DOI QR코드

DOI QR Code

Impact of Remanent Polarization and Coercive Field on Threshold Voltage and Drain-Induced Barrier Lowering in NCFET (negative capacitance FET)

NCFET (negative capacitance FET)에서 잔류분극과 항전계가 문턱전압과 드레인 유도장벽 감소에 미치는 영향

  • Hakkee Jung (Department of Electronic Engineering, Kunsan National University)
  • Received : 2023.08.17
  • Accepted : 2023.09.19
  • Published : 2024.01.01

Abstract

The changes in threshold voltage and DIBL were investigated for changes in remanent polarization Pr and coercive field Ec, which determine the characteristics of the P-E hysteresis curve of ferroelectric in NCFET (negative capacitance FET). The threshold voltage and DIBL (drain-induced barrier lowering) were observed for a junctionless double gate MOSFET using a gate oxide structure of MFMIS (metal-ferroelectric-metal-insulator-semiconductor). To obtain the threshold voltage, series-type potential distribution and second derivative method were used. As a result, it can be seen that the threshold voltage increases when Pr decreases and Ec increases, and the threshold voltage is also maintained constant when the Pr/Ec is constant. However, as the drain voltage increases, the threshold voltage changes significantly according to Pr/Ec, so the DIBL greatly changes for Pr/Ec. In other words, when Pr/Ec=15 pF/cm, DIBL showed a negative value regardless of the channel length under the conditions of ferroelectric thickness of 10 nm and SiO2 thickness of 1 nm. The DIBL value was in the negative or positive range for the channel length when the Pr/Ec is 25 pF/cm or more under the same conditions, so the condition of DIBL=0 could be obtained. As such, the optimal condition to reduce short channel effects can be obtained since the threshold voltage and DIBL can be adjusted according to the device dimension of NCFET and the Pr and Ec of ferroelectric.

