias when the drain current is $10^{-6}A$.

Impedance Characteristics of Blue Fluorescent OLED According to Elapsed Time (경과 시간에 따른 청색 형광 OLED의 Impedance 특성)

  • Kong, Do-Hoon;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.405-410
    • /
    • 2017
  • In order to study current-voltage-luminance and impedance characteristics according to elapsed time, a blue fluorescent OLED was fabricated. The current density and luminance gradually decreased in accordance with elapsed time and did not emit light after 480 hours, and the threshold voltage increased as time elapsed. The Cole-Cole plot was a semicircular shape of a very large size at 2 V of the applied voltage below the threshold voltage, and the maximum value of the real number impedance did not change greatly from 9314.5 to $9902.2{\Omega}$ as time elapsed. Applied voltages 4, 6, and 8 V above the threshold voltage showed a large change in the real number impedance value at the semicircle end to 9,678.2, 9,826, $9,535.4{\Omega}$ according to the elapsed time from 2,222.5, 183.7, $48.2{\Omega}$ immediately after fabricating the device. By increasing the applied voltage beyond the threshold voltage just after device fabrication, the energy difference between the device and the organic layer was overcome and the current flowed, the maximum value of the real number impedance sharply decreased. As time passed, current did not flow through the element even at high applied voltage due to degradation of the element, and even when the applied voltage was higher than the threshold voltage, it showed an impedance value such as applied voltage equal to or less than the threshold voltage. As a result, it can be learned that the change in the impedance with elapsed time reflects the characteristics due to the degradation of the OLED and can predict the characteristics and lifetime of the OLED.