Keywords

References

  1. M. Nadeem, I. D. Bernardo, X. Wang, M. S. Fuhrer, and D. Culcer, Nano Lett., 21, 3155 (2021). doi: https://doi.org/10.1021/acs.nanolett.1c00378
  2. C. Liu, Y. Wang, H. Sun, C. Ma, Z. Luo, H. Wang, Y. Yin, and X. Li, NPG Asia Mater., 13, 77 (2021). doi: https://doi.org/10.1038/s41427-021-00345-5
  3. J. F. Yao, X. Han, X. P. Zhang, J. C. Liu, M. Y. Gu, M. L. Zhang, K. H. Yu, and Y. F. Guo, Crystals, 12, 1545 (2022). doi: https://doi.org/10.3390/cryst12111545
  4. J. Y. Kim, M. Choi, and H. W. Jang, APL Mater., 9, 021102 (2021). doi: https://doi.org/10.1063/5.0035515
  5. T. Yu, W. Lu, Z. Zhao, P. Si, and K. Zhang, Microelectron. J., 108, 104981 (2021). doi: https://doi.org/10.1016/j.mejo.2020.104981
  6. S. U. Alam, R. Uddin, M. J. Alam, A. Raihan, S. S. Mahtab, and S. Bhowmik, Model. Simul. Eng., 2022, 8345513 (2022). doi: https://doi.org/10.1155/2022/8345513
  7. W. Xiao, C. Liu, Y. Peng, S. Zheng, Q. Feng, C. Zhang, J. Zhang, Y. Hao, M. Liao, and Y. Zhou, Nanoscale Res. Lett., 14, 254 (2019). doi: https://doi.org/10.1186/s11671-019-3063-2
  8. W. Huang, H. Zhu, Y. Zhang, Z. Wu, K. Jia, X. Yin, Y. Li, C. Li, X. Ai, Q. Huo, and J. Li, Microelectron. J., 114, 105110 (2021). doi: https://doi.org/10.1016/j.mejo.2021.105110
  9. J. Min and C. Shin, Electronics, 9, 1423 (2020). doi: https://doi.org/10.3390/electronics9091423
  10. W. X. You, C. P. Tsai, and P. Su, IEEE Trans. Electron Devices, 65, 1604 (2018). doi: https://doi.org/10.1109/TED.2018.2805716
  11. S. Moon, J. Shin, and C. Shin, Electronics, 9, 704 (2020). doi: https://doi.org/10.3390/electronics9050704
  12. A. T. Shora and F. A. Khanday, Int. J. Electron. Lett., 8, 304 (2020). doi: https://doi.org/10.1080/21681724.2019.1600729
  13. S. A. Hosseini, A. Eskandarian, and A. Ghadimi, Eng. Rep., 4, e12481 (2022). doi: https://doi.org/10.1002/eng2.12481
  14. J. Pruefer, J. Leise, G. Darbandy, A. Nikolaou, H. Klauk, J. W. Borchert, B. Iniguez, T. Gneiting, and A. Kloes, IEEE Trans. Electron Devices, 67, 5082 (2020). doi: https://doi.org/10.1109/TED.2020.3021368
  15. O. Prakash, A. Gupta, G. Pahwa, Y. S. Chauhan, and H. Amrouch, J. Electron Device Soc., 9, 1262 (2021). doi: https://doi.org/10.1109/JEDS.2021.3110486
  16. F. I. Sakib, M. A. Hasan, and M. Hossain, Eng. Res. Express, 3, 045044 (2021). doi: https://doi.org/10.1088/2631-8695/ac3d39
  17. A. Ortiz-Conde, F. J. Garcia-Sanchez, J. Muci, A. T. Barrios, J. J. Liou, and C. S. Ho, Microelectron. Reliab., 53, 90 (2013). doi: https://doi.org/10.1016/j.microrel.2012.09.015
  18. A. F. Jaimes, Tecnura, 21, 32 (2017). doi: https://doi.org/10.14483/udistrital.jour.tecnura.2017.2.a02
  19. Y. Swami and S. Rai, J. Nanotechnol., 2017, 4678571 (2017). doi: https://doi.org/10.1155/2017/4678571
  20. Z. Ding, G. Hu, J. Gu, R. Liu, L. Wang, and T. Tang, Microelectron. J., 42, 515 (2011). doi: https://doi.org/10.1016/j.mejo.2010.11.002
  21. Y. H. Shin and I. Yun, Solid-State Electron., 120, 19 (2016). doi: https://doi.org/10.1016/j.sse.2016.03.002
  22. R. U. Ahmed and P. Saha, Period. Polytech. Electr. Eng. Comput. Sci., 64, 106 (2020). doi: https://doi.org/10.3311/PPee.14279
  23. A. Rassekh, J. M. Sallese, F. Jazaeri, M. Fathipour, and A. M. Ionescu, J. Electron Device Soc., 8, 939 (2020). doi: https://doi.org/10.1109/JEDS.2020.3020976
  24. A. Rassekh, F. Jazaeri, and J. M. Sallese, IEEE Trans. Electron Devices, 69, 820 (2022). doi: https://doi.org/10.1109/TED.2021.3133193
  25. W. Huang, H. Zhu, Z. Wu, X. Yin, Q. Huo, K. Jia, Y. Li, and Y. Zhang, IEEE J. Electron Devices Soc., 8, 879 (2020). doi: https://doi.org/10.1109/JEDS.2020.3015492
  26. B. Awadhiya, P. N. Kondekar, S. Yadav, and P. Upadhyay, Trans. Electr. Electron. Mater., 22, 267 (2021). doi: https://doi.org/10.1007/s42341-020-00230-y
  27. S. Chaudhary, B. Dewan, C. Sahu, and M. Yadav, Silicon, 14, 7099 (2022). doi: https://doi.org/10.1007/s12633-021-01478-6
  28. T. Yu, W. Lu, Z. Zhao, P. Si, and K. Zhang, Microelectron. J., 98, 104730 (2020). doi: https://doi.org/10.1016/j.mejo.2020.104730
  29. H. Jung, AIMS Electron. Electr. Eng., 7, 38 (2023). doi: https://doi.org/10.3934/electreng.2023003
  30. J. Okuno, T. Kunihiro, K. Konishi, H. Maemura, Y. Shuto, F. Sugaya, M. Materano, T. Ali, K. Kuehnel, K. Seidel, U. Schroeder,T. Mikolajick, M. Tsukamoto, and T. Umebayashi, Proc. 2020 IEEE Symposium on VLSI Technology (Honolulu, USA, 2020) p. 1. doi: https://doi.org/10.1109/VLSITechnology18217.2020.9265063
  31. T. Francois, L. Grenouillet, J. Coignus, P. Blaise, C. Carabasse, N. Vaxelaire, T. Magis, F. Aussenac, V. Loup, C. Pellissier, S. Slesazeck, V. Havel, C. Richter, A. Makosiej, B. Giraud, E. T. Breyer, M. Materano, P. Chiquet, M. Bocquet, E. Nowak, U. Schroeder, and F. Gaillard, Proc. 2019 IEEE International Electron DevicesMeeting (IEDM) (San Francisco, USA, 2020) p. 15.6.1. doi: https://doi.org/10.1109/IEDM19573.2019.8993485
  32. Y. Liang, J. Wu, C. Teng, H. Ko, Q. Luc, C. Su, E. Chang, and C. Lin, IEEE Electron Device Lett., 42, 1299 (2021). doi: https://doi.org/10.1109/LED.2021.3102604
  33. Z. Dang, S. Lv, Z. Gao, M. Chen, Y. Xu, P. Jiang, Y. Ding, P. Yuan, Y. Wang, Y. Chen, Q. Luo, and Y. Wang, IEEE Electron Device Lett., 43, 561 (2022). doi: https://doi.org/10.1109/LED.2022.3153063
  34. J. Min, G. Choe, and C. Shin, Curr. Appl. Phys., 20, 1222 (2020). doi: https://doi.org/10.1016/j.cap.2020.08.008
  35. S. Shi, H. Xi, T. Cao, W. Lin, Z. Liu, J. Niu, D. Lan, C. Zhou, J. Cao, H. Su, T. Zhao, P. Yang, Y. Zhu, X. Yan, E. Y. Tsymbal, H. Tian, and J. Chen, Nat. Commun., 14, 1780 (2023). doi: https://doi.org/10.1038/s41467-023-37560-3